Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity. Molecular genetics and the evolution of animal design, vol. 2nd. Malden: Blackwell Publishing; 2005.
Google Scholar
Butts T, Holland PWH, Ferrier DEK. The urbilaterian super-Hox cluster. Trends Genet. 2008;24(6):259–62.
Article
CAS
PubMed
Google Scholar
Holland PWH, Takahashi T. The evolution of homeobox genes: implications for the study of brain development. Brain Res Bull. 2005;66:484–90.
Article
CAS
PubMed
Google Scholar
Holland PWH. Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol. 2013;2(1):31–45.
Article
CAS
PubMed
Google Scholar
Ferrier DEK. Evolution of homeobox gene clusters in animals: the Giga-cluster and primary versus secondary clustering. Front Ecol Evol. 2016;4:36.
Article
Google Scholar
Hui JHL, McDougall C, Monteiro AS, Holland PWH, Arendt D, Balavoine G, Ferrier DEK. Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. Mol Biol Evol. 2012;29(1):157–65.
Article
CAS
PubMed
Google Scholar
Butts T, Holland PWH, Ferrier DEK. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proc R Soc B Biol Sci. 2010;277(1699):3381–9.
Article
CAS
Google Scholar
Ferrier DEK. When is a Hox gene not a Hox gene? The importance of gene nomenclature. In: Minelli A, Fusco G, editors. Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Cambridge: Cambridge University Press; 2008. p. 175–93.
Chapter
Google Scholar
Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arendt D, Nübler-Jung K. Inversion of dorsoventral axis? Nature. 1994;371:26.
Article
CAS
PubMed
Google Scholar
De Robertis EM, Sasai Y. A common plan for dorsoventral patterning in Bilateria. Nature. 1996;380:37–40.
Article
PubMed
Google Scholar
Balavoine G, Adoutte A. The segmented Urbilateria: a testable scenario. Integr Comp Biol. 2003;43:137–47.
Article
PubMed
Google Scholar
Tautz D. Segmentation. Dev Cell. 2004;7(3):301–12.
Article
CAS
PubMed
Google Scholar
Hejnol A, Martindale MQ. Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:1493–501.
Article
Google Scholar
Gehring WJ, Ikeo K. Pax6 mastering eye morphogenesis and eye evolution. Trends Genet. 1999;15(9):371–7.
Article
CAS
PubMed
Google Scholar
Franke FA, Schumann I, Hering L, Mayer G. Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev. 2015;17(1):3–20.
Article
CAS
PubMed
Google Scholar
Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A. Convergent evolution of bilaterian nerve cords. Nature. 2018;553:45–50.
Article
PubMed
CAS
Google Scholar
Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 2016;530:89–93.
Article
CAS
PubMed
Google Scholar
Jagla K, Bellard M, Frasch M. A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. BioEssays. 2001;23(2):125–33.
Article
CAS
PubMed
Google Scholar
Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM. The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol. 2007;17:706–10.
Article
CAS
PubMed
Google Scholar
Schierwater B, Kamm K, Srivastava M, Rokhsar D, Rosengarten RD, Dellaporta SL. The early ANTP gene repertoire: insights from the placozoan genome. PLoS One. 2008;3(8):e2457.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fahey B, Larroux C, Woodcroft BJ, Degnan BM. Does the high gene density in the sponge NK homeobox gene cluster reflect limited regulatory capacity? Biol Bull. 2008;214(3):205–17.
Article
CAS
PubMed
Google Scholar
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol. 2008;218(6):307–19.
Article
CAS
PubMed
Google Scholar
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol. 2006;7(7):R64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim Y, Nirenberg M. Drosophila NK-homeobox genes. Proc Natl Acad Sci U S A. 1989;86(20):7716–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: Implications for the evolution of NK family genes in nephrozoans. EvoDevo. 2018;9:17.
Article
PubMed
PubMed Central
Google Scholar
Zhong Y-F, Butts T, Holland PWH. HomeoDB: a database of homeobox gene diversity. Evol Dev. 2008;10(5):516–8.
Article
CAS
PubMed
Google Scholar
Zhong Y-f, Holland PWH. HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev. 2011;13(6):567–8.
Article
PubMed
PubMed Central
Google Scholar
Takatori N, Butts T, Candiani S, Pestarino M, Ferrier DEK, Saiga H, Holland PWH. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev Genes Evol. 2008;218(11):579–90.
Article
CAS
PubMed
Google Scholar
Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol. 2008;317:430–43.
Article
CAS
PubMed
Google Scholar
Kojima T, Ishimaru S, Higashijima S, Takayama E, Akimaru H, Sone M, Emori Y, Saigo K. Identification of a different-type homeobox gene, BarH1, possibly causing Bar (B) and Om (1D) mutations in Drosophila. Proc Natl Acad Sci U S A. 1991;88(10):4343–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tessmar-Raible K. The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol. 2007;18(4):492–501.
Article
CAS
PubMed
Google Scholar
Pueyo JI, Couso JP. Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development. Development. 2004;131(13):3107–20.
Article
CAS
PubMed
Google Scholar
Dearden PK. Expression pattern of empty-spiracles, a conserved head-patterning gene, in honeybee (Apis mellifera) embryos. Gene Expr Patterns. 2014;15(2):142–8.
Article
CAS
PubMed
Google Scholar
Simonnet F, Célérier ML, Quéinnec E. Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol. 2006;216:467–80.
Article
PubMed
Google Scholar
Birkan M, Schaeper Nina D, Chipman Ariel D. Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev. 2011;13(5):436–47.
Article
PubMed
Google Scholar
Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol. 2008;317:600–13.
Article
CAS
PubMed
Google Scholar
Lichtneckert R, Reichert H. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity. 2005;94:465–77.
Article
CAS
PubMed
Google Scholar
Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 1992;11(7):2541–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita T, Nitta H, Kiyama Y, Mori H, Mishina M. Differential expression of two zebrafish emx homeoprotein mRNAs in the developing brain. Neurosci Lett. 1995;198(2):131–4.
Article
CAS
PubMed
Google Scholar
Higashijima S, Michiue T, Emori Y, Saigo K. Subtype determination of Drosophila embryonic external sensory organs by redundant homeo box genes BarH1 and BarH2. Genes Dev. 1992;6(6):1005–18.
Article
CAS
PubMed
Google Scholar
Jan YN, Jan LY. Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet. 1994;28(1):373–93.
Article
CAS
PubMed
Google Scholar
Saito T, Sawamoto K, Okano H, Anderson DJ, Mikoshiba K. Mammalian BarH homologue is a potential regulator of neural bHLH genes. Dev Biol. 1998;199(2):216–25.
Article
CAS
PubMed
Google Scholar
Patterson KD, Cleaver O, Gerber WV, White FG, Krieg PA. Distinct expression patterns for two Xenopus Bar homeobox genes. Dev Genes Evol. 2000;210(3):140–4.
Article
CAS
PubMed
Google Scholar
Colombo A, Reig G, Mione M, Concha ML. Zebrafish BarH-like genes define discrete neural domains in the early embryo. Gene Expr Patterns. 2006;6(4):347–52.
Article
CAS
PubMed
Google Scholar
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell. 2007;129:1389–400.
Article
CAS
PubMed
Google Scholar
Hunnekuhl VS, Akam M. An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol. 2014;396(1):136–49.
Article
CAS
PubMed
Google Scholar
Dalton D, Chadwick R, McGinnis W. Expression and embryonic function of empty spiracles: a Drosophila homeobox gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev. 1989;3(12a):1940–56.
Article
CAS
PubMed
Google Scholar
Walldorf U, Gehring WJ. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J. 1992;11(6):2247–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 1997;387:489–93.
Article
CAS
PubMed
Google Scholar
Giribet G. Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology. 2003;106:303–26.
Article
CAS
PubMed
Google Scholar
Giribet G, Edgecombe GD. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr Comp Biol. 2017;57(3):455–66.
Article
PubMed
Google Scholar
Mayer G, Franke FA, Treffkorn S, Gross V, Oliveira IS. Onychophora. In: Wanninger A, editor. Evolutionary Developmental Biology of Invertebrates 3: Ecdysozoa I: Non-Tetraconata. Wien: Springer; 2015. p. 53–98.
Google Scholar
Oliveira IS, Tait NN, Strübing I, Mayer G. The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora. Front Zool. 2013;10(1):1–18.
Article
Google Scholar
Mayer G, Harzsch S. Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol. 2008;507:1196–208.
Article
PubMed
Google Scholar
Mayer G, Harzsch S. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol. 2007;7:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayer G, Whitington PM. Velvet worm development links myriapods with chelicerates. Proc R Soc B Biol Sci. 2009;276:3571–9.
Article
Google Scholar
Whitington PM, Mayer G. The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev. 2011;40:193–209.
Article
PubMed
Google Scholar
Mayer G, Whitington PM. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol. 2009;335:263–75.
Article
CAS
PubMed
Google Scholar
Eriksson BJ, Tait NN, Budd GE. Head development in the onychophoran Euperipatoides kanangrensis. With particular reference to the central nervous system. J Morphol. 2003;255:1–23.
Article
PubMed
Google Scholar
Eriksson BJ, Tait NN, Norman JM, Budd GE. An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev. 2005;34:407–18.
Article
Google Scholar
Sedgwick A. The development of the cape species of Peripatus. Part III. On the changes from stage a to stage F. Q J Microsc Sci. 1887;27:467–550.
Google Scholar
von Kennel J. Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n. sp. II. Theil. Arb Zool-Zootom Inst Würzburg. 1888;8:1–93.
Google Scholar
Evans R. On the Malayan species of Onychophora. Part II. – the development of Eoperipatus weldoni. Q J Microsc Sci. 1901;45:41–88.
Google Scholar
Mayer G, Koch M. Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae) – evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev. 2005;34:471–80.
Article
Google Scholar
Janssen R. Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo. 2017;8:1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eriksson BJ, Samadi L, Schmid A. The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol. 2013;223:237–46.
Article
PubMed
PubMed Central
Google Scholar
Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D. Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo. 2010;1:14.
Article
PubMed
PubMed Central
Google Scholar
Verde MA, Barriga-Montoya C, Fuentes-Pardo B. Pigment dispersing hormone generates a circadian response to light in the crayfish, Procambarus clarkii. Comparative Biochemistry and Physiology, Part. 2007;147:983–92.
Article
CAS
Google Scholar
Strauß J, Zhang Q, Verleyen P, Huybrechts J, Neupert S, Predel R, Pauwels K, Dircksen H. Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity. Cell Mol Life Sci. 2011;68(20):3403–23.
Article
PubMed
CAS
Google Scholar
Reischig T, Petri B, Stengl M. Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res. 2004;318:553–64.
Article
CAS
PubMed
Google Scholar
Helfrich-Förster C, Stengl M, Homberg U. Organization of the circadian system in insects. Chronobiol Int. 1998;15(6):567–94.
Article
PubMed
Google Scholar
Nässel DR, Winther ÅME. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010;92(1):42–104.
Article
PubMed
CAS
Google Scholar
Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: insights from Onychophora (velvet worms) and Tardigrada (water bears). J Comp Neurol. 2015.
Pflugfelder O. Entwicklung von Paraperipatus amboinensis n. sp. Zool Jahrb Abt Anat Ontog Tiere. 1948;69(4):443–92.
Google Scholar
Mayer G. Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Structure and evolution of invertebrate nervous systems. Oxford: Oxford University Press; 2015. p. 390–401.
Chapter
Google Scholar
Posnien N, Koniszewski NDB, Hein HJ, Bucher G. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet. 2011;7(12):e1002416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takacs CM, Amore G, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ. Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev Biol. 2004;269(1):152–64.
Article
CAS
PubMed
Google Scholar
Hartenstein V. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol. 2006;190(3):555–70.
Article
CAS
PubMed
Google Scholar
Bertuzzi S, Hindges R, Mui SH, O'Leary DDM, Lemke G. The homeodomain protein Vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev. 1999;13(23):3092–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bharti K, Gasper M, Bertuzzi S, Arnheiter H. Lack of the ventral anterior homeodomain transcription factor VAX1 leads to induction of a second pituitary. Development. 2011;138(5):873–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004;306(5697):869–71.
Article
CAS
PubMed
Google Scholar
Velarde RA, Sauer CD, Walden KKO, Fahrbach SE, Robertson HM. Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol. 2005;35:1367–77.
Article
CAS
PubMed
Google Scholar
Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol. 2006;300:461–75.
Article
CAS
PubMed
Google Scholar
Beckmann H, Hering L, Henze MJ, Kelber A, Stevenson PA, Mayer G. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J Exp Biol. 2015;218(6):915–22.
Article
PubMed
Google Scholar
Eriksson BJ, Stollewerk A. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci U S A. 2010;107(52):22576–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira M, Liedholm S, Lopez J, Lochte A, Pazio M, Martin J, Mörch P, Salakka S, York J, Yoshimoto A, et al. Expression of arthropod distal limb-patterning genes in the onychophoran Euperipatoides kanangrensis. Dev Genes Evol. 2014;224(2):1–10.
Article
PubMed
Google Scholar
Janssen R. Gene expression reveals evidence for EGFR-dependent proximal-distal limb patterning in a myriapod. Evol Dev. 2017;19(3):124–35.
Article
CAS
PubMed
Google Scholar
Sato M, Kojima T, Michiue T, Saigo K. Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development. 1999;126(7):1457–66.
CAS
PubMed
Google Scholar
Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 2002;3:12 research0088.0081–0088.0014.
Article
Google Scholar
Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, Hartenstein V, Celniker SE, Rubin GM. Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 2007;8(7):R145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammonds AS, Bristow CA, Fisher WW, Weiszmann R, Wu S, Hartenstein V, Kellis M, Yu B, Frise E, Celniker SE. Spatial expression of transcription factors in Drosophila embryonic organ development. Genome Biol. 2013;14(12):R140.
Article
PubMed
PubMed Central
CAS
Google Scholar
The FlyBase C. The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003;31(1):172–5.
Article
CAS
Google Scholar
Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS. Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development. 2000;127(11):2303–15.
CAS
PubMed
Google Scholar
Ho C-Y, Houart C, Wilson SW, Stainier DYR. A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol. 1999;9(19):1131–4.
Article
CAS
PubMed
Google Scholar
Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development. 2000;127(11):2433.
CAS
PubMed
Google Scholar
Beddington RSP, Robertson EJ. Axis development and early asymmetry in mammals. Cell. 1999;96(2):195–209.
Article
CAS
PubMed
Google Scholar
Hartmann B, Hirth F, Walldorf U, Reichert H. Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila. Mech Dev. 2000;90(2):143–53.
Article
CAS
PubMed
Google Scholar
de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, Miller DJ. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Dev Biol. 2006;298(2):632–43.
Article
PubMed
CAS
Google Scholar
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell. 2010;142:800–9.
Article
CAS
PubMed
Google Scholar
Matsuo I, Suda Y, Yoshida M, Ueki T, Kimura C, Kuratani S, Aizawa S. Otx and Emx functions in patterning of the vertebrate rostral head. Cold Spring Harb Symp Quant Biol. 1997;62:545–53.
Article
CAS
PubMed
Google Scholar
Boncinelli E, Gulisano M, Broccoli V. Emx and Otx homeobox genes in the developing mouse brain. J Neurobiol. 1993;24(10):1356–66.
Article
CAS
PubMed
Google Scholar
Myojin M, Ueki T, Sugahara F, Murakami Y, Shigetani Y, Aizawa S, Hirano S, Kuratani S. Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. J Exp Zool. 2002;291(1):68–84.
Article
Google Scholar
Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein John LR. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol. 2000;424(3):409–38.
Article
CAS
PubMed
Google Scholar
Sen S, Reichert H, VijayRaghavan K. Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse. Open Biol. 2013;3(5):120177.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor AS, Glascock JJ, Rose FF, Lutz C, Lorson CL. Restoration of SMN to Emx-1 expressing cortical neurons is not sufficient to provide benefit to a severe mouse model of spinal muscular atrophy. Transgenic Res. 2013;22(5):1029–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller D, Jagla T, Bodart LM, Jährling N, Dodt H-U, Jagla K, Frasch M. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila. PLoS One. 2010;5(12):e14323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kozopas KM, Nusse R. Direct flight muscles in Drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning. Dev Biol. 2002;243(2):312–25.
Article
CAS
PubMed
Google Scholar
Pflugfelder O. Onychophora. In: Czihak G, editor. Grosses Zoologisches Praktikum, vol. 13a. Stuttgart: Gustav Fischer; 1968. p. 1–42.
Google Scholar
Hoyle G, Williams M. The musculature of Peripatus and its innervation. Philos Trans R Soc Lond Ser B Biol Sci. 1980;288(1031):481–510.
Article
Google Scholar
Birket-Smith SJR. The anatomy of the body wall of Onychophora. Zool Jahrb Abt Anat Ontog Tiere. 1974;93(2):123–54.
Google Scholar
Manton SM. The evolution of arthropodan locomotory mechanisms. Part 11: habits, morphology and evolution of the Uniramia (Onychophora, Myriapoda and Hexapoda) and comparisons with the Arachnida, together with a functional review of uniramian musculature. Zool J Linnean Soc. 1973;53(4):257–375.
Article
Google Scholar
Snodgrass RE. Evolution of the Annelida, Onychophora and Arthropoda. Smithson Misc Coll. 1938;97(6):1–159.
Google Scholar
Müller M, de Sena OI, Allner S, Ferstl S, Bidola P, Mechlem K, Fehringer A, Hehn L, Dierolf M, Achterhold K, et al. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography. Proc Natl Acad Sci U S A. 2017;114(47):12378–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kojima T, Sato M, Saigo K. Formation and specification of distal leg segments in Drosophila by dual Bar homeobox genes, BarH1 and BarH2. Development. 2000;127(4):769–78.
CAS
PubMed
Google Scholar
Casares F, Mann RS. The ground state of the ventral appendage in Drosophila. Science. 2001;293:1477–80.
Article
CAS
PubMed
Google Scholar
Gross V, Mayer G. Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo. 2015;6(1):12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gross V, Minich I, Mayer G. External morphogenesis of the tardigrade Hypsibius dujardini as revealed by scanning electron microscopy. J Morphol. 2017;278(4):563–73.
Article
PubMed
Google Scholar
Whittington HB. The lobopod animal Aysheaia pedunculata Walcott, middle Cambrian, burgess shale, British Columbia. Philos Trans R Soc Lond Ser B Biol Sci. 1978;284(1000):165–97.
Article
Google Scholar
Finkelstein R, Perrimon N. The molecular genetics of head development in Drosophila melanogaster. Development. 1991;112(4):899–912.
CAS
PubMed
Google Scholar
Cohen SM, Jürgens G. Mediation of Drosophila head development by gap-like segmentation genes. Nature. 1990;346:482–5.
Article
CAS
PubMed
Google Scholar
Janssen R, Budd GE, Damen WGM. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol. 2011;357(1):64–72.
Article
CAS
PubMed
Google Scholar
Hunnekuhl VS, Akam M. Formation and subdivision of the head field in the centipede Strigamia maritima, as revealed by the expression of head gap gene orthologues and hedgehog dynamics. EvoDevo. 2017;8(1):18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker MH, Tait NN. Studies on embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool. 2004;264(4):333–54.
Article
Google Scholar
Franke FA, Mayer G. Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS One. 2014;9(12):e114383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssen R. A molecular view of onychophoran segmentation. Arthropod Struct Dev. 2017;46(3):341–53.
Article
PubMed
Google Scholar
Reid AL. Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebr Taxon. 1996;10(4):663–936.
Article
Google Scholar
Baer A, Mayer G. Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol. 2012;273(10):1079–88.
Article
PubMed
Google Scholar
Treffkorn S, Mayer G. Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns. 2013;13(8):384–94.
Article
CAS
PubMed
Google Scholar
Treffkorn S, Mayer G. Conserved versus derived patterns of controlled cell death during the embryonic development of two species of Onychophora (velvet worms). Dev Dyn. 2017;246(5):403–16.
Article
PubMed
Google Scholar
Franke FA, Mayer G. Expression study of the hunchback ortholog in embryos of the onychophoran Euperipatoides rowelli. Dev Genes Evol. 2015;225(4):207–19.
Article
PubMed
Google Scholar
Hering L, Henze MJ, Kohler M, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G. Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol. 2012;29(11):3451–8.
Article
CAS
PubMed
Google Scholar
Hering L, Mayer G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in Panarthropoda. Genome Biol Evol. 2014;6(9):2380–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen R, Eriksson B, Tait N, Budd G. Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool. 2014;11(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssen R, Damen WGM, Budd GE. Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol. 2011;11(1):50.
Article
PubMed
PubMed Central
Google Scholar
Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo D-H, Larsson T, Lv J, Arendt D, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526–31.
Article
CAS
PubMed
Google Scholar
Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud'homme B, Ferrier DEK, Balavoine G, Arendt D. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell. 2007;129:277–88.
Article
CAS
PubMed
Google Scholar
Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun. 2016;7:12808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arakawa K, Yoshida Y, Tomita M. Genome sequencing of a single tardigrade Hypsibius dujardini individual. Sci Data. 2016;3:160063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15(1):62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Oliva M, Znassi N, Jiang H, Almeida FC, et al. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol. 2014;12(11):e1002005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, et al. The Ecoresponsive Genome of Daphnia pulex. Science (New York, NY). 2011;331(6017):555–61.
Article
CAS
Google Scholar