Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001, 105: 43-55. 10.1016/S0092-8674(01)00295-1.
Article
CAS
PubMed
Google Scholar
Donner AL, Maas RL: Conservation and non-conservation of genetic pathways in eye specification. Int J Dev Biol. 2004, 48: 743-53. 10.1387/ijdb.041877ad.
Article
PubMed
Google Scholar
Graw J: The genetic and molecular basis of congenital eye defects. Nat Rev Genet. 2003, 4: 876-88. 10.1038/nrg1202.
Article
CAS
PubMed
Google Scholar
Mui SH, Kim JW, Lemke G, Bertuzzi S: Vax genes ventralize the embryonic eye. Genes Dev. 2005, 19: 1249-59. 10.1101/gad.1276605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K: Ocular coloboma: a reassessment in the age of molecular neuroscience. J Med Genet. 2004, 41: 881-91. 10.1136/jmg.2004.025494.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barbieri AM, Lupo G, Bulfone A, Andreazzoli M, Mariani M, Fougerousse F, Consalez GG, Borsani G, Beckmann JS, Barsacchi G, et al: A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc Natl Acad Sci USA. 1999, 96: 10729-34. 10.1073/pnas.96.19.10729.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piatigorsky J: Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 1981, 19: 134-53. 10.1111/j.1432-0436.1981.tb01141.x.
Article
CAS
PubMed
Google Scholar
Hejtmancik JF, Kantorow M: Molecular genetics of age-related cataract. Exp Eye Res. 2004, 79: 3-9. 10.1016/j.exer.2004.03.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lupo G, Harris WA, Lewis KE: Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci. 2006, 7: 103-14. 10.1038/nrn1843.
Article
CAS
PubMed
Google Scholar
Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M: Regulation of vertebrate eye development by Rx genes. Int J Dev Biol. 2004, 48: 761-70. 10.1387/ijdb.041878tb.
Article
CAS
PubMed
Google Scholar
Lang RA: Pathways regulating lens induction in the mouse. Int J Dev Biol. 2004, 48: 783-91. 10.1387/ijdb.041903rl.
Article
CAS
PubMed
Google Scholar
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, et al: A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell. 2000, 6: 1287-95. 10.1016/S1097-2765(00)00127-1.
Article
CAS
PubMed
Google Scholar
Stopka T, Skoultchi AI: The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci USA. 2003, 100: 14097-102. 10.1073/pnas.2336105100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamachi Y, Uchikawa M, Collignon J, Lovell-Badge R, Kondoh H: Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development. 1998, 125: 2521-32.
CAS
PubMed
Google Scholar
Gregg RG, Willer GB, Fadool JM, Dowling JE, Link BA: Positional cloning of the young mutation identifies an essential role for the Brahma chromatin remodeling complex in mediating retinal cell differentiation. Proc Natl Acad Sci USA. 2003, 100: 6535-40. 10.1073/pnas.0631813100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang Y, Stopka T, Golestaneh N, Wang Y, Wu K, Li A, Chauhan BK, Gao CY, Cveklova K, Duncan MK, et al: Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. Embo J. 2006, 25: 2107-18. 10.1038/sj.emboj.7601114.
Article
PubMed Central
CAS
PubMed
Google Scholar
Furuta Y, Hogan BL: BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 1998, 12: 3764-75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH: SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006, 20: 1187-202. 10.1101/gad.1407906.
Article
PubMed Central
CAS
PubMed
Google Scholar
West-Mays JA, Zhang J, Nottoli T, Hagopian-Donaldson S, Libby D, Strissel KJ, Williams T: AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle. Dev Biol. 1999, 206: 46-62. 10.1006/dbio.1998.9132.
Article
CAS
PubMed
Google Scholar
Dwivedi DJ, Pontoriero GF, Ashery-Padan R, Sullivan S, Williams T, West-Mays JA: Targeted deletion of AP-2alpha leads to disruption in corneal epithelial cell integrity and defects in the corneal stroma. Invest Ophthalmol Vis Sci. 2005, 46: 3623-30. 10.1167/iovs.05-0028.
Article
PubMed Central
PubMed
Google Scholar
Morgenbesser SD, Williams BO, Jacks T, DePinho RA: p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature. 1994, 371: 72-4. 10.1038/371072a0.
Article
CAS
PubMed
Google Scholar
McCaffrey J, Yamasaki L, Dyson NJ, Harlow E, Griep AE: Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol Cell Biol. 1999, 19: 6458-68.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia E, Marcos-Gutierrez C, del Mar Lorente M, Moreno JC, Vidal M: RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. Embo J. 1999, 18: 3404-18. 10.1093/emboj/18.12.3404.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buszczak M, Spradling AC: Searching chromatin for stem cell identity. Cell. 2006, 125: 233-6. 10.1016/j.cell.2006.04.004.
Article
CAS
PubMed
Google Scholar
Pirrotta V: Ernst Schering Res Found Workshop. 2006, 97-113.
Google Scholar
Bejarano F, Gonzalez I, Vidal M, Busturia A: The Drosophila RYBP gene functions as a Polycomb-dependent transcriptional repressor. Mech Dev. 2005, 122: 1118-29. 10.1016/j.mod.2005.06.001.
Article
CAS
PubMed
Google Scholar
Kalenik JL, Chen D, Bradley ME, Chen SJ, Lee TC: Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1. Nucleic Acids Res. 1997, 25: 843-9. 10.1093/nar/25.4.843.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schlisio S, Halperin T, Vidal M, Nevins JR: Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. Embo J. 2002, 21: 5775-86. 10.1093/emboj/cdf577.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y: A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science. 2002, 296: 1132-6. 10.1126/science.1069861.
Article
CAS
PubMed
Google Scholar
Zheng L, Schickling O, Peter ME, Lenardo MJ: The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. J Biol Chem. 2001, 276: 31945-52. 10.1074/jbc.M102799200.
Article
CAS
PubMed
Google Scholar
Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N: The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett. 2006, 580: 6233-41. 10.1016/j.febslet.2006.10.027.
Article
CAS
PubMed
Google Scholar
Pirity MK, Locker J, Schreiber-Agus N: Rybp/DEDAF is required for early postimplantation and for central nervous system development. Mol Cell Biol. 2005, 25: 7193-202. 10.1128/MCB.25.16.7193-7202.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Torres M, Gomez-Pardo E, Gruss P: Pax2 contributes to inner ear patterning and optic nerve trajectory. Development. 1996, 122: 3381-91.
CAS
PubMed
Google Scholar
Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF: Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol. 1986, 97: 95-110.
CAS
PubMed
Google Scholar
Walther C, Gruss P: Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991, 113: 1435-49.
CAS
PubMed
Google Scholar
Grindley JC, Davidson DR, Hill RE: The role of Pax-6 in eye and nasal development. Development. 1995, 121: 1433-42.
CAS
PubMed
Google Scholar
Sanyanusin P, McNoe LA, Sullivan MJ, Weaver RG, Eccles MR: Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum Mol Genet. 1995, 4: 2183-4. 10.1093/hmg/4.11.2183.
Article
CAS
PubMed
Google Scholar
Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, et al: The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA. 1996, 93: 13870-5. 10.1073/pnas.93.24.13870.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B, Wagner M, Gruss P: Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development. 2000, 127: 4325-34.
CAS
PubMed
Google Scholar
Livesey FJ, Young TL, Cepko CL: An analysis of the gene expression program of mammalian neural progenitor cells. Proc Natl Acad Sci USA. 2004, 101: 1374-9. 10.1073/pnas.0307014101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001, 1: 4-10.1186/1471-213X-1-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martinez-Morales JR, Signore M, Acampora D, Simeone A, Bovolenta P: Otx genes are required for tissue specification in the developing eye. Development. 2001, 128: 2019-30.
CAS
PubMed
Google Scholar
Baulmann DC, Ohlmann A, Flugel-Koch C, Goswami S, Cvekl A, Tamm ER: Pax6 heterozygous eyes show defects in chamber angle differentiation that are associated with a wide spectrum of other anterior eye segment abnormalities. Mech Dev. 2002, 118: 3-17. 10.1016/S0925-4773(02)00260-5.
Article
CAS
PubMed
Google Scholar
Medina-Martinez O, Brownell I, Amaya-Manzanares F, Hu Q, Behringer RR, Jamrich M: Severe defects in proliferation and differentiation of lens cells in Foxe3 null mice. Mol Cell Biol. 2005, 25: 8854-63. 10.1128/MCB.25.20.8854-8863.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Q, Liang D, Yang T, Leone G, Overbeek PA: Distinct capacities of individual E2Fs to induce cell cycle re-entry in postmitotic lens fiber cells of transgenic mice. Dev Neurosci. 2004, 26: 435-45. 10.1159/000082285.
Article
CAS
PubMed
Google Scholar
Lovicu FJ, McAvoy JW: Growth factor regulation of lens development. Dev Biol. 2005, 280: 1-14. 10.1016/j.ydbio.2005.01.020.
Article
CAS
PubMed
Google Scholar
Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM: VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J. 1999, 18: 3964-72. 10.1093/emboj/18.14.3964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kato T, Kure T, Chang JH, Gabison EE, Itoh T, Itohara S, Azar DT: Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett. 2001, 508: 187-90. 10.1016/S0014-5793(01)02897-6.
Article
CAS
PubMed
Google Scholar
Berglin L, Sarman S, van der Ploeg I, Steen B, Ming Y, Itohara S, Seregard S, Kvanta A: Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci. 2003, 44: 403-8. 10.1167/iovs.02-0180.
Article
PubMed
Google Scholar
Samolov B, Steen B, Seregard S, van der Ploeg I, Montan P, Kvanta A: Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res. 2005, 80: 159-66. 10.1016/j.exer.2004.08.023.
Article
CAS
PubMed
Google Scholar
Pirrotta V, van Lohuizen M: Differentiation and gene regulation Genomic programs and differentiation. Curr Opin Genet Dev. 2006
Google Scholar
Muyrers-Chen I, Hernandez-Munoz I, Lund AH, Valk-Lingbeek ME, van der Stoop P, Boutsma E, Tolhuis B, Bruggeman SW, Taghavi P, Verhoeven E, et al: Emerging roles of Polycomb silencing in X-inactivation and stem cell maintenance. Cold Spring Harb Symp Quant Biol. 2004, 69: 319-26. 10.1101/sqb.2004.69.319.
Article
CAS
PubMed
Google Scholar
Raaphorst FM: Of mice, flies, and man: the emerging role of polycomb-group genes in human malignant lymphomas. Int J Hematol. 2005, 81: 281-7. 10.1532/IJH97.05023.
Article
CAS
PubMed
Google Scholar
Cernilogar FM, Orlando V: Epigenome programming by Polycomb and Trithorax proteins. Biochem Cell Biol. 2005, 83: 322-31. 10.1139/o05-040.
Article
CAS
PubMed
Google Scholar
Gil J, Bernard D, Peters G: Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol. 2005, 24: 117-25. 10.1089/dna.2005.24.117.
Article
CAS
PubMed
Google Scholar
Ringrose L, Paro R: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004, 38: 413-43. 10.1146/annurev.genet.38.072902.091907.
Article
CAS
PubMed
Google Scholar
Levine SS, King IF, Kingston RE: Division of labor in polycomb group repression. Trends Biochem Sci. 2004, 29: 478-85. 10.1016/j.tibs.2004.07.007.
Article
CAS
PubMed
Google Scholar
Takihara Y, Tomotsune D, Shirai M, Katoh-Fukui Y, Nishii K, Motaleb MA, Nomura M, Tsuchiya R, Fujita Y, Shibata Y, et al: Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development. 1997, 124: 3673-82.
CAS
PubMed
Google Scholar
Lorente M, Perez C, Sanchez C, Donohoe M, Shi Y, Vidal M: Homeotic transformations of the axial skeleton of YY1 mutant mice and genetic interaction with the Polycomb group gene Ring1/Ring1A. Mech Dev. 2006, 123: 312-20. 10.1016/j.mod.2006.02.003.
Article
CAS
PubMed
Google Scholar
Nottoli T, Hagopian-Donaldson S, Zhang J, Perkins A, Williams T: AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc Natl Acad Sci USA. 1998, 95: 13714-9. 10.1073/pnas.95.23.13714.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H: Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 2001, 15: 1272-86. 10.1101/gad.887101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wistow GJ, Piatigorsky J: Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988, 57: 479-504. 10.1146/annurev.bi.57.070188.002403.
Article
CAS
PubMed
Google Scholar
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993, 90: 8424-8. 10.1073/pnas.90.18.8424.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao H, Yang Y, Rizo CM, Overbeek PA, Robinson ML: Insertion of a Pax6 consensus binding site into the alphaA-crystallin promoter acts as a lens epithelial cell enhancer in transgenic mice. Invest Ophthalmol Vis Sci. 2004, 45: 1930-9. 10.1167/iovs.03-0856.
Article
PubMed
Google Scholar
Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21: 70-1. 10.1038/5007.
Article
CAS
PubMed
Google Scholar
Lewandoski M, Meyers EN, Martin GR: Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb Symp Quant Biol. 1997, 62: 159-168.
Article
CAS
PubMed
Google Scholar
Chowdhury K, Bonaldo P, Torres M, Stoykova A, Gruss P: Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 1997, 25: 1531-6. 10.1093/nar/25.8.1531.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ito SKM: Formaldehyde-glutaraldehyde fixatives containing trinitro compounds. J Cell Biol. 1968, 39: 168A-169A.
Google Scholar
Yang Y, Cvekl A: Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. J Mol Biol. 2005, 351: 453-69. 10.1016/j.jmb.2005.05.072.
Article
PubMed Central
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-8. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar