Raman M, Chen W, Cobb MH: Differential regulation and properties of MAPKs. Oncogene. 2007, 26 (22): 3100-3112. 10.1038/sj.onc.1210392.
Article
CAS
PubMed
Google Scholar
Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ: MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science (New York, NY). 1998, 281 (5383): 1668-1671. 10.1126/science.281.5383.1668.
Article
CAS
Google Scholar
Mouchel-Vielh E, Bloyer S, Salvaing J, Randsholt NB, Peronnet F: Involvement of the MP1 scaffold protein in ERK signaling regulation during Drosophila wing development. Genes Cells. 2008, 13 (11): 1099-1111.
CAS
PubMed
Google Scholar
Yang SH, Sharrocks AD, Whitmarsh AJ: Transcriptional regulation by the MAP kinase signaling cascades. Gene. 2003, 320: 3-21. 10.1016/S0378-1119(03)00816-3.
Article
CAS
PubMed
Google Scholar
Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL: p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature genetics. 2004, 36 (7): 738-743. 10.1038/ng1378.
Article
CAS
PubMed
Google Scholar
Lawrence MC, McGlynn K, Shao C, Duan L, Naziruddin B, Levy MF, Cobb MH: Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in beta-cells. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105 (36): 13315-13320. 10.1073/pnas.0806465105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alepuz PM, Jovanovic A, Reiser V, Ammerer G: Stress-induced map kinase Hog1 is part of transcription activation complexes. Molecular cell. 2001, 7 (4): 767-777. 10.1016/S1097-2765(01)00221-0.
Article
CAS
PubMed
Google Scholar
Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F: Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. The EMBO journal. 2003, 22 (10): 2433-2442. 10.1093/emboj/cdg243.
Article
PubMed Central
CAS
PubMed
Google Scholar
Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F: The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Molecular cell. 2006, 23 (2): 241-250. 10.1016/j.molcel.2006.05.031.
Article
CAS
PubMed
Google Scholar
Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA: Activated signal transduction kinases frequently occupy target genes. Science (New York, NY). 2006, 313 (5786): 533-536. 10.1126/science.1127677.
Article
CAS
Google Scholar
De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F: The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature. 2004, 427 (6972): 370-374. 10.1038/nature02258.
Article
CAS
PubMed
Google Scholar
Zapater M, Sohrmann M, Peter M, Posas F, de Nadal E: Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmostress conditions. Molecular and cellular biology. 2007, 27 (11): 3900-3910. 10.1128/MCB.00089-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mas G, de Nadal E, Dechant R, Rodriguez de la Concepcion ML, Logie C, Jimeno-Gonzalez S, Chavez S, Ammerer G, Posas F: Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. The EMBO journal. 2009, 28 (4): 326-336. 10.1038/emboj.2008.299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, Dilworth FJ: p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nature structural & molecular biology. 2007, 14 (12): 1150-1156.
Article
CAS
Google Scholar
Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR: MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. The Journal of biological chemistry. 2005, 280 (7): 5178-5187. 10.1074/jbc.M407155200.
Article
CAS
PubMed
Google Scholar
Beck S, Faradji F, Brock H, Peronnet F: Maintenance of Hox gene expression patterns. Advances in experimental medicine and biology. 2010, 689: 41-62. full_text.
Article
CAS
PubMed
Google Scholar
Grimaud C, Negre N, Cavalli G: From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res. 2006, 14 (4): 363-375. 10.1007/s10577-006-1069-y.
Article
CAS
PubMed
Google Scholar
Gildea JJ, Lopez R, Shearn A: A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics. 2000, 156 (2): 645-663.
PubMed Central
CAS
PubMed
Google Scholar
Milne TA, Sinclair DA, Brock HW: The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci, and interacts specifically with Polycomb and super sex combs. Mol Gen Genet. 1999, 261 (4-5): 753-761. 10.1007/s004380050018.
Article
CAS
PubMed
Google Scholar
Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, Karch F: The Trithorax-like gene encodes the Drosophila GAGA factor. Nature. 1994, 371 (6500): 806-808. 10.1038/371806a0.
Article
CAS
PubMed
Google Scholar
Poux S, Melfi R, Pirrotta V: Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes & development. 2001, 15 (19): 2509-2514.
Article
CAS
Google Scholar
Decoville M, Giacomello E, Leng M, Locker D: DSP1, an HMG-like protein, is involved in the regulation of homeotic genes. Genetics. 2001, 157 (1): 237-244.
PubMed Central
CAS
PubMed
Google Scholar
Dejardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D, Cavalli G: Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature. 2005, 434 (7032): 533-538. 10.1038/nature03386.
Article
CAS
PubMed
Google Scholar
Kodjabachian L, Delaage M, Maurel C, Miassod R, Jacq B, Rosset R: Mutations in ccf, a novel Drosophila gene encoding a chromosomal factor, affect progression through mitosis and interact with Pc-G mutations. The EMBO journal. 1998, 17 (4): 1063-1075. 10.1093/emboj/17.4.1063.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez A, Higuet D, Rosset R, Deutsch J, Peronnet F: corto genetically interacts with Pc-G and trx-G genes and maintains the anterior boundary of Ultrabithorax expression in Drosophila larvae. Mol Genet Genomics. 2001, 266 (4): 572-583. 10.1007/s004380100572.
Article
CAS
PubMed
Google Scholar
Salvaing J, Lopez A, Boivin A, Deutsch JS, Peronnet F: The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor. Nucleic acids research. 2003, 31 (11): 2873-2882. 10.1093/nar/gkg381.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salvaing J, Decoville M, Mouchel-Vielh E, Bussiere M, Daulny A, Boldyreva L, Zhimulev I, Locker D, Peronnet F: Corto and DSP1 interact and bind to a maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb. BMC biology. 2006, 4: 9-10.1186/1741-7007-4-9.
Article
PubMed Central
PubMed
Google Scholar
Brunner D, Oellers N, Szabad J, Biggs WH, Zipursky SL, Hafen E: A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell. 1994, 76 (5): 875-888. 10.1016/0092-8674(94)90362-X.
Article
CAS
PubMed
Google Scholar
Blair SS: Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annual review of cell and developmental biology. 2007, 23: 293-319. 10.1146/annurev.cellbio.23.090506.123606.
Article
CAS
PubMed
Google Scholar
Bier E: Drawing lines in the Drosophila wing: initiation of wing vein development. Current opinion in genetics & development. 2000, 10 (4): 393-398.
Article
CAS
Google Scholar
Martin-Blanco E, Roch F, Noll E, Baonza A, Duffy JB, Perrimon N: A temporal switch in DER signaling controls the specification and differentiation of veins and interveins in the Drosophila wing. Development (Cambridge, England). 1999, 126 (24): 5739-5747.
CAS
Google Scholar
Sturtevant MA, Roark M, Bier E: The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes & development. 1993, 7 (6): 961-973.
Article
CAS
Google Scholar
Lee JR, Urban S, Garvey CF, Freeman M: Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell. 2001, 107 (2): 161-171. 10.1016/S0092-8674(01)00526-8.
Article
CAS
PubMed
Google Scholar
Urban S, Lee JR, Freeman M: Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001, 107 (2): 173-182. 10.1016/S0092-8674(01)00525-6.
Article
CAS
PubMed
Google Scholar
Fristrom D, Gotwals P, Eaton S, Kornberg TB, Sturtevant M, Bier E, Fristrom JW: Blistered: a gene required for vein/intervein formation in wings of Drosophila. Development (Cambridge, England). 1994, 120 (9): 2661-2671.
CAS
Google Scholar
Montagne J, Groppe J, Guillemin K, Krasnow MA, Gehring WJ, Affolter M: The Drosophila Serum Response Factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development (Cambridge, England). 1996, 122 (9): 2589-2597.
CAS
Google Scholar
Smulders-Srinivasan TK, Szakmary A, Lin H: A Drosophila chromatin factor interacts with the Piwi-interacting RNA mechanism in niche cells to regulate germline stem cell self-renewal. Genetics. 186 (2): 573-583. 10.1534/genetics.110.119081.
Marenda DR, Zraly CB, Dingwall AK: The Drosophila Brahma (SWI/SNF) chromatin remodeling complex exhibits cell-type specific activation and repression functions. Developmental biology. 2004, 267 (2): 279-293. 10.1016/j.ydbio.2003.10.040.
Article
CAS
PubMed
Google Scholar
Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM, Morrison DK: Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Molecular and cellular biology. 1999, 19 (1): 229-240.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marenda DR, Zraly CB, Feng Y, Egan S, Dingwall AK: The Drosophila SNR1 (SNF5/INI1) subunit directs essential developmental functions of the Brahma chromatin remodeling complex. Molecular and cellular biology. 2003, 23 (1): 289-305. 10.1128/MCB.23.1.289-305.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M, Moseley S, Beek SJ, Waldrip WR, Daubresse G, DePace A, et al: Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics. 1998, 148 (1): 251-265.
PubMed Central
CAS
PubMed
Google Scholar
Collins RT, Furukawa T, Tanese N, Treisman JE: Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. The EMBO journal. 1999, 18 (24): 7029-7040. 10.1093/emboj/18.24.7029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Terriente-Felix A, de Celis JF: Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Developmental biology. 2009, 329 (2): 350-361. 10.1016/j.ydbio.2009.03.010.
Article
CAS
PubMed
Google Scholar
Lim YM, Nishizawa K, Nishi Y, Tsuda L, Inoue YH, Nishida Y: Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase. Genetics. 1999, 153 (2): 763-771.
PubMed Central
CAS
PubMed
Google Scholar
Brehm A, Tufteland KR, Aasland R, Becker PB: The many colours of chromodomains. Bioessays. 2004, 26 (2): 133-140. 10.1002/bies.10392.
Article
CAS
PubMed
Google Scholar
Feng XH, Derynck R: Mammalian two-hybrid assays. Analyzing protein-protein interactions in transforming growth factor-beta signaling pathway. Methods in molecular biology (Clifton, NJ). 2001, 177: 221-239.
CAS
Google Scholar
Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG, Lottspeich F, Huber LA: A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. The Journal of cell biology. 2001, 152 (4): 765-776. 10.1083/jcb.152.4.765.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teis D, Wunderlich W, Huber LA: Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Developmental cell. 2002, 3 (6): 803-814. 10.1016/S1534-5807(02)00364-7.
Article
CAS
PubMed
Google Scholar
Noguchi K, Shiurba R, Higashinakagawa T: Nuclear translocation of mouse polycomb m33 protein in regenerating liver. Biochemical and biophysical research communications. 2002, 291 (3): 508-515. 10.1006/bbrc.2002.6480.
Article
CAS
PubMed
Google Scholar
Prober DA, Edgar BA: Ras1 promotes cellular growth in the Drosophila wing. Cell. 2000, 100 (4): 435-446. 10.1016/S0092-8674(00)80679-0.
Article
CAS
PubMed
Google Scholar
Schwartz D, Gygi SP: An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nature biotechnology. 2005, 23 (11): 1391-1398. 10.1038/nbt1146.
Article
CAS
PubMed
Google Scholar
Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, et al: A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005, 123 (5): 833-847. 10.1016/j.cell.2005.09.011.
Article
CAS
PubMed
Google Scholar
Casar B, Pinto A, Crespo P: Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Molecular cell. 2008, 31 (5): 708-721. 10.1016/j.molcel.2008.07.024.
Article
CAS
PubMed
Google Scholar
Kumar JP, Moses K: EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell. 2001, 104 (5): 687-697. 10.1016/S0092-8674(01)00265-3.
Article
CAS
PubMed
Google Scholar
Campbell S, Inamdar M, Rodrigues V, Raghavan V, Palazzolo M, Chovnick A: The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes & development. 1992, 6 (3): 367-379.
Article
CAS
Google Scholar
Milan M, Diaz-Benjumea FJ, Cohen SM: Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: a model for LMO oncogene function. Genes & development. 1998, 12 (18): 2912-2920.
Article
CAS
Google Scholar
Masucci JD, Miltenberger RJ, Hoffmann FM: Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3' cis-regulatory elements. Genes & development. 1990, 4 (11): 2011-2023.
Article
CAS
Google Scholar
Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M: KSR is a scaffold required for activation of the ERK/MAPK module. Genes & development. 2002, 16 (4): 427-438.
Article
CAS
Google Scholar
Andrews NC, Faller DV: A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic acids research. 1991, 19 (9): 2499.-10.1093/nar/19.9.2499.
Article
PubMed Central
PubMed
Google Scholar
Anderson CW, Baum PR, Gesteland RF: Processing of adenovirus 2-induced proteins. Journal of virology. 1973, 12 (2): 241-252.
PubMed Central
CAS
PubMed
Google Scholar
Salvaing J, Nagel AC, Mouchel-Vielh E, Bloyer S, Maier D, Preiss A, Peronnet F: The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila. PloS one. 2008, 3 (2): e1658.-10.1371/journal.pone.0001658.
Article
PubMed Central
PubMed
Google Scholar
Emadali A, Metrakos PP, Kalantari F, Boutros T, Boismenu D, Chevet E: Proteomic analysis of tyrosine phosphorylation during human liver transplantation. Proteome science. 2007, 5: 1-10.1186/1477-5956-5-1.
Article
PubMed Central
PubMed
Google Scholar