Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.
Article
CAS
PubMed
Google Scholar
Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.
Article
CAS
PubMed
Google Scholar
Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.
CAS
PubMed
PubMed Central
Google Scholar
Illingworth RS, Bird AP. CpG islands--'a rough guide'. FEBS Lett. 2009;583(11):1713–20.
Article
CAS
PubMed
Google Scholar
Kar S, Sengupta D, Deb M, Shilpi A, Parbin S, Rath SK, Pradhan N, Rakshit M, Patra SK. Expression profiling of DNA methylation-mediated epigenetic gene-silencing factors in breast cancer. Clin Epigenetics. 2014;6(1):20.
Article
PubMed
PubMed Central
Google Scholar
Takayama K, Shimoda N, Takanaga S, Hozumi S, Kikuchi Y. Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish. Gene Expr Patterns. 2014;14(2):105–10.
Article
CAS
PubMed
Google Scholar
Wan ZY, Xia JH, Lin G, Wang L, Lin VC, Yue GH. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia. Sci Rep. 2016;6:35903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.
Article
CAS
PubMed
Google Scholar
Detich N, Ramchandani S, Szyf M. A conserved 3′-untranslated element mediates growth regulation of DNA methyltransferase 1 and inhibits its transforming activity. J Biol Chem. 2001;276(27):24881–90.
Article
CAS
PubMed
Google Scholar
Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR, Cairns BR, Jones DA. Zebrafish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol. 2006;26(19):7077–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.
Article
CAS
PubMed
Google Scholar
Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12(7):647–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107(19):8689–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seritrakul P, Gross JM. Expression of the de novo DNA methyltransferases (dnmt3 - dnmt8) during zebrafish lens development. Dev Dyn. 2014;243(2):350–6.
Article
CAS
PubMed
Google Scholar
Goll MG, Halpern ME. DNA methylation in zebrafish. Prog Mol Biol Transl Sci. 2011;101:193–218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimoda N, Yamakoshi K, Miyake A, Takeda H. Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene. Dev Dyn. 2005;233(4):1509–16.
Article
CAS
PubMed
Google Scholar
Campos C, Valente LM, Fernandes JM. Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene. 2012;500(1):93–100.
Article
CAS
PubMed
Google Scholar
Johnston IA. Environment and plasticity of myogenesis in teleost fish. J Exp Biol. 2006;209(Pt 12):2249–64.
Article
CAS
PubMed
Google Scholar
Pittman K, Yufera M, Pavlidis M, Geffen AJ, Koven W, Ribeiro L, Zambonino-Infante JL, Tandler A. Fantastically plastic: fish larvae equipped for a new world. Rev Aquacult. 2013;5:S224–67.
Article
Google Scholar
Valente LMP, Moutou KA, Conceição LEC, Engrola S, Fernandes JMO, Johnston IA. What determines growth potential and juvenile quality of farmed fish species? Rev Aquaculture. 2013;5(Supp. 1):S168–93.
Article
Google Scholar
Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene. 2006;385:111–21.
Article
CAS
PubMed
Google Scholar
Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sanger AM, Stoiber W. Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol. 2011;214(Pt 11):1791–801.
Article
PubMed
PubMed Central
Google Scholar
Johnston IA, Manthri S, Alderson R, Smart A, Campbell P, Nickell D, Robertson B, Paxton CG, Burt ML. Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar L.). J Exp Biol. 2003;206(Pt 8):1337–51.
Article
PubMed
Google Scholar
Albokhadaim I, Hammond CL, Ashton C, Simbi BH, Bayol S, Farrington S, Stickland N. Larval programming of post-hatch muscle growth and activity in Atlantic salmon (Salmo salar). J Exp Biol. 2007;210(Pt 10):1735–41.
Article
PubMed
Google Scholar
Galloway TF, Kjorsvik E, Kryvi H. Muscle growth and development in Atlantic cod larvae (Gadus morhua L.), related to different somatic growth rates. J Exp Biol. 1999;202(Pt 15):2111–20.
CAS
PubMed
Google Scholar
Wilkes D, Xie SQ, Stickland NC, Alami-Durante H, Kentouri M, Sterioti A, Koumoundouros G, Fauconneau B, Goldspink G. Temperature and myogenic factor transcript levels during early development determines muscle growth potential in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax). J Exp Biol. 2001;204(Pt 16):2763–71.
CAS
PubMed
Google Scholar
Alami-Durante H, Olive N, Rouel M. Early thermal history significantly affects the seasonal hyperplastic process occurring in the myotomal white muscle of Dicentrarchus labrax juveniles. Cell Tissue Res. 2007;327:553–70.
Article
PubMed
Google Scholar
Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol. 2009;212(Pt 12):1781–93.
Article
CAS
PubMed
Google Scholar
Campos C, Sundaram AY, Valente LM, Conceicao LE, Engrola S, Fernandes JM. Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genomics. 2014;15:525.
Article
PubMed
PubMed Central
Google Scholar
Piferrer F, Guiguen Y. Fish gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rev Fish Sci. 2008;16(S1):35–55.
Article
CAS
Google Scholar
Navarro-Martin L, Vinas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, Piferrer F. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011;7(12):e1002447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46(3):253–60.
Article
CAS
PubMed
Google Scholar
Wen AY, You F, Sun P, Li JM, Xu DD, Wu ZH, Ma DY, Zhang PJ. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J Fish Biol. 2014;84:193–205.
Article
CAS
PubMed
Google Scholar
Benzekri H, Armesto P, Cousin X, Rovira M, Crespo D, Merlo MA, Mazurais D, Bautista R, Guerrero-Fernandez D, Fernandez-Pozo N, et al. De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genomics. 2014;15:952.
Article
PubMed
PubMed Central
Google Scholar
Campos C, Castanheira MF, Engrola S, Valente LM, Fernandes JM, Conceicao LE. Rearing temperature affects Senegalese sole (Solea senegalensis) larvae protein metabolic capacity. Fish Physiol Biochem. 2013;39:1485–96.
Campos C, Fernandes JMO, Conceição LEC, Engrola S, Sousa V, Valente LMP. Thermal conditions during larval pelagic phase influence subsequent somatic growth of Senegalese sole by modulating gene expression and muscle growth dynamics. Aquaculture. 2013;414-415:46–55.
Article
Google Scholar
Campos C, Valente L, Conceiçao L, Engrola S, Fernandes J. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics. 2013;8:389–97.
Campos C, Valente LM, Conceicao LE, Engrola S, Sousa V, Rocha E, Fernandes JM. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis). Gene. 2013;516(2):209–17.
Article
CAS
PubMed
Google Scholar
Blanco-Vives B, Vera LM, Ramos J, Bayarri MJ, Mananos E, Sanchez-Vazquez FJ. Exposure of larvae to daily thermocycles affects gonad development, sex ratio, and sexual steroids in Solea senegalensis, kaup. J Exp Zool A Ecol Genet Physiol. 2011;315(3):162–9.
Article
CAS
PubMed
Google Scholar
Armesto P, Campinho MA, Rodriguez-Rua A, Cousin X, Power DM, Manchado M, Infante C. Molecular characterization and transcriptional regulation of the Na +/K+ ATPase alpha subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol. 2014;175:23–38.
Article
CAS
PubMed
Google Scholar
Roman-Padilla J, Rodriguez-Rua A, Claros MG, Hachero-Cruzado I, Manchado M. Genomic characterization and expression analysis of four apolipoprotein A-IV paralogs in Senegalese sole (Solea senegalensis Kaup). Comp Biochem Physiol B Biochem Mol Biol. 2016;191:84–98.
Article
CAS
PubMed
Google Scholar
Roman-Padilla J, Rodriguez-Rua A, Manchado M, Hachero-Cruzado I. Molecular characterization and developmental expression patterns of apolipoprotein A-I in Senegalese sole (Solea senegalensis Kaup). Gene Expr Patterns. 2016;21(1):7–18.
Article
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310.
Article
CAS
PubMed
Google Scholar
Dinis MT, Ribeiro L, Soares F, Sarasquete C. A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture. 1999;176:27–38.
Article
Google Scholar
Infante C, Matsuoka MP, Asensio E, Canavate JP, Reith M, Manchado M. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Biol. 2008;9:28.
Article
PubMed
PubMed Central
Google Scholar
Armesto P, Infante C, Cousin X, Ponce M, Manchado M. Molecular and functional characterization of seven Na+/K+−ATPase beta subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comp Biochem Physiol B Biochem Mol Biol. 2015;182:14–26.
Article
CAS
PubMed
Google Scholar
Campinho MA, Silva N, Roman-Padilla J, Ponce M, Manchado M, Power DM. Flatfish metamorphosis: a hypothalamic independent process? Mol Cell Endocrinol. 2015;404:16–25.
Article
CAS
PubMed
Google Scholar
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3(1):59–69.
Article
CAS
PubMed
Google Scholar
Volff JN. Genome evolution and biodiversity in teleost fish. Heredity (Edinb). 2005;94(3):280–94.
Article
CAS
Google Scholar
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48(4):427–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Xie B-H, Zhang Q-Y, Ma S-S, Luo C. Molecular cloning and expression analysis of dnmt1 in goldfish, Carassius auratus. Acta Hydrobiologica Sinica. 2010;34:229–35.
Article
CAS
Google Scholar
Fang X, Corrales J, Thornton C, Scheffler BE, Willett KL. Global and gene specific DNA methylation changes during zebrafish development. Comp Biochem Physiol B Biochem Mol Biol. 2013;166(1):99–108.
Article
CAS
PubMed
Google Scholar
Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE, Franks DG. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol Appl Pharmacol. 2015;284(2):142–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith TH, Collins TM, McGowan RA. Expression of the dnmt3 genes in zebrafish development: similarity to Dnmt3a and Dnmt3b. Dev Genes Evol. 2011;220(11–12):347–53.
Article
CAS
PubMed
Google Scholar
Gore AV, Athans B, Iben JR, Johnson K, Russanova V, Castranova D, Pham VN, Butler MG, Williams-Simons L, Nichols JT, et al. Epigenetic regulation of hematopoiesis by DNA methylation. elife. 2016;5:e11813.
Article
PubMed
PubMed Central
Google Scholar
Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242(4):360–70.
Article
CAS
PubMed
Google Scholar
Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM, Lubbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23(6):1019–28.
Article
CAS
PubMed
Google Scholar
Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C, MacBeth KJ. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 2010;5(2):e9001.
Article
PubMed
PubMed Central
Google Scholar
Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol. 2008;28(2):752–71.
Article
CAS
PubMed
Google Scholar
Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis. 2011;32(2):224–32.
Article
CAS
PubMed
Google Scholar
Dyrvig M, Gotzsche CR, Woldbye DP, Lichota J. Epigenetic regulation of Dnmt3a and arc gene expression after electroconvulsive stimulation in the rat. Mol Cell Neurosci. 2015;67:137–43.
Article
CAS
PubMed
Google Scholar
Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25(11):4727–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh S, Jayakumar S, Murugan MA, Gupta S, Gupta A. Dose dependent effect of 5-aza-cytidine on mRNA expression of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and histone deacetylase (HDAC) in buffalo skin fibroblast cells. Indian J Anim Sci. 2013:83(9).
Dasmahapatra AK, Khan IA. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine. Comp Biochem Physiol C Toxicol Pharmacol. 2015;176-177:1–9.
Article
CAS
PubMed
Google Scholar
Anguís V, Cañavate JP. Spawning of captive Senegal sole (Solea senegalensis) under a naturally fluctuating temperature regime. Aquaculture. 2005;243:133–45.
Article
Google Scholar
Camus P, Koutsikopoulos C. Incubation and embryonic development of gilthead bream, Sparus aurata (L.), at a range of temperatures. Aquaculture. 1984;42(2):117–28.
Article
Google Scholar
Martell DJ, Kieffer JD, Trippel EA. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Biol. 2005;66:1558–75.
Article
Google Scholar
Martell DJ, Kieffer JD, Trippel EA. Effects of the embryonic thermal environment on haddock (Melanogrammus aeglefinus) developmental trajectories through exogenous feeding stages. Mar Biol. 2006;149:177.
Article
Google Scholar
Thépot V, Jerry DR. The effect of temperature on the embryonic development of barramundi, the Australian strain of Lates calcarifer (Bloch) using current hatchery practices. Aquaculture Reports. 2015;2:132–8.
Article
Google Scholar