Bruneel B, Witten PE. Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connect Tissue Res. 2015;56(2):161–73.
Article
PubMed
CAS
Google Scholar
Apschner A, Schulte-Merker S, Witten PE. Chapter 10 - Not all bones are created equal – Using zebrafish and other teleost species in osteogenesis research. In: William H, Detrich I, Westerfield M, Zon LI, editors. Methods in Cell Biology, vol. 105. 3rd ed. USA: Academic; 2011. p. 239–55.
Chapter
Google Scholar
Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. Eugene: University of Oregon Press; 2000.
Google Scholar
Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development. 1996;123:37–46.
PubMed
CAS
Google Scholar
Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36.
PubMed
CAS
Google Scholar
Harris MP, Henke K, Hawkins MB, Witten PE. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J Appl Ichthyol. 2014;30(4):616–29.
Article
PubMed
PubMed Central
Google Scholar
Hammond CL, Moro E. Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol. 2012;3:1–8.
Article
Google Scholar
Auer TO, Bene FD. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods. 2014;69:142–50.
Article
PubMed
CAS
Google Scholar
Dahm R, Geisler R. Learning from small fry: The zebrafish as a genetic model organism for aquaculture fish species. Marine Biotechnol. 2006;8:329–45.
Article
CAS
Google Scholar
Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest. 2012;122(7):2337–43.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hoyte DAN. Alizarin as an Indicator of Bone Growth. J Anat. 1960;94:432–42.
PubMed
CAS
PubMed Central
Google Scholar
Bird NC, Mabee PM. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn. 2003;228(3):337–57.
Article
PubMed
Google Scholar
Gavaia PJ, Sarasquete C, Cancela ML. Detection of mineralized structures in early stages of development of marine Teleostei using a modified alcian blue-alizarin red double staining technique for bone and cartilage. Biotech Histochem. 2000;75:79–84.
Article
PubMed
CAS
Google Scholar
Dionísio G, Campos C, Valente LMP, Conceição LEC, Cancela ML, Gavaia PJ. Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis. J Appl Ichthyol. 2012;28(3):297–488.
Article
Google Scholar
Witten PE, Villwock W. Growth requires bone resorption at particular skeletal elements in a teleost fish with acellular bone (Oreochromis niloticus, Teleostei: Cichlidae). J Appl Ichthyol. 1997;13:149–58.
Article
Google Scholar
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev. 2009;84(2):315–46.
Article
PubMed
Google Scholar
Bensimon-Brito A, Cancela ML, Huysseune A, Witten PE. Vestiges, rudiments and fusion events: the zebrafish caudal fin endoskeleton in an evo-devo perspective. Evol Dev. 2012;14(1):116–27.
Article
PubMed
Google Scholar
Grotmol S, Kryvi H, Nordvik K, Totland GK. Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol. 2003;207:263–72.
Article
PubMed
Google Scholar
Witten PE, Gil-Martens L, Huysseune A, Takle H, Hjelde K. Towards a classification and an understanding of developmental relationships of vertebral body malformations in Atlantic salmon (Salmo salar L.). Aquaculture. 2009;295(1–2):6–14.
Article
Google Scholar
Witten PE, Obach A, Huysseune A, Baeverfjord G. Vertebrae fusion in Atlantic salmon (Salmo salar): Development, aggravation and pathways of containment. Aquaculture. 2006;258(1–4):164–72.
Article
Google Scholar
Fisher S, Jagadeeswaran P, Halpern ME. Radiographic analysis of zebrafish skeletal defects. Dev Biol. 2003;264(1):64–76.
Article
PubMed
CAS
Google Scholar
Hosen MJ, Vanakker OM, Willaert A, Huysseune A, Coucke P, Paepe AD. Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Front Genet. 2013;4:1–17.
Article
CAS
Google Scholar
Unkenholz EG, Brown ML, Pope KL. Oxytetracycline marking efficacy for yellow perch fingerlings and temporal assays of tissue residues. Progressive Fish-Culturist. 1997;59:280–4.
Article
Google Scholar
Sun TC, Mori S, Roper J, Brown C, Hooser T, Burr DB. Do different fluorochrome labels give equivalent histomorphometric information? Bone. 1992;13:443–6.
Article
PubMed
CAS
Google Scholar
Hattner RS, Llnlcki LP, Hedge HC. The dose–response relationship of tetracycline to the detectability of labeled osteons by fluorescence microscopy. In: Norman AW, Schaefer K, Cobum IW, DeLuca HF, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D biomechanical, chemical and clinical aspects related to calcium metabolism. New York: de Gruyter; 1977. p. 377–80.
Google Scholar
Meunier FJ, Boivin G. Action de la fluorescéine, de l’alizarine, du bleu de calcéine et de diverses doses de tétracycline sur la croissance de la truite et de la carpe. Ann Biol Anim Bioch Biophys. 1978;18(6):1293–308.
Article
CAS
Google Scholar
Simon J, Dorner H, Richter C. Growth and mortality of European glass eel Anguilla anguilla marked with oxytetracycline and alizarin red. J Fish Biol. 2009;74:289–95.
Article
PubMed
CAS
Google Scholar
Du SJ, Frenkel V, Kindschi G, Zohar Y. Visualizing normal and defective bone development in Zebrafish embryos using the fluorescent chromophore calcein. Dev Biol. 2001;238:239–46.
Article
PubMed
CAS
Google Scholar
Bashey F. A comparison of the suitability of alizarin red S and calcein in inducing a nonlethally detectable mark in juvenile guppies. Trans Am Fish Soc. 2004;133:1516–23.
Article
Google Scholar
Adkins KF. Alizarin Red S as an intravital fluorochrome in mineralizing tissues. Stain Technol. 1965;40:69–70.
PubMed
CAS
Google Scholar
Liu Q, Zhang XM, Zhang PD, Nwafili SA. The use of alizarin red S and alizarin complexone for immersion marking Japanese flounder Paralichthys olivaceus. Fish Res. 2009;98:67–74.
Article
Google Scholar
Taylor MD, Fielder DS, Suthers IM. Batch marking of otoliths and fin spines to assess the stock enhancement of Argyrosomus japonicus. J Fish Biol. 2005;66:1149–62.
Article
Google Scholar
Lagardère F, Thibaudeau K, Anras MLB. Feasibility of otolith markings in large juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions. ICES J Marine Sci. 2000;57:1175–81.
Article
Google Scholar
Matthews M, Varga ZM. Anesthesia and Euthanasia in Zebrafish. ILAR J. 2012;53(2):192–204.
Article
PubMed
CAS
Google Scholar
Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell. 2011;20:713–24.
Article
PubMed
CAS
Google Scholar
Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell. 2012;22:879–86.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, et al. Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development. 2011;138:3897–905.
Article
PubMed
CAS
Google Scholar
Tu S, Johnson SL. Fate restriction in the growing and regenerating zebrafish fin. Dev Cell. 2011;20:725–32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Connolly MH, Yelick PC. High-throughput methods for visualizing the teleost skeleton: capturing autofluorescence of alizarin red. J Appl Ichthyol. 2010;26:274–7.
Walker M, Kimmel C. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech Histochem. 2007;82(1):23–8.
Article
PubMed
CAS
Google Scholar
Loizides M, Georgiou AN, Somarakis S, Witten PE, Koumoundouros G. A new type of lordosis and vertebral body compression in Gilthead seabream (Sparus aurata Linnaeus, 1758): Aetiology, anatomy and consequences for survival. J Fish Dis. 2014;37:949–57.
Article
PubMed
CAS
Google Scholar
Bensimon-Brito A, Cancela ML, Huysseune A, Witten PE. The zebrafish (Danio rerio) caudal complex: a model to study vertebral body fusion. J Appl Ichthyol. 2010;26(2):235–8.
Article
Google Scholar
Bensimon-Brito A, Cardeira J, Cancela ML, Huysseune A, Witten PE. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation. BMC Dev Biol. 2012;12(28). doi: 10.1186/1471-213X-12-28.
Huxley TH. Observations on the development of some parts of the skeleton of fishes. Quarterly J Microsc Sci. 1859;7:33–46.
Google Scholar
Kölliker A. On the different types in the microstructure of the skeletons of osseous fish. Proc R Soc Lond. 1859;9:656–68.
Article
Google Scholar
Springer VG, Johnson GD. Use and advantages of ethanol solution of alizarin red S dye for staining bone in fishes. Copeia. 2000;1:300–1.
Article
Google Scholar
Vandewalle P, Gluckmann I, Wagemans F. A critical assessment of the alcian blue / alizarine double staining in fish larvae and fry. Belgian J Zool. 1988;128:93–5.
Google Scholar
Vilmann H. The in vivo staining of bone with alizarin red S. J Anat. 1968;105(3):533–45.
Google Scholar
Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn. 2003;226:202–10.
Article
PubMed
Google Scholar
Akimenko M-A, Smith A. Paired fin repair and regeneration. In: Hall BK, editor. Fins into Limbs: Evolution, Development, and Transformation. Chicago: The University of Chicago Press; 2007. p. 152–62.
Google Scholar
Lawson ND, Weinstein BM. Arteries and veins: making a difference with zebrafish. Nat Rev Genet. 2002;3:674–82.
Article
PubMed
CAS
Google Scholar
Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res. 1987;2(6):595–610.
Article
PubMed
CAS
Google Scholar
DeLaurier A, Eames BF, Blanco-Sánchez B, Peng G, He X, Swartz ME, et al. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis. 2010;48(8):505–11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Renn J, Büttner A, To TT, Chan SJH, Winkler C. A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev Biol. 2013;381:134–43.
Article
PubMed
CAS
Google Scholar
Inohaya K, Takano Y, Kudo A. The Teleost intervertebral region acts as a growth center of the centrum: In vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn. 2007;236:3031–46.
Article
PubMed
CAS
Google Scholar
Kimmel CB, DeLaurier A, Ullmann B, Dowd J, McFadden M. Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One. 2010;5(3):e9475.
Article
PubMed
PubMed Central
Google Scholar
Willems B, Büttner A, Huysseune A, Renn J, Witten PE, Winkler C. Conditional ablation of osteoblasts in medaka. Dev Biol. 2012;364:128–37.
Article
PubMed
CAS
Google Scholar
To TT, Witten PE, Renn J, Bhattacharya D, Huysseune A, Winkler C. Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development. 2012;139:141–50.
Article
PubMed
CAS
Google Scholar
Chatani M, Takano Y, Kudo A. Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol. 2011;360:96–109.
Article
PubMed
CAS
Google Scholar
Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, et al. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Miner Res. 2014;29(11):2346–56.
Article
PubMed
CAS
Google Scholar
Huitema LFA, Apschner A, Logister I, Spoorendonk KM, Bussmanna J, Hammond CL, et al. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A. 2012;109(52):21372–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fleming A, Keynes R, Tannahill D. A central role for the notochord in vertebral patterning. Development. 2004;131:873–80.
Article
PubMed
CAS
Google Scholar
Eames BF, Singer A, Smith GA, Wood ZA, Yan Y-L, He X, et al. UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Dev Biol. 2010;341:400–15.
Article
PubMed
CAS
Google Scholar
Yan Y-L, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, et al. A pair of Sox: distinct and overlapping functions of zebrafish co-orthologs in craniofacial and pectoral fin development. Development. 2005;132:1069–83.
Article
PubMed
CAS
Google Scholar
Dougherty AB. Daily and sub-daily otolith increments of larval and juvenile walleye pollock, Theragrachalcogramma (Pallas), as validated by alizarin complexone experiments. Fish Res. 2008;90:271–8.
Article
Google Scholar
Partridge GJ, Jenkins GI, Doupé RG, Ginbey BM, French D. Factors affecting mark quality of alizarin complexone-stained otoliths in juvenile black bream Acanthopagrus butcheri and a prescription for dosage. J Fish Biol. 2009;75:1518–23.
Article
PubMed
CAS
Google Scholar
Iglesias J, Rodríguez-Ojea G. The use of alizarin complexone for immersion marking of the otoliths of embryos and larvae of the turbot, Scophthalmus maximus (L.): dosage and treatment time. Fish Manage Ecol. 1997;4:405–17.
Article
Google Scholar
Bang A, Peter Grønkjær P, Folkvord A. Possible fitness costs of high and low standard metabolic rates in larval herring Clupeaharengus, as determined by otolith microstructure. Mar Ecol Prog Ser. 2007;331:233–42.
Article
Google Scholar
Skov C, GrønkjÆr P, Nielsen C. Marking pike fry otoliths with alizarin complexone and strontium: an evaluation of methods. J Fish Biol. 2001;59:745–50.
Article
Google Scholar
Baer J, Rosch R. Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin: method and evaluation of stocking. J Appl Ichthyol. 2008;24:44–9.
Article
Google Scholar
Nemoto Y, Higuchi K, Baba O, Kudo A, Takano Y. Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone. 2007;40:399–408.
Article
PubMed
CAS
Google Scholar