Hemmati-Brivanlou A, Wright DA, Melton DA: Embryonic expression and functional analysis of a Xenopus activin receptor. Dev Dyn. 1992, 194: 1-11. 10.1002/aja.1001940102.
Article
CAS
PubMed
Google Scholar
Hemmati-Brivanlou A, Melton DA: Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell. 1994, 77: 273-81. 10.1016/0092-8674(94)90319-0.
Article
CAS
PubMed
Google Scholar
Padgett RW, St Johnston RD, Gelbart WM: A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature. 1987, 325: 81-4. 10.1038/325081a0.
Article
CAS
PubMed
Google Scholar
Holley SA, Neul JL, Attisano L, Wrana JL, Sasai Y, O'Connor MB, De Robertis EM, Ferguson EL: The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell. 1996, 86: 607-17. 10.1016/S0092-8674(00)80134-8.
Article
CAS
PubMed
Google Scholar
Schmidt J, Francois V, Bier E, Kimelman D: Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. Development. 1995, 121: 4319-28.
CAS
PubMed
Google Scholar
Munoz-Sanjuan I, Brivanlou AH: Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci. 2002, 3: 271-80. 10.1038/nrn786.
Article
CAS
PubMed
Google Scholar
Stern CD: Neural induction: 10 years on since the 'default model'. Curr Opin Cell Biol. 2006, 18: 692-7. 10.1016/j.ceb.2006.09.002.
Article
CAS
PubMed
Google Scholar
Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM: BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol. 2010, 337: 335-50. 10.1016/j.ydbio.2009.11.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D: Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron. 2001, 30: 65-78. 10.1016/S0896-6273(01)00263-X.
Article
CAS
PubMed
Google Scholar
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009, 27: 275-80. 10.1038/nbt.1529.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hutson MR, Zeng XL, Kim AJ, Antoon E, Harward S, Kirby ML: Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development. 2010, 137: 3001-11. 10.1242/dev.051565.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C: Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci. 2004, 117: 1269-80. 10.1242/jcs.00970.
Article
CAS
PubMed
Google Scholar
Di-Gregorio A, Sancho M, Stuckey DW, Crompton LA, Godwin J, Mishina Y, Rodriguez TA: BMP signalling inhibits premature neural differentiation in the mouse embryo. Development. 2007, 134: 3359-69. 10.1242/dev.005967.
Article
CAS
PubMed
Google Scholar
Rentzsch F, Bakkers J, Kramer C, Hammerschmidt M: Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition. Dev Dyn. 2004, 231: 750-7. 10.1002/dvdy.20244.
Article
CAS
PubMed
Google Scholar
Delaune E, Lemaire P, Kodjabachian L: Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development. 2005, 132: 299-310. 10.1242/dev.01582.
Article
CAS
PubMed
Google Scholar
Chang C, Harland RM: Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation. Development. 2007, 134: 3861-72. 10.1242/dev.007179.
Article
CAS
PubMed
Google Scholar
Marchal L, Luxardi G, Thome V, Kodjabachian L: BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci USA. 2009, 106: 17437-42. 10.1073/pnas.0906352106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Linker C, Stern CD: Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development. 2004, 131: 5671-81. 10.1242/dev.01445.
Article
CAS
PubMed
Google Scholar
Albazerchi A, Stern CD: A role for the hypoblast (AVE) in the initiation of neural induction, independent of its ability to position the primitive streak. Dev Biol. 2007, 301: 489-503. 10.1016/j.ydbio.2006.08.057.
Article
CAS
PubMed
Google Scholar
Lamb TM, Harland RM: Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development. 1995, 121: 3627-36.
CAS
PubMed
Google Scholar
Fletcher RB, Baker JC, Harland RM: FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development. 2006, 133: 1703-14. 10.1242/dev.02342.
Article
CAS
PubMed
Google Scholar
Stavridis MP, Lunn JS, Collins BJ, Storey KG: A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development. 2007, 134: 2889-94. 10.1242/dev.02858.
Article
CAS
PubMed
Google Scholar
Sheng G, dos Reis M, Stern CD: Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell. 2003, 115: 603-13. 10.1016/S0092-8674(03)00927-9.
Article
CAS
PubMed
Google Scholar
Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD: Initiation of neural induction by FGF signalling before gastrulation. Nature. 2000, 406: 74-8. 10.1038/35017617.
Article
CAS
PubMed
Google Scholar
Hongo I, Kengaku M, Okamoto H: FGF signaling and the anterior neural induction in Xenopus. Dev Biol. 1999, 216: 561-81. 10.1006/dbio.1999.9515.
Article
CAS
PubMed
Google Scholar
Smith JC: Mesoderm induction and mesoderm-inducing factors in early amphibian development. Development. 1989, 105: 665-77.
CAS
PubMed
Google Scholar
Kengaku M, Okamoto H: bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development. 1995, 121: 3121-30.
CAS
PubMed
Google Scholar
Pera EM, Ikeda A, Eivers E, De Robertis EM: Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev. 2003, 17: 3023-8. 10.1101/gad.1153603.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baker JC, Beddington RS, Harland RM: Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 1999, 13: 3149-59. 10.1101/gad.13.23.3149.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson SI, Graziano E, Harland R, Jessell TM, Edlund T: An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol. 2000, 10: 421-9. 10.1016/S0960-9822(00)00431-0.
Article
CAS
PubMed
Google Scholar
Rogers CD, Archer TC, Cunningham DD, Grammer TC, Casey EM: Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev Biol. 2008, 313: 307-19. 10.1016/j.ydbio.2007.10.023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tucker AS, Al Khamis A, Sharpe PT: Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Dev Dyn. 1998, 212: 533-9. 10.1002/(SICI)1097-0177(199808)212:4<533::AID-AJA6>3.0.CO;2-I.
Article
CAS
PubMed
Google Scholar
Ishii M, Morigiwa K, Takao M, Nakanishi S, Fukuda Y, Mimura O, Tsukamoto Y: Ectopic synaptic ribbons in dendrites of mouse retinal ON- and OFF-bipolar cells. Cell Tissue Res. 2009, 338: 355-75. 10.1007/s00441-009-0880-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lanner F, Rossant J: The role of FGF/Erk signaling in pluripotent cells. Development. 2010, 137: 3351-60. 10.1242/dev.050146.
Article
CAS
PubMed
Google Scholar
Sullivan SA, Akers L, Moody SA: foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Dev Biol. 2001, 232: 439-57. 10.1006/dbio.2001.0191.
Article
CAS
PubMed
Google Scholar
Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y: Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development. 1998, 125: 579-87.
CAS
PubMed
Google Scholar
Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y: SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron. 1998, 21: 77-85. 10.1016/S0896-6273(00)80516-4.
Article
CAS
PubMed
Google Scholar
Tropepe V, Li S, Dickinson A, Gamse JT, Sive HL: Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1. Dev Biol. 2006, 289: 517-29. 10.1016/j.ydbio.2005.10.004.
Article
CAS
PubMed
Google Scholar
Kroll KL, Salic AN, Evans LM, Kirschner MW: Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development. 1998, 125: 3247-58.
CAS
PubMed
Google Scholar
Hardcastle Z, Chalmers AD, Papalopulu N: FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol. 2000, 10: 1511-4. 10.1016/S0960-9822(00)00825-3.
Article
CAS
PubMed
Google Scholar
Launay C, Fromentoux V, Shi DL, Boucaut JC: A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development. 1996, 122: 869-80.
CAS
PubMed
Google Scholar
Rastegar S, Friedle H, Frommer G, Knochel W: Transcriptional regulation of Xvent homeobox genes. Mech Dev. 1999, 81: 139-49. 10.1016/S0925-4773(98)00239-1.
Article
CAS
PubMed
Google Scholar
Friedle H, Knochel W: Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J Biol Chem. 2002, 277: 23872-81. 10.1074/jbc.M201831200.
Article
CAS
PubMed
Google Scholar
Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM: Neural induction by the secreted polypeptide noggin. Science. 1993, 262: 713-8. 10.1126/science.8235591.
Article
CAS
PubMed
Google Scholar
Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM: Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994, 79: 779-90. 10.1016/0092-8674(94)90068-X.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith WC, Harland RM: Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992, 70: 829-40. 10.1016/0092-8674(92)90316-5.
Article
CAS
PubMed
Google Scholar
Hemmati-Brivanlou A, Kelly OG, Melton DA: Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 1994, 77: 283-95. 10.1016/0092-8674(94)90320-4.
Article
CAS
PubMed
Google Scholar
Takeda M, Saito Y, Sekine R, Onitsuka I, Maeda R, Maeno M: Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes. Comp Biochem Physiol B Biochem Mol Biol. 2000, 126: 157-68. 10.1016/S0305-0491(00)00194-2.
Article
CAS
PubMed
Google Scholar
Yamamoto TS, Takagi C, Ueno N: Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mech Dev. 2000, 91: 131-41. 10.1016/S0925-4773(99)00290-7.
Article
CAS
PubMed
Google Scholar
Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C: Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. Embo J. 1995, 14: 6268-79.
PubMed Central
CAS
PubMed
Google Scholar
Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C: The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development. 1996, 122: 3045-53.
CAS
PubMed
Google Scholar
Suzuki A, Ueno N, Hemmati-Brivanlou A: Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development. 1997, 124: 3037-3044.
CAS
PubMed
Google Scholar
Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y: Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development. 2000, 127: 791-800.
CAS
PubMed
Google Scholar
Yan B, Neilson KM, Moody SA: foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev Biol. 2009
Google Scholar
Sterneckert J, Stehling M, Bernemann C, Arauzo-Bravo MJ, Greber B, Gentile L, Ortmeier C, Sinn M, Wu G, Ruau D, et al: Neural induction intermediates exhibit distinct roles of Fgf signaling. Stem Cells. 2010, 28: 1772-81. 10.1002/stem.498.
Article
CAS
PubMed
Google Scholar
Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES: Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mech Dev. 2009, 126: 42-55. 10.1016/j.mod.2008.10.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nishimoto S, Nishida E: Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development. J Biol Chem. 2007, 282: 24255-61. 10.1074/jbc.M704277200.
Article
CAS
PubMed
Google Scholar
Chalmers AD, Welchman D, Papalopulu N: Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev Cell. 2002, 2: 171-82. 10.1016/S1534-5807(02)00113-2.
Article
CAS
PubMed
Google Scholar
Sive HL, Grainger RM, Harland RM: Early Development of Xenopus laevis: A Laboratory Manual. 2000, Cold Spring Harbor: Cold Spring Harbor Laboratory Press
Google Scholar
Knecht AK, Good PJ, Dawid IB, Harland RM: Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm. Development. 1995, 121: 1927-35.
CAS
PubMed
Google Scholar
Geng X, Xiao L, Tao Q, Hu R, Rupp RA, Ding X: The Xenopus noggin promoter drives roof-plate specific transcription. Neuroreport. 2003, 14: 2163-6. 10.1097/00001756-200312020-00006.
Article
CAS
PubMed
Google Scholar
Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N: A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA. 1994, 91: 10255-9. 10.1073/pnas.91.22.10255.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amaya E, Stein PA, Musci TJ, Kirschner MW: FGF signalling in the early specification of mesoderm in Xenopus. Development. 1993, 118: 477-87.
CAS
PubMed
Google Scholar
Wilson PA, Hemmati-Brivanlou A: Induction of epidermis and inhibition of neural fate by Bmp-4. Nature. 1995, 376: 331-3. 10.1038/376331a0.
Article
CAS
PubMed
Google Scholar
Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM: Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development. 1990, 110: 325-30.
CAS
PubMed
Google Scholar
Harland RM: In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991, 36: 685-95.
Article
CAS
PubMed
Google Scholar
Penzel R, Oschwald R, Chen Y, Tacke L, Grunz H: Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol. 1997, 41: 667-77.
CAS
PubMed
Google Scholar
Ladher R, Mohun TJ, Smith JC, Snape AM: Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development. 1996, 122: 2385-94.
CAS
PubMed
Google Scholar
Papalopulu N, Kintner C: A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev Biol. 1996, 174: 104-14. 10.1006/dbio.1996.0055.
Article
CAS
PubMed
Google Scholar
Schmidt JE, von Dassow G, Kimelman D: Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development. 1996, 122: 1711-21.
CAS
PubMed
Google Scholar
Kroll KL, Gerhart JC: Transgenic X. laevis embryos from eggs transplanted with nuclei of transfected cultured cells. Science. 1994, 266: 650-3. 10.1126/science.7939720.
Article
CAS
PubMed
Google Scholar
Maeda R, Kobayashi A, Sekine R, Lin JJ, Kung H, Maeno M: Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development. 1997, 124: 2553-60.
CAS
PubMed
Google Scholar
Moody SA, Miller V, Spanos A, Frankfurter A: Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period. J Comp Neurol. 1996, 364: 219-30. 10.1002/(SICI)1096-9861(19960108)364:2<219::AID-CNE3>3.0.CO;2-8.
Article
CAS
PubMed
Google Scholar
Jonas E, Sargent TD, Dawid IB: Epidermal keratin gene expressed in embryos of Xenopus laevis. Proc Natl Acad Sci USA. 1985, 82: 5413-7. 10.1073/pnas.82.16.5413.
Article
PubMed Central
CAS
PubMed
Google Scholar