Hartenstein V: Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol. 2006, 22: 677-712. 10.1146/annurev.cellbio.22.010605.093317.
Article
CAS
PubMed
Google Scholar
Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL: Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003, 21: 759-806. 10.1146/annurev.immunol.21.120601.141007.
Article
CAS
PubMed
Google Scholar
Crozatier M, Meister M: Drosophila haematopoiesis. Cell Microbiol. 2007, 9: 1117-1126. 10.1111/j.1462-5822.2007.00930.x.
Article
CAS
PubMed
Google Scholar
Tepass U, Fessler LI, Aziz A, Hartenstein V: Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development. 1994, 120: 1829-1837.
CAS
PubMed
Google Scholar
Lanot R, Zachary D, Holder F, Meister M: Postembryonic hematopoiesis in Drosophila. Dev Biol. 2001, 230: 243-257. 10.1006/dbio.2000.0123.
Article
CAS
PubMed
Google Scholar
Holz A, Bossinger B, Strasser T, Janning W, Klapper R: The two origins of hemocytes in Drosophila. Development. 2003, 130: 4955-4962. 10.1242/dev.00702.
Article
CAS
PubMed
Google Scholar
Jung SH, Evans CJ, Uemura C, Banerjee U: The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005, 132: 2521-2533. 10.1242/dev.01837.
Article
CAS
PubMed
Google Scholar
Krzemien J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M: Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature. 2007, 446: 325-328. 10.1038/nature05650.
Article
CAS
PubMed
Google Scholar
Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U: A Hedgehog-and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature. 2007, 446: 320-324. 10.1038/nature05585.
Article
PubMed Central
CAS
PubMed
Google Scholar
Franc NC, Heitzler P, Ezekowitz RA, White K: Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science. 1999, 284: 1991-1994. 10.1126/science.284.5422.1991.
Article
CAS
PubMed
Google Scholar
Sears HC, Kennedy CJ, Garrity PA: Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development. 2003, 130: 3557-3565. 10.1242/dev.00586.
Article
CAS
PubMed
Google Scholar
Brennan CA, Delaney JR, Schneider DS, Anderson KV: Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body. Curr Biol. 2007, 17: 67-72. 10.1016/j.cub.2006.11.026.
Article
CAS
PubMed
Google Scholar
Bergeret E, Perrin J, Williams M, Grunwald D, Engel E, Thevenon D, Taillebourg E, Bruckert F, Cosson P, Fauvarque MO: TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis. Journal of Cell Science. 2008, 121: 3325-3334. 10.1242/jcs.030163.
Article
CAS
PubMed
Google Scholar
Rizki TM, Rizki RM: Properties of the larval hemocytes of Drosophila melanogaster. Experientia. 1980, 36: 1223-1226. 10.1007/BF01976142.
Article
Google Scholar
Bidla G, Lindgren M, Theopold U, Dushay MS: Hemolymph coagulation and phenoloxidase in Drosophila larvae. Dev Comp Immunol. 2005, 29: 669-679. 10.1016/j.dci.2004.11.007.
Article
CAS
PubMed
Google Scholar
Cerenius L, Soderhall K: The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004, 198: 116-126. 10.1111/j.0105-2896.2004.00116.x.
Article
CAS
PubMed
Google Scholar
Rizki TM, Rizki RM: The cellular defense system of Drosophila melanogaster. Insect ultrastructure. Edited by: King RC, Akai H. 1984, New York: Plenum, 2: 579-604. [King RC, Akai H (Series Editor)], Plenum
Chapter
Google Scholar
Sorrentino RP, Carton Y, Govind S: Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol. 2002, 243: 65-80. 10.1006/dbio.2001.0542.
Article
CAS
PubMed
Google Scholar
Shrestha R, Gateff E: Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster. Dev Growth Differ. 1982, 24: 65-82. 10.1111/j.1440-169X.1982.00065.x.
Article
Google Scholar
Rizki TM: Alterations in the haemocyte population of Drosophila melanogaster. J Morphol. 1957, 100: 437-458. 10.1002/jmor.1051000303.
Article
Google Scholar
Rizki TM: Experimental analysis of hemocyte morphology in insects. Am Zool. 1962, 2: 247-256.
Article
Google Scholar
Crozatier M, Ubeda JM, Vincent A, Meister M: Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2004, 2: E196-10.1371/journal.pbio.0020196.
Article
PubMed Central
PubMed
Google Scholar
Sorrentino RP, Melk JP, Govind S: Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila. Genetics. 2004, 166: 1343-1356. 10.1534/genetics.166.3.1343.
Article
PubMed Central
CAS
PubMed
Google Scholar
Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I, Sipos B, Somogyi K, Kronhamn J, Hultmark D, Ando I: Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci USA. 2009, 106: 4805-4809. 10.1073/pnas.0801766106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dearolf CR: Fruit fly "leukemia". Biochim Biophys Acta. 1998, 1377: M13-23.
CAS
PubMed
Google Scholar
Minakhina S, Steward R: Melanotic mutants in Drosophila: pathways and phenotypes. Genetics. 2006, 174: 253-263. 10.1534/genetics.106.061978.
Article
PubMed Central
CAS
PubMed
Google Scholar
Watson KL, Johnson TK, Denell RE: Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev Genet. 1991, 12: 173-187. 10.1002/dvg.1020120302.
Article
CAS
PubMed
Google Scholar
Roman G, He J, Davis RL: kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics. 2000, 155: 1281-1295.
PubMed Central
CAS
PubMed
Google Scholar
Hanratty WP, Dearolf CR: The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet. 1993, 238: 33-37.
CAS
PubMed
Google Scholar
Luo H, Hanratty WP, Dearolf CR: An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. Embo J. 1995, 14: 1412-1420.
PubMed Central
CAS
PubMed
Google Scholar
Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N: Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J. 1995, 14: 2857-2865.
PubMed Central
CAS
PubMed
Google Scholar
Roth S, Hiromi Y, Godt D, Nusslein-Volhard C: cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos. Development. 1991, 112: 371-388.
CAS
PubMed
Google Scholar
Gerttula S, Jin YS, Anderson KV: Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal-ventral pattern formation. Genetics. 1988, 119: 123-133.
PubMed Central
CAS
PubMed
Google Scholar
Lemaitre B, Meister M, Govind S, Georgel P, Steward R, Reichhart JM, Hoffmann JA: Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. Embo J. 1995, 14: 536-545.
PubMed Central
CAS
PubMed
Google Scholar
Bataille L, Auge B, Ferjoux G, Haenlin M, Waltzer L: Resolving embryonic blood cell fate choice in Drosophila: interplay of GCM and RUNX factors. Development. 2005, 132: 4635-4644. 10.1242/dev.02034.
Article
CAS
PubMed
Google Scholar
Asha H, Nagy I, Kovacs G, Stetson D, Ando I, Dearolf CR: Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics. 2003, 163: 203-215.
PubMed Central
CAS
PubMed
Google Scholar
Sinenko SA, Mathey-Prevot B: Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene. 2004, 23: 9120-9128. 10.1038/sj.onc.1208156.
Article
CAS
PubMed
Google Scholar
Charroux B, Royet J: Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci USA. 2009, 106: 9797-9802. 10.1073/pnas.0903971106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Owusu-Ansah E, Banerjee U: Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009, 461: 537-541. 10.1038/nature08313.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qiu P, Pan PC, Govind S: A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development. 1998, 125: 1909-1920.
CAS
PubMed
Google Scholar
Sorrentino RP, Tokusumi T, Schulz RA: The Friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. Dev Biol. 2007, 311: 311-323.
Article
CAS
PubMed
Google Scholar
Yoshida H, Kwon E, Hirose F, Otsuki K, Yamada M, Yamaguchi M: DREF is required for EGFR signalling during Drosophila wing vein development. Genes Cells. 2004, 9: 935-944. 10.1111/j.1365-2443.2004.00775.x.
Article
CAS
PubMed
Google Scholar
Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, Perrimon N, Mathey-Prevot B: Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods. 2006, 3: 833-838.
CAS
PubMed
Google Scholar
Watson KL, Konrad KD, Woods DF, Bryant PJ: Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci USA. 1992, 89: 11302-11306. 10.1073/pnas.89.23.11302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tselykh TV, Roos C, Heino TI: The mitochondrial ribosome-specific MrpL55 protein is essential in Drosophila and dynamically required during development. Exp Cell Res. 2005, 307: 354-366. 10.1016/j.yexcr.2005.03.037.
Article
CAS
PubMed
Google Scholar
Harari-Steinberg O, Cantera R, Denti S, Bianchi E, Oron E, Segal D, Chamovitz DA: COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis. Genes Cells. 2007, 12: 183-195. 10.1111/j.1365-2443.2007.01049.x.
Article
CAS
PubMed
Google Scholar
Oren-Giladi P, Krieger O, Edgar BA, Chamovitz DA, Segal D: Cop9 signalosome subunit 8 (CSN8) is essential for Drosophila development. Genes Cells. 2008, 13: 221-231. 10.1111/j.1365-2443.2008.01164.x.
Article
CAS
PubMed
Google Scholar
Braun A, Lemaitre B, Lanot R, Zachary D, Meister M: Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics. 1997, 147: 623-634.
PubMed Central
CAS
PubMed
Google Scholar
Tsuchiya A, Inoue YH, Ida H, Kawase Y, Okudaira K, Ohno K, Yoshida H, Yamaguchi M: Transcriptional regulation of the Drosophila rfc1 gene by the DRE-DREF pathway. Febs J. 2007, 274: 1818-1832. 10.1111/j.1742-4658.2007.05730.x.
Article
CAS
PubMed
Google Scholar
Takata K, Yoshida H, Yamaguchi M, Sakaguchi K: Drosophila damaged DNA-binding protein 1 is an essential factor for development. Genetics. 2004, 168: 855-865. 10.1534/genetics.103.025965.
Article
PubMed Central
CAS
PubMed
Google Scholar
Horwich AL, Fenton WA, Chapman E, Farr GW: Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol. 2007, 23: 115-145. 10.1146/annurev.cellbio.23.090506.123555.
Article
CAS
PubMed
Google Scholar
Rizki TM, Rizki RM: Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 1992, 16: 103-110. 10.1016/0145-305X(92)90011-Z.
Article
CAS
PubMed
Google Scholar
Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M: New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol. 2005, 7: 335-350. 10.1111/j.1462-5822.2004.00462.x.
Article
CAS
PubMed
Google Scholar
Zanet J, Stramer B, Millard T, Martin P, Payre F, Plaza S: Fascin is required for blood cell migration during Drosophila embryogenesis. Development. 2009, 136: 2557-2565. 10.1242/dev.036517.
Article
CAS
PubMed
Google Scholar
Stofanko M, Kwon SY, Badenhorst P: A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics. 2008, 180: 253-267. 10.1534/genetics.108.089094.
Article
PubMed Central
PubMed
Google Scholar
Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D: A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA. 2004, 101: 14192-14197. 10.1073/pnas.0403789101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang L, Ohsako S, Tanda S: The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol. 2005, 280: 407-420. 10.1016/j.ydbio.2005.02.006.
Article
CAS
PubMed
Google Scholar
Korolchuk VI, Schutz MM, Gomez-Llorente C, Rocha J, Lansu NR, Collins SM, Wairkar YP, Robinson IM, O'Kane CJ: Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. Journal of Cell Science. 2007, 120: 4367-4376. 10.1242/jcs.012336.
Article
CAS
PubMed
Google Scholar
Dolezal T, Dolezelova E, Zurovec M, Bryant PJ: A role for adenosine deaminase in Drosophila larval development. PLoS Biol. 2005, 3: e201-10.1371/journal.pbio.0030201.
Article
PubMed Central
PubMed
Google Scholar
Sinenko SA, Kim EK, Wynn R, Manfruelli P, Ando I, Wharton KA, Perrimon N, Mathey-Prevot B: Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Dev Biol. 2004, 273: 48-62. 10.1016/j.ydbio.2004.05.022.
Article
CAS
PubMed
Google Scholar
Minakhina S, Druzhinina M, Steward R: Zfrp8, the Drosophila ortholog of PDCD2, functions in lymph gland development and controls cell proliferation. Development. 2007, 134: 2387-2396. 10.1242/dev.003616.
Article
CAS
PubMed
Google Scholar
Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, et al: Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science. 2009, 325: 340-343. 10.1126/science.1173164.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, Dietzl G, Dickson BJ, Knoblich JA: Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature. 2009, 458: 987-992. 10.1038/nature07936.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jacques C, Soustelle L, Nagy I, Diebold C, Giangrande A: A novel role of the glial fate determinant glial cells missing in hematopoiesis. Int J Dev Biol. 2009, 53: 1013-1022. 10.1387/ijdb.082726cj.
Article
CAS
PubMed
Google Scholar
Bach EA, Vincent S, Zeidler MP, Perrimon N: A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics. 2003, 165: 1149-1166.
PubMed Central
CAS
PubMed
Google Scholar
Rizki RM, Rizki TM: Basement membrane abnormalities in melanotic tumor formation of Drosophila. Experientia. 1974, 30: 543-546. 10.1007/BF01926343.
Article
CAS
PubMed
Google Scholar
Shia AK, Glittenberg M, Thompson G, Weber AN, Reichhart JM, Ligoxygakis P: Toll-dependent antimicrobial responses in Drosophila larval fat body require Spatzle secreted by haemocytes. Journal of Cell Science. 2009, 122: 4505-4515. 10.1242/jcs.049155.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dijkers PF, O'Farrell PH: Drosophila calcineurin promotes induction of innate immune responses. Curr Biol. 2007, 17: 2087-2093. 10.1016/j.cub.2007.11.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frandsen JL, Gunn B, Muratoglu S, Fossett N, Newfeld SJ: Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc Natl Acad Sci USA. 2008, 105: 14952-14957. 10.1073/pnas.0808208105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waltzer L, Bataille L, Peyrefitte S, Haenlin M: Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. Embo J. 2002, 21: 5477-5486. 10.1093/emboj/cdf545.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fossett N, Tevosian SG, Gajewski K, Zhang Q, Orkin SH, Schulz RA: The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci USA. 2001, 98: 7342-7347. 10.1073/pnas.131215798.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao H, Wu X, Fossett N: Upregulation of the Drosophila friend of GATA Gene u-shaped by JAK/STAT signaling maintains lymph gland prohemocyte potency. Mol Cell Biol. 2009, 29: 6086-6096. 10.1128/MCB.00244-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waltzer L, Ferjoux G, Bataille L, Haenlin M: Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. Embo J. 2003, 22: 6516-6525. 10.1093/emboj/cdg622.
Article
PubMed Central
CAS
PubMed
Google Scholar
Osman D, Gobert V, Ponthan F, Heidenreich O, Haenlin M, Waltzer L: A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci USA. 2009, 106: 12043-12048. 10.1073/pnas.0902449106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kurucz E, Zettervall CJ, Sinka R, Vilmos P, Pivarcsi A, Ekengren S, Hegedus Z, Ando I, Hultmark D: Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc Natl Acad Sci USA. 2003, 100: 2622-2627. 10.1073/pnas.0436940100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferjoux G, Auge B, Boyer K, Haenlin M, Waltzer L: A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells. Dev Biol. 2007, 305: 726-734. 10.1016/j.ydbio.2007.03.010.
Article
CAS
PubMed
Google Scholar