Jasny BR, Purnell BA: The glorious sea urchin - introduction. Science. 2006, 314: 938-938. 10.1126/science.314.5801.938.
Article
CAS
Google Scholar
Sodergren E, Consortium SUGS: The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006, 314: 941-952.
Article
PubMed
Google Scholar
Strathmann MF: Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. 1987, Seattle, WA, USA: University of Washington Press
Google Scholar
McEdward LR: Ecology of Marine Invertebrate Larvae. 1995, Boca Raton: CRC Press
Google Scholar
Swanson RL, Byrne M, Prowse TAA, Mos B, Dworjanyn SA, Steinberg PD: Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar Biol. 2012, 159: 915-925. 10.1007/s00227-011-1869-2.
Article
CAS
Google Scholar
Swanson RL, Marshall DJ, Steinberg PD: Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol. 2007, 210: 3228-3235. 10.1242/jeb.004192.
Article
CAS
PubMed
Google Scholar
Bishop CD, Brandhorst BP: Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis. Dev Dyn. 2007, 236: 1535-1546. 10.1002/dvdy.21161.
Article
CAS
PubMed
Google Scholar
Burke RD: Pheromonal control of metamorphosis in the pacific sand dollar, Dendraster excentricus. Science. 1984, 225: 442-443. 10.1126/science.225.4660.442.
Article
CAS
PubMed
Google Scholar
Bishop CD, Brandhorst BP: On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evol Dev. 2003, 5: 542-550. 10.1046/j.1525-142X.2003.03059.x.
Article
CAS
PubMed
Google Scholar
Cameron RA, Tosteson TR, Hensley V: The control of sea urchin metamorphosis - ionic effects. Dev Growth Differ. 1989, 31: 589-594. 10.1111/j.1440-169X.1989.00589.x.
Article
CAS
Google Scholar
Sutherby J, Giardini JL, Nguyen J, Wessel G, Leguia M, Heyland A: Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (echinodermata: echinoidea). BMC Dev Biol. 2012, 12: 14-10.1186/1471-213X-12-14.
Article
CAS
PubMed
Google Scholar
Hodin J: Expanding networks: Signaling components in and a hypothesis for the evolution of metamorphosis. Integr Comp Biol. 2006, 46: 719-742. 10.1093/icb/icl038.
Article
CAS
PubMed
Google Scholar
Burke RD: Neural control of metamorphosis in Dendraster excentricus. Biol Bull. 1983, 164: 176-188. 10.2307/1541137.
Article
Google Scholar
Heyland A, Reitzel AM, Degnan S: Emerging Patterns in the Regulation and Evolution Of Marine Invertebrate Settlement And Metamorphosis. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. Edited by: Flatt T, Heyland A. 2011, London: Oxford University Press, 29-42.
Chapter
Google Scholar
Amador-Cano G, Carpizo-Ituarte E, Cristino-Jorge D: Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus. Biol Bull. 2006, 210: 121-131. 10.2307/4134601.
Article
CAS
PubMed
Google Scholar
Gaylord B, Hodin J, Ferner MC: Turbulent shear spurs settlement in larval sea urchins. Proc Natl Acad Sci U S A. 2013, 110: 6901-6906. 10.1073/pnas.1220680110.
Article
CAS
PubMed
Google Scholar
Hadfield MG: Metamorphic competence is a major adaptive convergence in marine invertebrate larvae. Am Zool. 2000, 40: 1038-1038.
Google Scholar
Heyland A, Moroz LL: Signaling mechanisms underlying metamorphic transitions in animals. Integr Comp Biol. 2006, 46: 743-759. 10.1093/icb/icl023.
Article
CAS
PubMed
Google Scholar
Strathmann RR: Evolution and loss of feeding larval stages of marine invertebrates. Evolution. 1978, 32: 894-906. 10.2307/2407502.
Article
Google Scholar
Heyland A, Hodin J, Reitzel AM: Hormone signaling in evolution and development: a non-model system approach. BioEssays. 2005, 27: 64-75. 10.1002/bies.20136.
Article
CAS
PubMed
Google Scholar
Hart M: Phylogenetic analyses of mode of larval development. Semin Cell Dev Biol. 2000, 11: 411-418. 10.1006/scdb.2000.0194.
Article
CAS
PubMed
Google Scholar
Strathmann RR, Eernisse DJ: What molecular phylogenies tell us about the evolution of larval forms. Am Zool. 1994, 34: 502-512.
Article
Google Scholar
McHugh D, Rouse GW: Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol Evol. 1998, 13: 182-186. 10.1016/S0169-5347(97)01285-8.
Article
CAS
PubMed
Google Scholar
Strathmann RR: Why life histories evolve differently in the sea. Am Zool. 1990, 30: 197-207.
Article
Google Scholar
Rutherford S, Hirate Y, Swalla BJ: The hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol. 2007, 42: 355-372. 10.1080/10409230701597782.
Article
CAS
Google Scholar
Smith AB: Echinoderm larvae and phylogeny. Annu Rev Ecol Syst. 1997, 28: 219-241. 10.1146/annurev.ecolsys.28.1.219.
Article
Google Scholar
Swalla BJ: Building divergent body plans with similar genetic pathways. Heredity. 2006, 97: 235-243.
Article
CAS
PubMed
Google Scholar
Sumrall CD, Wray GA: Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology. 2007, 33: 149-163. 10.1666/06053.1.
Article
Google Scholar
Givnish TJ: How a Better Understanding of Adaptations Can Yield Better Use Of Morphology In Plant Systematics: Toward Eco-Evo-Devo. Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics. Edited by: Stuessy TF, Mayer V, Horandl E. 2003, Bratislava: Regnum Vegetabile, 273-295.
Google Scholar
Gilbert SF, Epel D: Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. 2009, Sunderland, MA, USA: Sinauer
Google Scholar
Hendler G: Development of amphioplus abditus (Verrill) (Echinodermata: Ophiuroidea). Description and discussion of ophiuroid skeletal ontogeny and homologies. Biol Bull. 1978, 154: 79-95. 10.2307/1540776.
Article
Google Scholar
Emlet RB: Direct development of the brittle star Amphiodia occidentalis (Ophiuroidea, Amphiuridae) from the northeastern Pacific Ocean. Invertebr Biol. 2006, 125: 154-171. 10.1111/j.1744-7410.2006.00049.x.
Article
Google Scholar
Chia FS, Rice ME: Settlement and Metamorphosis of Marine Invertebrate Larvae. 1978, New York: Elsevier
Google Scholar
Gordon I: The development of the calcareous test of Echinus miliaris. Proc R Soc B. 1926, 214: 259-312.
Google Scholar
Gordon I: Skeletal development in arbacia, echinarachnius and leptasterias. Proc R Soc B. 1929, 217: 289-334.
Google Scholar
Gosselin P, Jangoux M: From competent larva to exotrophic juvenile: a morphological study of the perimetamorphic period of Paracentrotus lividus (Echinodermata: Echinoida). Zoomorphology. 1998, 118: 31-43. 10.1007/s004350050054.
Article
Google Scholar
Smith MM, Cruz Smith L, Cameron RA, Urry LA: The larval stages of the sea urchin, Strongylocentrotus purpuratus. J Morphol. 2008, 269: 713-733. 10.1002/jmor.10618.
Article
PubMed
Google Scholar
Chino Y, Saito M, Yamasu K, Suyemitsu T, Ishihara K: Formation of the adult rudiment of sea urchins is influenced by thyroid hormones. Dev Biol. 1994, 161: 1-11. 10.1006/dbio.1994.1001.
Article
PubMed
Google Scholar
Emlet RB: Morphological evolution of newly metamorphosed sea urchins-a phylogenetic and functional analysis. Integr Comp Biol. 2010, 50: 571-588. 10.1093/icb/icq073.
Article
PubMed
Google Scholar
Heyland A, Hodin J: Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development. Evolution. 2004, 58: 524-538. 10.1111/j.0014-3820.2004.tb01676.x.
Article
CAS
PubMed
Google Scholar
Strathmann RR, Fenaux L, Strathmann MF: Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution. 1992, 46: 972-986. 10.2307/2409750.
Article
Google Scholar
Hyman LH: The Invertebrates: Echinodermata, Volume 4. 1955, New York, NY, USA: McGraw-Hill
Google Scholar
Emlet RB: Crystal axes in recent and fossil adult echinoids indicate trophic mode in larval development. Science. 1985, 230: 937-940. 10.1126/science.230.4728.937.
Article
CAS
PubMed
Google Scholar
Mooi R, David B: Skeletal homologies of echinoderms. Paleontol Soc Papers. 1997, 3: 305-335.
Google Scholar
Eaves AA: Potential for paired vestibules in plutei (Echinodermata, Echinoidea). Invertebr Biol. 2005, 124: 174-184. 10.1111/j.1744-7410.2005.00017.x.
Article
Google Scholar
Hart MW: Variation in suspension feeding rates among larvae of some temperate, eastern Pacific echinoderms. Invertebr Biol. 1996, 115: 30-45. 10.2307/3226940.
Article
Google Scholar
Fox CA: Ingestion Rates Of Five Species Of Pacific Northwest Echinoderm Larvae On Natural And Artificial Particles. Masters Thesis. 2007, Georgia Southern University
Google Scholar
Bishop CD, Huggett MJ, Heyland A, Hodin J, Brandhorst BP: Interspecific variation in metamorphic competence in marine invertebrates: the significance for comparative investigations into the timing of metamorphosis. Integr Comp Biol. 2006, 46: 662-682. 10.1093/icb/icl043.
Article
CAS
PubMed
Google Scholar
Bishop CD, Erezyilmaz DF, Flatt T, Georgiou CD, Hadfield MG, Heyland A, Hodin J, Jacobs MW, Maslakova SA, Pires A, Reitzel AM, Santagata S, Tanaka K, Youson JH: What is metamorphosis?. Integr Comp Biol. 2006, 46: 655-661. 10.1093/icb/icl004.
Article
CAS
PubMed
Google Scholar
Scholtz G: Zoological detective stories: the case of the facetotectan crustacean life cycle. J Biol. 2008, 7 (5): 16-10.1186/jbiol77.
Article
PubMed
Google Scholar
Muller WA: Developmental Biology. 1997, Berlin: Springer
Book
Google Scholar
Campos-Ortega JA, Hartenstein V: The Embryonic development of Drosophila melanogaster. 1985, Berlin: Springer
Book
Google Scholar
Heyland A, Vue Z, Voolstra CR, Medina M, Moroz LL: Developmental transcriptome of Aplysia californica. J Exp Zool Part B. 2011, 316B: 113-134. 10.1002/jez.b.21383.
Article
Google Scholar
Nieuwkoop PD, Faber J: Normal Table of Xenopus laevis (Daudin). 1994, New York: Garland Publishing Inc
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203: 253-310. 10.1002/aja.1002030302.
Article
CAS
PubMed
Google Scholar
MacBride EW: The development of Echinus esculentus, together with some points in the development of E. miliaris and E. acutus. Proc R Soc B. 1903, 195: 285-327.
Google Scholar
MacBride EW: The artificial production of echinoderm larvae with two water vascular systems, and also of larvae devoid of a water vascular system. Proc R Soc B. 1914, 90: 259-282.
Google Scholar
MacBride EW: The development of Echinocardium cordatum - part I: the external features of the development. Q J Micr Sci. 1918, 59: 487-521.
Google Scholar
MacBride EW: Some further experiments in the artificial production of a double hydrocoele in the larvae of Echinus miliaris. Proc R Soc B. 1919, 196: 207-208.
Google Scholar
von Ubisch L: Die entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa). Zeit F Wiss Zoo. 1913, 106: 409-448.
Google Scholar
Miner BG: Mechanisms Underlying Feeding Structure Plasticity in Echinoderm Larvae. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. Edited by: Flatt T, Heyland A. 2011, London: Oxford University Press, 221-229.
Chapter
Google Scholar
McEdward LR, Miner BG: Fecundity-time models of reproductive strategies in marine benthic invertebrates: fitness differences under fluctuating environmental conditions. Mar Ecol Prog Ser. 2003, 256: 111-121.
Article
Google Scholar
Reitzel AM, Miles CM, Heyland A, Cowart JD, McEdward LR: The contribution of the facultative feeding period to echinoid larval development and size at metamorphosis: a comparative approach. J Exp Mar Biol Ecol. 2005, 317: 189-201. 10.1016/j.jembe.2004.11.018.
Article
Google Scholar
Wray GA, Bely AE: Several distinct factors drive the evolution of early development in echinoderms. Development. 1994, Supplement: 97-106.
Google Scholar
McEdward LR, Miner BG: Larval and life-cycle patterns in echinoderms. Can J Zool. 2001, 79: 1125-1170. 10.1139/z00-218.
Article
Google Scholar
Mortensen T: Studies of the Development and Larval Forms of Echinoderms. 1921, Copenhagen: Bianco Lunos
Book
Google Scholar
Morris VB: Apluteal development of the sea urchin Holopneustes purpurescens Agassiz (Echinodermata, Echinoidea, Euechinoidea). Zool J Linn Soc Lond. 1995, 114: 349-364. 10.1111/j.1096-3642.1995.tb00120.x.
Article
Google Scholar
Prenant M: Sur le déterminisme de la forme spiculaire chez les larves d’oursins. Soc Biol. 1926, 94: 433-435.
Google Scholar
Bury H: Studies in the embryology of the echinoderms. J Cell Sci. 1889, 116: 409-449.
Google Scholar
Devanesen DW: The development of the calcareous parts of the lantern of Aristotle in Echinus miliaris. Proc R Soc B. 1922, 93: 468-485. 10.1098/rspb.1922.0034.
Article
CAS
Google Scholar
Emlet RB: Larval form and metamorphosis of a “primitive” sea urchin, Eucidaris thouarsi (Echinodermata: Echinoidea: Cidaroida), with implications for developmental and phylogenetic studies. Biol Bull. 1988, 174: 4-19. 10.2307/1541754.
Article
Google Scholar
Emlet RB: Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma. Dev Biol. 1995, 167: 405-415. 10.1006/dbio.1995.1037.
Article
CAS
PubMed
Google Scholar
Fukushi T: The formation of the echinus rudiment and the development of the larval form in the sea urchin, Temnopleurus hardwickii. Bull Mar Biol Stn Asmushi. 1960, 10: 65-72.
Google Scholar
Fukushi T: The external features of the development of the sea urchin, Glyptocidaris crenularis. Bull Mar Biol Stn Asmushi. 1960, 10: 57-63.
Google Scholar
Garman H, Colton B: Some notes on the development of Arbacia punctulata. Lam Studies Biol Lab Johns Hopkins Univ. 1883, 2: 247-255.
Google Scholar
Hinegardner RT: Growth and development of the laboratory cultured sea urchin. Bio Bull. 1969, 137: 465-475. 10.2307/1540168.
Article
CAS
Google Scholar
Kryuchkova GA: Development of the definitive skeleton of the sea-urchin Echinocardium cordatum. Sov J Mar Biol. 1979, 5: 487-494.
Google Scholar
Kryuchkova GA: Formation of the definitive skeleton in sea urchins of the genus Strongylocentrotus. Sov J Mar Biol. 1979, 5: 276-282.
Google Scholar
Kryuchkova GA: Formation of the amniotic cavity and definitive skeletal development of sand dollars. Sov J Mar Biol. 1979, 5: 203-208.
Google Scholar
Minsuk SB, Raff RA: Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins. Dev Biol. 2002, 247: 335-350. 10.1006/dbio.2002.0704.
Article
CAS
PubMed
Google Scholar
Nunes CDP, Jangoux M: Larval growth and perimetamorphosis in the echinoid Echinocardium cordatum (Echinodermata): the spatangoid way to become a sea urchin. Zoomorphology. 2007, 126: 103-119. 10.1007/s00435-007-0032-6.
Article
Google Scholar
Okazaki K: Normal Development to Metamorphosis. 1975, Berlin: Springer
Book
Google Scholar
Onoda K: Notes on the development of Heliocidaris crassispina with special reference to the structure of the larval body. Mem Coll Sci Kyoto Ser B. 1931, 7: 103-134.
Google Scholar
Onoda K: Notes on the development of some Japanese echinoids with special reference to the structure of the larval body. Jap J Zool. 1936, 6: 637-654.
Google Scholar
Theel H: On the development of Echinocyamus pusillus. Nova Acta Regiae Soc Sci Upsal Ser. 1892, 3: 1-57.
Google Scholar
Thet MM, Noguchi M, Yazaki I: Larval and juvenile development of the Echinometrid sea urchin Colobocentrotus mertensii: emergence of the peculiar form of spines. Zool Sci. 2004, 21: 265-274. 10.2108/zsj.21.265.
Article
PubMed
Google Scholar
Vellutini BC, Migotto AE: Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). PLoS One. 2010, 5: e9654-10.1371/journal.pone.0009654.
Article
PubMed
Google Scholar
Yajima M, Kiyomoto M: Study of larval and adult skeletogenic cells in developing sea urchin larvae. Biol Bull. 2006, 211: 183-192. 10.2307/4134592.
Article
PubMed
Google Scholar
Burke RD: Development of pedicellariae in the pluteus larva of Lytechinus pictus (Echinodermata, Echinoidea). Can J Zool. 1980, 58: 1674-1682. 10.1139/z80-229.
Article
Google Scholar
Raff RA: Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev Biol. 1987, 119: 6-19. 10.1016/0012-1606(87)90201-6.
Article
CAS
PubMed
Google Scholar
Chan KYK, Grunbaum D, Arnberg M, Thorndyke M, Dupont ST: Ocean acidification induces budding in larval sea urchins. Mar Biol. 2013, 160: 2129-2135. 10.1007/s00227-012-2103-6.
Article
CAS
Google Scholar
Vaughn D, Strathmann RR: Predators induce cloning in echinoderm larvae. Science. 2008, 319: 1503-1503. 10.1126/science.1151995.
Article
CAS
PubMed
Google Scholar