Darwin C: The descent of man, and selection in relation to sex. London. Edited by: Murray J. 1871
Chapter
Google Scholar
Panhuis TM, Butlin R, Zuk M, Tregenza T: Sexual selection and speciation. Trends Ecol Evol. 2001, 16: 364-371. 10.1016/S0169-5347(01)02160-7.
Article
PubMed
Google Scholar
Ritchie MG: Sexual Selection and Speciation. Annu Rev Ecol Evol Syst. 2007, 38: 79-102. 10.1146/annurev.ecolsys.38.091206.095733.
Article
Google Scholar
Rosenthal GG, Garcýà de Leon FJ: Sexual Behavior, Genes, and Evolution in Xiphophorus. Zebrafish. 2006, 3: 85-90. 10.1089/zeb.2006.3.85.
Article
PubMed
Google Scholar
Meyer A: The evolution of sexually selected traits in male swordtail fishes (Xiphophorus : Poeciliidae). Heredity. 1997, 79: 329-337. 10.1038/hdy.1997.161.
Article
Google Scholar
Wiens JJ, Morris MR: Character definition, sexual selection, and the Evolution of swordtails. Am Nat. 1996, 147: 866-869. 10.1086/285882.
Article
Google Scholar
Basolo AL, Trainor BC: The conformation of a female preference for a composite male trait in green swordtails. Anim Behav. 2002, 63: 469-474. 10.1006/anbe.2001.1933.
Article
Google Scholar
Rosenthal GG, Evans CS: Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci USA. 1998, 95: 4431-4436. 10.1073/pnas.95.8.4431.
Article
PubMed Central
PubMed
CAS
Google Scholar
Meyer A, Morrissey JM, Schartl M: Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature. 1994, 368: 539-542. 10.1038/368539a0.
Article
PubMed
CAS
Google Scholar
Meyer A, Salzburger W, Schartl M: Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol Ecol. 2006, 15: 721-730. 10.1111/j.1365-294X.2006.02810.x.
Article
PubMed
CAS
Google Scholar
Parzefall J: Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschliesslich einer Höhlenform von M. sphenops. Behaviour. 1969, 33: 1-37. 10.1163/156853969X00297.
Article
PubMed
CAS
Google Scholar
Basolo AL: Female Preference Predates the Evolution of the Sword in Swordtail Fish. Science. 1990, 250: 808-810. 10.1126/science.250.4982.808.
Article
PubMed
CAS
Google Scholar
Basolo AL: A further examination of a pre-existing bias favouring a sword in the genus Xiphophorus. Anim Behav. 1995, 50: 365-375. 10.1006/anbe.1995.0252.
Article
Google Scholar
Basolo AL: Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proc Biol Sci. 1995, 259: 307-311. 10.1098/rspb.1995.0045.
Article
PubMed
CAS
Google Scholar
Lindholm AK, Brooks R, Breden F: Extreme polymorphism in a Y-linked sexually selected trait. Heredity. 2004, 92: 156-162. 10.1038/sj.hdy.6800386.
Article
PubMed
CAS
Google Scholar
Warren I, Smith H: Stalk-eyed flies (Diopsidae): modelling the evolution and development of an exaggerated sexual trait. Bioessays. 2007, 29: 300-307. 10.1002/bies.20543.
Article
PubMed
CAS
Google Scholar
Emlen DJ, Corley Lavine L, Ewen-Campen B: On the origin and evolutionary diversification of beetle horns. Proc Natl Acad Sci USA. 2007, 104 (Suppl 1): 8661-8668. 10.1073/pnas.0701209104.
Article
PubMed Central
PubMed
CAS
Google Scholar
Zander CD, Dzwillo M: Untersuchungen zur Entwicklung und Vererbung des Caudalfortsatzes der Xiphophorus-Arten (Pisces). Zeitschrift für Wissenschaftliche Zoologie. 1969, 178: 276-315.
Google Scholar
Eibner C, Pittlik S, Meyer A, Begemann G: The developmental basis of evolutionary innovation: Inductive signals coordinate the development of a sexually selected trait in swordtail fish. Evol Dev. 2008, 10: 403-412. 10.1111/j.1525-142X.2008.00251.x.
Article
PubMed
Google Scholar
Dzwillo M: Einfluss von Methyltestosteron auf die Aktivierung sekundärer Geschlechtsmerkmale über den arttypischen Zustand hinaus (Untersuchungen an xiphophorinen Zahnkarpfen). Verh Deutsch Zool Gesellsch Wien. 1962, 151-159.
Google Scholar
Dzwillo M: Sekundäre Geschlechtsmerkmale einiger Xiphophorini unter dem Einfluss von Methyl-testosteron. Kosswig-Festschrift. 1964, 15-22.
Google Scholar
Gordon M, Cohen H, Nigrelli RF: A hormone-produced taxonomic character in Platypoecilius maculatus diagnostic of wild P. xiphidium. Am Nat. 1942, 77: 569-572. 10.1086/281162.
Article
Google Scholar
Zauner H, Begemann G, Mari-Beffa M, Meyer A: Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the "sword," a sexually selected trait of swordtail fishes (Xiphophorus). Evol Dev. 2003, 5: 466-477. 10.1046/j.1525-142X.2003.03053.x.
Article
PubMed
CAS
Google Scholar
Satoh Y, Haraguchi R, Wright TJ, Mansour SL, Partanen J, Hajihosseini MK, Eswarakumar VP, Lonai P, Yamada G: Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat Embryol (Berl). 2004, 208: 479-486.
Article
CAS
Google Scholar
Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT: Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol. 2000, 222: 347-358. 10.1006/dbio.2000.9722.
Article
PubMed
CAS
Google Scholar
Thummel R, Bai S, Sarras MP, Song P, McDermott J, Brewer J, Perry M, Zhang X, Hyde DR, Godwin AR: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn. 2006, 235: 336-346. 10.1002/dvdy.20630.
Article
PubMed
CAS
Google Scholar
Fischer S, Draper BW, Neumann CJ: The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development. 2003, 130: 3515-3524. 10.1242/dev.00537.
Article
PubMed
CAS
Google Scholar
Whitehead GG, Makino S, Lien CL, Keating MT: fgf20 is essential for initiating zebrafish fin regeneration. Science. 2005, 310: 1957-1960. 10.1126/science.1117637.
Article
PubMed
CAS
Google Scholar
Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D: High-efficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis. 2002, 32: 27-31. 10.1002/gene.10025.
Article
PubMed
CAS
Google Scholar
Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD: Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development. 2005, 132: 5173-5183. 10.1242/dev.02101.
Article
PubMed
CAS
Google Scholar
Groth C, Lardelli M: The structure and function of vertebrate fibroblast growth factor receptor 1. Int J Dev Biol. 2002, 46: 393-400.
PubMed
CAS
Google Scholar
Meyer A, Lydeard C: The evolution of copulatory organs, internal fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src. Proc Biol Sci. 1993, 254: 153-162. 10.1098/rspb.1993.0140.
Article
PubMed
CAS
Google Scholar
Gordon M, Rosen DE: Genetics of species differences in the morphology of the male genitalia of xiphophorin fishes. Bull Amer Mus Nat Hist. 1951, 95: 413-464.
Google Scholar
Langer WF: Beiträge zur Morphologie der viviparen Cyprinodontiden. Gegenbauer's Morph Jahrb. 1913, 47: 193-307.
Google Scholar
Smith A, Zhang J, Guay D, Quint E, Johnson A, Akimenko MA: Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method. Dev Dyn. 2008, 237: 417-425. 10.1002/dvdy.21417.
Article
PubMed
CAS
Google Scholar
Laforest L, Brown CW, Poleo G, Geraudie J, Tada M, Ekker M, Akimenko MA: Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development. 1998, 125: 4175-4184.
PubMed
CAS
Google Scholar
Borday V, Thaeron C, Avaron F, Brulfert A, Casane D, Laurenti P, Geraudie J: evx1 transcription in bony fin rays segment boundaries leads to a reiterated pattern during zebrafish fin development and regeneration. Dev Dyn. 2001, 220: 91-98. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1091>3.0.CO;2-J.
Article
PubMed
CAS
Google Scholar
Johnson SL, Weston JA: Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics. 1995, 141: 1583-1595.
PubMed Central
PubMed
CAS
Google Scholar
Draper BW, Stock DW, Kimmel CB: Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development. 2003, 130: 4639-4654. 10.1242/dev.00671.
Article
PubMed
CAS
Google Scholar
Axelrod HR, Wischnath L: Swordtails and Platies. 1991, Neptune, Nj: TFH Publications
Google Scholar
Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu IM: Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development. 1993, 119: 353-361.
PubMed
CAS
Google Scholar
D'Jamoos CA, McMahon G, Tsonis PA: Fibroblast growth factor receptors regulate the ability for hindlimb regeneration in Xenopus laevis. Wound Repair Regen. 1998, 6: 388-397. 10.1046/j.1460-9568.1998.60415.x.
Article
PubMed
Google Scholar
Li C, Xu X, Nelson DK, Williams T, Kuehn MR, Deng CX: FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Development. 2005, 132: 4755-4764. 10.1242/dev.02065.
Article
PubMed
CAS
Google Scholar
Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X: Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development. 2005, 132: 4235-4245. 10.1242/dev.02001.
Article
PubMed
CAS
Google Scholar
Lallemand Y, Nicola MA, Ramos C, Bach A, Cloment CS, Robert B: Analysis of Msx1 ; Msx2 double mutants reveals multiple roles for Msx genes in limb development. Development. 2005, 132: 3003-3014. 10.1242/dev.01877.
Article
PubMed
CAS
Google Scholar
Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, Abate-Shen C: Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol. 1997, 17: 2920-2932.
Article
PubMed Central
PubMed
CAS
Google Scholar
Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko MA: Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc Natl Acad Sci USA. 2002, 99: 8713-8718.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lee RK, Stainier DY, Weinstein BM, Fishman MC: Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development. 1994, 120: 3361-3366.
PubMed
CAS
Google Scholar
Woo K, Fraser SE: Specification of the hindbrain fate in the zebrafish. Dev Biol. 1998, 197: 283-296. 10.1006/dbio.1998.8870.
Article
PubMed
CAS
Google Scholar
Connors SA, Trout J, Ekker M, Mullins MC: The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development. 1999, 126: 3119-3130.
PubMed
CAS
Google Scholar
Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC: Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development. 2001, 128: 859-869.
PubMed
CAS
Google Scholar
Chen W-J, Orti G, Meyer A: Novel evolutionary relationship among four fish model systems. Trends Genet. 2004, 20: 424-431. 10.1016/j.tig.2004.07.005.
Article
PubMed
CAS
Google Scholar
Steinke D, Salzburger W, Braasch I, Meyer A: Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics. 2006, 7: 20-10.1186/1471-2164-7-20.
Article
PubMed Central
PubMed
Google Scholar
Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T, et al: Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand-receptor relationships. Dev Biol. 2007, 304: 326-337. 10.1016/j.ydbio.2006.12.043.
Article
PubMed
CAS
Google Scholar
Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM: Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet. 2003, 34: 303-307. 10.1038/ng1178.
Article
PubMed
CAS
Google Scholar
Smith A, Avaron F, Guay D, Padhi BK, Akimenko MA: Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol. 2006, 299: 438-454. 10.1016/j.ydbio.2006.08.016.
Article
PubMed
CAS
Google Scholar
Wang CK, Omi M, Ferrari D, Cheng HC, Lizarraga G, Chin HJ, Upholt WB, Dealy CN, Kosher RA: Function of BMPs in the apical ectoderm of the developing mouse limb. Dev Biol. 2004, 269: 109-122. 10.1016/j.ydbio.2004.01.016.
Article
PubMed
CAS
Google Scholar
Binato R, Alvarez Martinez CE, Pizzatti L, Robert B, Abdelhay E: SMAD 8 binding to mice Msx1 basal promoter is required for transcriptional activation. Biochem J. 2006, 393: 141-150. 10.1042/BJ20050327.
Article
PubMed Central
PubMed
CAS
Google Scholar
Beck CW, Christen B, Barker D, Slack JM: Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech Dev. 2006, 123: 674-688. 10.1016/j.mod.2006.07.001.
Article
PubMed
CAS
Google Scholar
Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC: Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 2006, 20: 3232-3237. 10.1101/gad.1475106.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lin G, Slack JM: Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev Biol. 2008, 316: 323-335. 10.1016/j.ydbio.2008.01.032.
Article
PubMed
CAS
Google Scholar
Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT: Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 2007, 134: 479-489. 10.1242/dev.001123.
Article
PubMed
CAS
Google Scholar
Ogino Y, Katoh H, Yamada G: Androgen dependent development of a modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates. FEBS Lett. 2004, 575: 119-126. 10.1016/j.febslet.2004.08.046.
Article
PubMed
CAS
Google Scholar
Meyer A: Homology and Homoplasy: The Retention of Genetic Programmes. Homology. Edited by: Brock GK, Cardew G. 1999, Chichester, UK: Wiley, 141-157.
Google Scholar
Yokoyama H, Ide H, Tamura K: FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol. 2001, 233: 72-79. 10.1006/dbio.2001.0180.
Article
PubMed
CAS
Google Scholar
Taylor GP, Anderson R, Reginelli AD, Muneoka K: FGF-2 induces regeneration of the chick limb bud. Dev Biol. 1994, 163: 282-284. 10.1006/dbio.1994.1144.
Article
PubMed
CAS
Google Scholar
Kostakopoulou K, Vogel A, Brickell P, Tickle C: 'Regeneration' of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech Dev. 1996, 55: 119-131. 10.1016/0925-4773(95)00492-0.
Article
PubMed
CAS
Google Scholar
Mercader N: Early steps of paired fin development in zebrafish compared with tetrapod limb development. Dev Growth Differ. 2007, 49: 421-437.
Article
PubMed
CAS
Google Scholar
Kuraku S, Usuda R, Kuratani S: Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev. 2005, 7: 3-17. 10.1111/j.1525-142X.2005.05002.x.
Article
PubMed
CAS
Google Scholar
Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ. Biophoton Int. 2004, 11: 36-42.
Google Scholar
Larget B, Simon DL: Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999, 16: 750-759.
Article
CAS
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817.
Article
PubMed
CAS
Google Scholar
Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985, 39: 783-791. 10.2307/2408678.
Article
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001, 17: 754-755. 10.1093/bioinformatics/17.8.754.
Article
PubMed
CAS
Google Scholar
Rodriguez F, Oliver JL, Marin A, Medina JR: The general stochastic model of nucleotide substitution. J Theor Biol. 1990, 142: 485-501. 10.1016/S0022-5193(05)80104-3.
Article
PubMed
CAS
Google Scholar
Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993, 10: 512-526.
PubMed
CAS
Google Scholar
Gattiker A, Gasteiger E, Bairoch A: ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics. 2002, 1: 107-108.
PubMed
CAS
Google Scholar