Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M: Calreticulin: one protein, one gene and many functions. Biochem J. 1999, 344: 281-292. 10.1042/0264-6021:3440281.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bedard K, Szabo E, Michalak M, Opas M: Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int Rev Cytol. 2005, 245: 91-121.
Article
CAS
PubMed
Google Scholar
Opas M, Szewczenko-Pawlikowski M, Jass GK, Mesaeli N, Michalak M: Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol. 1996, 135: 1913-1923. 10.1083/jcb.135.6.1913.
Article
CAS
PubMed
Google Scholar
Fadel MP, Dziak E, Lo CM, Ferrier J, Mesaeli N, Michalak M, Opas M: Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem. 1999, 274: 15085-15094. 10.1074/jbc.274.21.15085.
Article
CAS
PubMed
Google Scholar
Fadel MP, Szewczenko-Pawlikowski M, Leclerc P, Dziak E, Symonds JM, Blaschuk O, Michalak M, Opas M: Calreticulin affects beta-catenin associated pathways. J Biol Chem. 2001, 276: 27083-27089. 10.1074/jbc.M101676200.
Article
CAS
PubMed
Google Scholar
Papp S, Fadel MP, Opas M: ER-to-cell surface signalling: calreticulin and cell adhesion. J Appl Biomed. 2004, 2: 1-14. [http://PM:10216094]
CAS
Google Scholar
Fliegel L, Burns K, Opas M, Michalak M: The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989, 982: 1-8. 10.1016/0005-2736(89)90166-1.
Article
CAS
PubMed
Google Scholar
Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M: Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem. 1991, 266: 7155-7165.
CAS
PubMed
Google Scholar
Tharin S, Dziak E, Michalak M, Opas M: Widespread tissue distribution of rabbit calreticulin, a non-muscle functional analogue of calsequestrin. Cell Tissue Res. 1992, 269: 29-37. 10.1007/BF00384723.
Article
CAS
PubMed
Google Scholar
Michalak M, Lynch J, Groenendyk J, Guo L, Parker JMR, Opas M: Calreticulin in cardiac development and pathology. Biochim Biophys Acta. 2002, 1600: 32-37.
Article
CAS
PubMed
Google Scholar
Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH, Michalak M: Calreticulin is essential for cardiac development. J Cell Biol. 1999, 144: 857-868. 10.1083/jcb.144.5.857.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rauch F, Prud'homme J, Arabian A, Dedhar S, St Arnaud R: Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res. 2000, 256: 105-111. 10.1006/excr.2000.4818.
Article
CAS
PubMed
Google Scholar
Michalak M, Guo L, Robertson M, Lozak M, Opas M: Calreticulin in the heart. Mol Cell Biochem. 2004, 263: 137-142. 10.1023/B:MCBI.0000041855.10149.5f.
Article
CAS
PubMed
Google Scholar
Gregorio CC, Antin PB: To the heart of myofibril assembly. Trends Cell Biol. 2000, 10: 355-362. 10.1016/S0962-8924(00)01793-1.
Article
CAS
PubMed
Google Scholar
Hirschy A, Schatzmann F, Ehler E, Perriard JC: Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol. 2006, 289: 430-441. 10.1016/j.ydbio.2005.10.046.
Article
CAS
PubMed
Google Scholar
Chacko KJ: Observations on the ultrastructure of developing myocardium of rat embryos. J Morphol,. 1976, 150: 681-709. 10.1002/jmor.1051500305.
Article
CAS
Google Scholar
Marino TA, Kuseryk L, Lauva IK: Role of contraction in the structure and growth of neonatal rat cardiocytes. Am J Physiol. 1987, 253: H1391-H1399.
CAS
PubMed
Google Scholar
Goncharova EJ, Kam Z, Geiger B: The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development. 1992, 114: 173-183.
CAS
PubMed
Google Scholar
Shiraishi I, Simpson DG, Carver W, Price R, Hirozane T, Terracio L, Borg TK: Vinculin is an essential component for normal myofibrillar arrangement in fetal mouse cardiac myocytes. J Mol Cell Cardiol. 1997, 29: 2041-2052. 10.1006/jmcc.1997.0438.
Article
CAS
PubMed
Google Scholar
Quach NL, Rando TA: Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol. 2006, 293: 38-52. 10.1016/j.ydbio.2005.12.040.
Article
CAS
PubMed
Google Scholar
Forbes MS, Sperelakis N: Intercalated discs of mammalian heart: a review of structure and function. Tissue Cell. 1985, 17: 605-648. 10.1016/0040-8166(85)90001-1.
Article
CAS
PubMed
Google Scholar
Forbes MS, Sperelakis N: Ultrastructure of Mammalian Cardiac Muscle. Physiology and Pathophysiology of the Heart. Edited by: N. S. 1995, Boston, Kluwer Academic Publishers, 1-35.
Google Scholar
Volk T, Geiger B: A 135 kD membrane protein of intercellular adherens junctions. EMBO J. 1984, 3: 2249-2260.
PubMed Central
CAS
PubMed
Google Scholar
Soler AP, Knudsen KA: N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol. 1994, 162: 9-17. 10.1006/dbio.1994.1062.
Article
CAS
PubMed
Google Scholar
Linask KK, Knudsen KA, Gui YH: N-cadherin-catenin interaction: Necessary component of cardiac cell compartmentalization during early vertebrate heart development. Dev Biol. 1997, 185: 148-164. 10.1006/dbio.1997.8570.
Article
CAS
PubMed
Google Scholar
Nakagawa S, Takeichi M: N-cadherin is crucial for heart formation in the chick embryo. Dev Growth Diff. 1997, 39: 451-455. 10.1046/j.1440-169X.1997.t01-3-00006.x.
Article
CAS
Google Scholar
Wu JC, Chung TH, Tseng YZ, Wang SM: N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. J Cell Biochem. 1999, 75: 93-104. 10.1002/(SICI)1097-4644(19991001)75:1<93::AID-JCB10>3.0.CO;2-O.
Article
CAS
PubMed
Google Scholar
Hertig CM, Eppenberger-Eberhardt M, Koch S, Eppenberger HM: N-cadherin in adult rat cardiomyocytes in culture .1. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant. J Cell Sci. 1996, 109: 1-10.
CAS
PubMed
Google Scholar
Ong LL, Kim N, Mima T, Cohen-Gould L, Mikawa T: Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. Dev Biol. 1998, 193: 1-9. 10.1006/dbio.1997.8775.
Article
CAS
PubMed
Google Scholar
Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO: Developmental defects in mouse embryos lacking N-cadherin. Dev Biol. 1997, 181: 64-78. 10.1006/dbio.1996.8443.
Article
CAS
PubMed
Google Scholar
Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL: Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res. 2005, 96: 346-354. 10.1161/01.RES.0000156274.72390.2c.
Article
CAS
PubMed
Google Scholar
Linask KK: N-Cadherin localization in early heart development and polar expression of Na+, K+-ATPase, and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev Biol. 1992, 151: 213-224. 10.1016/0012-1606(92)90228-9.
Article
CAS
PubMed
Google Scholar
Volk T, Geiger B: A-CAM: A 135 kD receptor of intercellular adherens junctions I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol. 1986, 103: 1441-1450. 10.1083/jcb.103.4.1441.
Article
CAS
PubMed
Google Scholar
Hatta K, Takagi S, Fujisawa H, Takeichi M: Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol. 1987, 120: 215-222. 10.1016/0012-1606(87)90119-9.
Article
CAS
PubMed
Google Scholar
Duband JL, Volberg T, Sabanay I, Thiery JP, Geiger B: Spatial and temporal distribution of the adherens-junction- associated adhesion molecule A-CAM during avian embryogenesis. Development. 1988, 103: 325-344.
CAS
PubMed
Google Scholar
Shiraishi I, Takamatsu T, Fujita S: 3-D observation of N-cadherin expression during cardiac myofibrillogenesis of the chick embryo using a confocal laser scanning microscope. Anat Embryol. 1993, 187: 115-120. 10.1007/BF00171742.
Article
CAS
PubMed
Google Scholar
Wu JC, Sung HC, Chung TH, DePhilip RM: Role of N-cadherin- and integrin-based costameres in the development of rat cardiomyocytes. J Cell Biochem. 2002, 84: 717-724. 10.1002/jcb.10092.
Article
PubMed
Google Scholar
Luo Y, Radice GL: Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus. J Cell Sci. 2003, 116: 1471-1479. 10.1242/jcs.00339.
Article
CAS
PubMed
Google Scholar
Tokuyasu KT, Maher PA: Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol. 1987, 105: 2781-2793. 10.1083/jcb.105.6.2781.
Article
CAS
PubMed
Google Scholar
Tokuyasu KT, Maher PA: Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol. 1987, 105: 2795-2801. 10.1083/jcb.105.6.2795.
Article
CAS
PubMed
Google Scholar
Tokuyasu KT: Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres. J Cell Biol. 1989, 108: 43-53. 10.1083/jcb.108.1.43.
Article
CAS
PubMed
Google Scholar
McDonald KA, Lakonishok M, Horwitz AF: av and a3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci. 1995, 108: 975-983.
CAS
PubMed
Google Scholar
Borg TK, Goldsmith EC, Price R, Carver W, Terracio L, Samarel AM: Specialization at the Z line of cardiac myocytes. Cardiovasc Res. 2000, 46: 277-285. 10.1016/S0008-6363(99)00433-2.
Article
CAS
PubMed
Google Scholar
Ehler E, Perriard JC: Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail Rev. 2000, 5: 259-269. 10.1023/A:1009861504264. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=pubmed]
Article
CAS
PubMed
Google Scholar
Samarel AM: Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol. 2005, 289: H2291-H2301. 10.1152/ajpheart.00749.2005.
Article
CAS
PubMed
Google Scholar
Opie LH: Substrate and energy metabolism of the heart. Physiology and Pathophysiology of the Heart. Edited by: Sperelakis N. 1995, Boston, Kluwer Academic Publishers, 385-411.
Google Scholar
Garancis JC: Type II glycogenosis. Biochemical and electron microscopic study. Am J Med. 1968, 44: 289-300. 10.1016/0002-9343(68)90160-5.
Article
CAS
PubMed
Google Scholar
Bruni CB, Paluello FM: A biochemical and ultrastructural study of liver, muscle, heart and kidney in type II glycogenosis. Virchows Arch B Cell Pathol. 1970, 4: 196-207.
CAS
PubMed
Google Scholar
Knaapen MW, Vrolijk BC, Wenink AC: Ultrastructural changes of the myocardium in the embryonic rat heart. Anat Rec. 1997, 248: 233-241. 10.1002/(SICI)1097-0185(199706)248:2<233::AID-AR10>3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Picton C, Klee CB, Cohen P: The regulation of muscle phosphorylase kinase by calcium ions, calmodulin and troponin-C. Cell Calcium. 1981, 2: 281-294. 10.1016/0143-4160(81)90021-X.
Article
CAS
PubMed
Google Scholar
Michalak M, Parker JMR, Opas M: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium. 2002, 32: 269-278. 10.1016/S0143416002001884.
Article
CAS
PubMed
Google Scholar
Ferrans VJ, and Boyce SW: Metabolic and familiar diseases. Cardiovascular Pathology. Edited by: Silver MD. 1983, New York, Churchill Livingstone, 945-1004.
Google Scholar
Bijvoet AG, van de Kamp EH, Kroos MA, Ding JH, Yang BZ, Visser P, Bakker CE, Verbeet MP, Oostra BA, Reuser AJ, van der Ploeg AT: Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum Mol Genet. 1998, 7: 53-62. 10.1093/hmg/7.1.53.
Article
CAS
PubMed
Google Scholar
Engel AG, Gomez MR, Seybold ME, Lambert EH: The spectrum and diagnosis of acid maltase deficiency. Neurology. 1973, 23: 95-106.
Article
CAS
PubMed
Google Scholar
Tachi N, Tachi M, Sasaki K, Tomita H, Wakai S, Annaka S, Minami R, Tsurui S, Sugie H: Glycogen storage disease with normal acid maltase: skeletal and cardiac muscles. Pediatr Neurol. 1989, 5: 60-63. 10.1016/0887-8994(89)90012-X.
Article
CAS
PubMed
Google Scholar
Hermans MM, Wisselaar HA, Kroos MA, Oostra BA, Reuser AJ: Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem J. 1993, 289 ( Pt 3): 681-686.
Article
CAS
Google Scholar
Hermans MM, de Graaff E, Kroos MA, Wisselaar HA, Willemsen R, Oostra BA, Reuser AJ: The conservative substitution Asp-645-->Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Biochem J. 1993, 289 ( Pt 3): 687-693.
Article
CAS
Google Scholar
Wisselaar HA, Kroos MA, Hermans MM, van Beeumen J, Reuser AJ: Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J Biol Chem. 1993, 268: 2223-2231.
CAS
PubMed
Google Scholar
Lovering AL, Lee SS, Kim YW, Withers SG, Strynadka NC: Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem. 2005, 280: 2105-2115. 10.1074/jbc.M410468200.
Article
CAS
PubMed
Google Scholar
Yutzey KE, Bader D: Diversification of cardiomyogenic cell lineages during early heart development. Circ Res. 1995, 77: 216-219.
Article
CAS
PubMed
Google Scholar
Srivastava D, Olson EN: A genetic blueprint for cardiac development. Nature. 2000, 407: 221-226. 10.1038/35025190.
Article
CAS
PubMed
Google Scholar
Moorman AF, Christoffels VM: Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003, 83: 1223-1267.
Article
CAS
PubMed
Google Scholar
Bierkamp C, McLaughlin KJ, Schwarz H, Huber O, Kemler R: Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol. 1996, 180: 780-785. 10.1006/dbio.1996.0346.
Article
CAS
PubMed
Google Scholar
Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Thalhammer C, Vogel F, Birchmeier C, Gunthert U, Franke WW, Birchmeier W: Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol. 1996, 135: 215-225. 10.1083/jcb.135.1.215.
Article
CAS
PubMed
Google Scholar
Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA: Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM- 1) deficient mice. Development. 1995, 121: 489-503.
CAS
PubMed
Google Scholar
Yang JT, Rayburn H, Hynes RO: Cell adhesion events mediated by a4 integrins are essential in placental and cardiac development. Development. 1995, 121: 549-560.
CAS
PubMed
Google Scholar
Hynes RO: Targeted mutations in cell adhesion genes: What have we learned from them?. Dev Biol. 1996, 180: 402-412. 10.1006/dbio.1996.0314.
Article
CAS
PubMed
Google Scholar
Imanaka-Yoshida K, Knudsen KA, Linask KK: N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes. Cell Motil Cytoskeleton. 1998, 39: 52-62. 10.1002/(SICI)1097-0169(1998)39:1<52::AID-CM5>3.0.CO;2-I.
Article
CAS
PubMed
Google Scholar
Mery L, Mesaeli N, Michalak M, Opas M, Lew DP, Krause KH: Overexpression of calreticulin increases intracellular Ca2+-storage and decreases store-operated Ca2+ influx. J Biol Chem. 1996, 271: 9332-9339. 10.1074/jbc.271.16.9332.
Article
CAS
PubMed
Google Scholar
Michalak M, MacLennan DH: Assembly of sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cultures. J Biol Chem. 1980, 255: 1327-1334.
CAS
PubMed
Google Scholar
Opas M, Dziak E, Fliegel L, Michalak M: Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol. 1991, 149: 160-171. 10.1002/jcp.1041490120.
Article
CAS
PubMed
Google Scholar