Ohno S: Evolution by Gene Duplication. 1970, New York: Springer-Verlag
Google Scholar
Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, et al: The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008, 453 (7198): 1064-1071. 10.1038/nature06967.
CAS
PubMed
Google Scholar
Kasahara M: The 2R hypothesis: an update. Curr Opin Immunol. 2007, 19 (5): 547-552. 10.1016/j.coi.2007.07.009.
CAS
PubMed
Google Scholar
Hoegg S, Meyer A: Hox clusters as models for vertebrate genome evolution. Trends Genet. 2005, 21 (8): 421-424. 10.1016/j.tig.2005.06.004.
CAS
PubMed
Google Scholar
Kuraku S, Meyer A: The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. Int J Dev Biol. 2009, 53 (5–6): 765-773.
CAS
PubMed
Google Scholar
Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP: The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol. 2006, 23 (1): 121-136.
CAS
PubMed
Google Scholar
Hoegg S, Brinkmann H, Taylor JS, Meyer A: Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004, 59 (2): 190-203. 10.1007/s00239-004-2613-z.
CAS
PubMed
Google Scholar
Taylor JS, Van de Peer Y, Braasch I, Meyer A: Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci. 2001, 356 (1414): 1661-1679. 10.1098/rstb.2001.0975.
PubMed Central
CAS
PubMed
Google Scholar
Scott MP: Vertebrate homeobox gene nomenclature. Cell. 1992, 71 (4): 551-553. 10.1016/0092-8674(92)90588-4.
CAS
PubMed
Google Scholar
Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005, 6 (12): 893-904. 10.1038/nrg1726.
CAS
PubMed
Google Scholar
Ahn D, Ho RK: Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol. 2008, 322 (1): 220-233. 10.1016/j.ydbio.2008.06.032.
CAS
PubMed
Google Scholar
Freitas R, Gómez-Marín C, Wilson JM, Casares F, Gómez-Skarmeta JL: Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell. 2012, 23 (6): 1219-1229. 10.1016/j.devcel.2012.10.015.
CAS
PubMed
Google Scholar
Burke AC, Nelson CE, Morgan BA, Tabin C: Hox genes and the evolution of vertebrate axial morphology. Development. 1995, 121 (2): 333-346.
CAS
PubMed
Google Scholar
Gaunt SJ: Conservation in the Hox code during morphological evolution. Int J Dev Biol. 1994, 38 (3): 549-552.
CAS
PubMed
Google Scholar
Di-Poï N, Montoya-Burgos JI, Miller H, Pourquié O, Milinkovitch MC, Duboule D: Changes in Hox genes' structure and function during the evolution of the squamate body plan. Nature. 2010, 464 (7285): 99-103. 10.1038/nature08789.
PubMed
Google Scholar
Wellik DM, Capecchi MR: Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003, 301 (5631): 363-367. 10.1126/science.1085672.
CAS
PubMed
Google Scholar
Delsuc F, Brinkmann H, Chourrout D, Philippe H: Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006, 439 (7079): 965-968. 10.1038/nature04336.
CAS
PubMed
Google Scholar
Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguñà J: Acoel flatworms: earliest extant bilaterian metazoans, not members of platyhelminthes. Science. 1999, 283 (5409): 1919-1923. 10.1126/science.283.5409.1919.
CAS
PubMed
Google Scholar
Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M: A phylogenetic analysis of myosin heavy chain type II sequences corroborates that acoela and nemertodermatida are basal bilaterians. Proc Natl Acad Sci U S A. 2002, 99 (17): 11246-11251. 10.1073/pnas.172390199.
PubMed Central
CAS
PubMed
Google Scholar
Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DT: Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci. 2003, 270 (1519): 1077-1083. 10.1098/rspb.2003.2342.
PubMed Central
CAS
PubMed
Google Scholar
Sempere LF, Cole CN, McPeek MA, Peterson KJ: The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B Mol Dev Evol. 2006, 306 (6): 575-588.
PubMed
Google Scholar
Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ: Xenoturbella is a deuterostome that eats molluscs. Nature. 2003, 424 (6951): 925-928. 10.1038/nature01851.
CAS
PubMed
Google Scholar
Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, et al: Deuterostome phylogeny reveals monophyletic chordates and the new phylum xenoturbellida. Nature. 2006, 444 (7115): 85-88. 10.1038/nature05241.
CAS
PubMed
Google Scholar
Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ: Acoelomorph flatworms are deuterostomes related to xenoturbella. Nature. 2011, 470 (7333): 255-258. 10.1038/nature09676.
PubMed Central
CAS
PubMed
Google Scholar
Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, et al: Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Biol Sci. 2009, 276 (1677): 4261-4270. 10.1098/rspb.2009.0896.
PubMed Central
PubMed
Google Scholar
Fritzsch G, Böhme MU, Thorndyke M, Nakano H, Israelsson O, Stach T, Schlegel M, Hankeln T, Stadler PF: PCR survey of xenoturbella bocki hox genes. J Exp Zool B Mol Dev Evol. 2008, 310 (3): 278-284.
PubMed
Google Scholar
Cook CE, Jiménez E, Akam M, Saló E: The hox gene complement of acoel flatworms, a basal bilaterian clade. Evol Dev. 2004, 6 (3): 154-163. 10.1111/j.1525-142X.2004.04020.x.
CAS
PubMed
Google Scholar
Moreno E, Nadal M, Baguñà J, Martínez P: Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm. Symsagittifera roscoffensis. Evol Dev. 2009, 11 (5): 574-581. 10.1111/j.1525-142X.2009.00363.x.
CAS
PubMed
Google Scholar
Hejnol A, Martindale MQ: Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol. 2009, 7: 65-10.1186/1741-7007-7-65.
PubMed Central
PubMed
Google Scholar
Jiménez-Guri E, Paps J, Garcia-Fernàndez J, Saló E: Hox and ParaHox genes in nemertodermatida, a basal bilaterian clade. Int J Dev Biol. 2006, 50 (8): 675-679. 10.1387/ijdb.062167ej.
PubMed
Google Scholar
Kondo M, Akasaka K: Current status of echinoderm genome analysis - what do we know?. Curr Genomics. 2012, 13 (2): 134-143. 10.2174/138920212799860643.
PubMed Central
CAS
PubMed
Google Scholar
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, et al: The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006, 314 (5801): 941-952.
PubMed
Google Scholar
Cameron RA, Rowen L, Nesbitt R, Bloom S, Rast JP, Berney K, Arenas-Mena C, Martínez P, Lucas S, Richardson PM, et al: Unusual gene order and organization of the sea urchin Hox cluster. J Exp Zool B Mol Dev Evol. 2006, 306 (1): 45-58.
PubMed
Google Scholar
Freeman R, Ikuta T, Wu M, Koyanagi R, Kawashima T, Tagawa K, Humphreys T, Fang GC, Fujiyama A, Saiga H, et al: Identical genomic organization of two hemichordate Hox clusters. Curr Biol. 2012, 22 (21): 2053-2058. 10.1016/j.cub.2012.08.052.
PubMed Central
CAS
PubMed
Google Scholar
Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S: Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol. 2006, 216 (12): 797-809. 10.1007/s00427-006-0108-1.
CAS
PubMed
Google Scholar
Mito T, Endo K: A PCR survey of Hox genes in the sea star. Asterina minor. Mol Phylogenet Evol. 1997, 8 (2): 218-224. 10.1006/mpev.1997.0417.
CAS
PubMed
Google Scholar
Long S, Martinez P, Chen WC, Thorndyke M, Byrne M: Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms. Dev Genes Evol. 2003, 213 (11): 573-576. 10.1007/s00427-003-0355-3.
CAS
PubMed
Google Scholar
Bertrand S, Escriva H: Evolutionary crossroads in developmental biology: amphioxus. Development. 2011, 138 (22): 4819-4830. 10.1242/dev.066720.
CAS
PubMed
Google Scholar
Garcia-Fernàndez J, Holland PWH: Archetypal organization of the amphioxus Hox gene cluster. Nature. 1994, 370 (6490): 563-566. 10.1038/370563a0.
PubMed
Google Scholar
Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DE, Pascual-Anaya J, Garcia-Fernàndez J, Dewar K, Stadler PF: The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J Exp Zool B Mol Dev Evol. 2008, 310 (5): 465-477.
PubMed
Google Scholar
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, et al: The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 2008, 18 (7): 1100-1111. 10.1101/gr.073676.107.
PubMed Central
CAS
PubMed
Google Scholar
Pascual-Anaya J, D'Aniello S, Garcia-Fernàndez J: Unexpectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster. Dev Genes Evol. 2008, 218 (11–12): 591-597.
CAS
PubMed
Google Scholar
Ferrier DE, Minguillón C, Holland PWH, Garcia-Fernàndez J: The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev. 2000, 2 (5): 284-293. 10.1046/j.1525-142x.2000.00070.x.
CAS
PubMed
Google Scholar
Kuraku S, Takio Y, Tamura K, Aono H, Meyer A, Kuratani S: Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proc Natl Acad Sci U S A. 2008, 105 (18): 6679-6683. 10.1073/pnas.0710947105.
PubMed Central
CAS
PubMed
Google Scholar
Hueber SD, Weiller GF, Djordjevic MA, Frickey T: Improving Hox protein classification across the major model organisms. PLoS One. 2010, 5 (5): e10820-10.1371/journal.pone.0010820.
PubMed Central
PubMed
Google Scholar
Thomas-Chollier M, Ledent V, Leyns L, Vervoort M: A non-tree-based comprehensive study of metazoan Hox and ParaHox genes prompts new insights into their origin and evolution. BMC Evol Biol. 2010, 10: 73-10.1186/1471-2148-10-73.
PubMed Central
PubMed
Google Scholar
Kon T, Nohara M, Yamanoue Y, Fujiwara Y, Nishida M, Nishikawa T: Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol. 2007, 7: 127-10.1186/1471-2148-7-127.
PubMed Central
PubMed
Google Scholar
Pascual-Anaya J, Adachi N, Alvarez S, Kuratani S, D'Aniello S, Garcia-Fernàndez J: Broken colinearity of the amphioxus Hox cluster. EvoDevo. 2012, 3 (1): 28-10.1186/2041-9139-3-28.
PubMed Central
CAS
PubMed
Google Scholar
Spagnuolo A, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R: Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene. 2003, 309 (2): 71-79. 10.1016/S0378-1119(03)00488-8.
CAS
PubMed
Google Scholar
Ikuta T, Yoshida N, Satoh N, Saiga H: Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci U S A. 2004, 101 (42): 15118-15123. 10.1073/pnas.0401389101.
PubMed Central
CAS
PubMed
Google Scholar
Shoguchi E, Hamaguchi M, Satoh N: Genome-wide network of regulatory genes for construction of a chordate embryo. Dev Biol. 2008, 316 (2): 498-509. 10.1016/j.ydbio.2008.01.009.
CAS
PubMed
Google Scholar
Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, et al: The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002, 298 (5601): 2157-2167. 10.1126/science.1080049.
CAS
PubMed
Google Scholar
Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, et al: Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature. 2004, 431 (7004): 67-71. 10.1038/nature02709.
CAS
PubMed
Google Scholar
Allendorf FW, Thorgaard GH: Tetraploidy and the evolution of salmonid fish. Evolutionary genetics of fish. Edited by: Turner JB. 1984, New York: Plenum Press, 1-53.
Google Scholar
Mungpakdee S, Seo HC, Angotzi AR, Dong X, Akalin A, Chourrout D: Differential evolution of the 13 atlantic salmon Hox clusters. Mol Biol Evol. 2008, 25 (7): 1333-1343. 10.1093/molbev/msn097.
CAS
PubMed
Google Scholar
Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP: Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol. 2004, 32 (3): 686-694. 10.1016/j.ympev.2004.03.015.
CAS
PubMed
Google Scholar
Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S: Craniofacial development of hagfishes and the evolution of vertebrates. Nature. 2013, 493 (7431): 175-180.
CAS
PubMed
Google Scholar
Ota KG, Kuraku S, Kuratani S: Hagfish embryology with reference to the evolution of the neural crest. Nature. 2007, 446 (7136): 672-675. 10.1038/nature05633.
CAS
PubMed
Google Scholar
Pendleton JW, Nagai BK, Murtha MT, Ruddle FH: Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A. 1993, 90 (13): 6300-6304. 10.1073/pnas.90.13.6300.
PubMed Central
CAS
PubMed
Google Scholar
Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, et al: Zebrafish Hox clusters and vertebrate genome evolution. Science. 1998, 282 (5394): 1711-1714.
CAS
PubMed
Google Scholar
Carr JL, Shashikant CS, Bailey WJ, Ruddle FH: Molecular evolution of Hox gene regulation: cloning and transgenic analysis of the lamprey HoxQ8 gene. J Exp Zool. 1998, 280 (1): 73-85. 10.1002/(SICI)1097-010X(19980101)280:1<73::AID-JEZ9>3.0.CO;2-E.
CAS
PubMed
Google Scholar
Force A, Amores A, Postlethwait JH: Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool. 2002, 294 (1): 30-46. 10.1002/jez.10091.
CAS
PubMed
Google Scholar
Irvine SQ, Carr JL, Bailey WJ, Kawasaki K, Shimizu N, Amemiya CT, Ruddle FH: Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. J Exp Zool. 2002, 294 (1): 47-62. 10.1002/jez.10090.
CAS
PubMed
Google Scholar
Sharman AC, Holland PW: Estimation of Hox gene cluster number in lampreys. Int J Dev Biol. 1998, 42 (4): 617-620.
CAS
PubMed
Google Scholar
Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R: Hox gene expression patterns in lethenteron japonicum embryos–insights into the evolution of the vertebrate Hox code. Dev Biol. 2007, 308 (2): 606-620. 10.1016/j.ydbio.2007.05.009.
CAS
PubMed
Google Scholar
Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S: Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature. 2004, 429 (6989): 1-262.
PubMed
Google Scholar
Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, et al: Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet. 2013, 45 (4): 415-421. 10.1038/ng.2568.
PubMed Central
CAS
PubMed
Google Scholar
Fried C, Prohaska SJ, Stadler PF: Independent Hox-cluster duplications in lampreys. J Exp Zool B Mol Dev Evol. 2003, 299 (1): 18-25.
PubMed
Google Scholar
Kuraku S, Meyer A, Kuratani S: Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after?. Mol Biol Evol. 2009, 26 (1): 47-59.
CAS
PubMed
Google Scholar
Kuraku S: Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution?. Genomics Proteomics Bioinformatics. 2011, 9 (3): 97-103. 10.1016/S1672-0229(11)60012-0.
CAS
PubMed
Google Scholar
Kim CB, Amemiya C, Bailey W, Kawasaki K, Mezey J, Miller W, Minoshima S, Shimizu N, Wagner G, Ruddle F: Hox cluster genomics in the horn shark, Heterodontus francisci. Proc Natl Acad Sci U S A. 2000, 97 (4): 1655-1660. 10.1073/pnas.030539697.
PubMed Central
CAS
PubMed
Google Scholar
Chiu CH, Amemiya C, Dewar K, Kim CB, Ruddle FH, Wagner GP: Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci U S A. 2002, 99 (8): 5492-5497. 10.1073/pnas.052709899.
PubMed Central
CAS
PubMed
Google Scholar
Powers TP, Amemiya CT: Evidence for a Hox14 paralog group in vertebrates. Curr Biol. 2004, 14 (5): R183-R184. 10.1016/j.cub.2004.02.015.
CAS
PubMed
Google Scholar
Ravi V, Lam K, Tay BH, Tay A, Brenner S, Venkatesh B: Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl Acad Sci U S A. 2009, 106 (38): 16327-16332. 10.1073/pnas.0907914106.
PubMed Central
CAS
PubMed
Google Scholar
Oulion S, Debiais-Thibaud M, d'Aubenton-Carafa Y, Thermes C, Da Silva C, Bernard-Samain S, Gavory F, Wincker P, Mazan S, Casane D: Evolution of Hox gene clusters in gnathostomes: insights from a survey of a shark (Scyliorhinus canicula) transcriptome. Mol Biol Evol. 2010, 27 (12): 2829-2838. 10.1093/molbev/msq172.
CAS
PubMed
Google Scholar
King BL, Gillis JA, Carlisle HR, Dahn RD: A natural deletion of the HoxC cluster in elasmobranch fishes. Science. 2011, 334 (6062): 1517-10.1126/science.1210912.
PubMed Central
CAS
PubMed
Google Scholar
Inoue JG, Miya M, Lam K, Tay BH, Danks JA, Bell J, Walker TI, Venkatesh B: Evolutionary origin and phylogeny of the modern holocephalans (chondrichthyes: chimaeriformes): a mitogenomic perspective. Mol Biol Evol. 2010, 27 (11): 2576-2586. 10.1093/molbev/msq147.
CAS
PubMed
Google Scholar
Liang D, Wu R, Geng J, Wang C, Zhang P: A general scenario of Hox gene inventory variation among major sarcopterygian lineages. BMC Evol Biol. 2011, 11: 25-10.1186/1471-2148-11-25.
PubMed Central
CAS
PubMed
Google Scholar
Di-Poï N, Montoya-Burgos JI, Duboule D: Atypical relaxation of structural constraints in Hox gene clusters of the green anole lizard. Genome Res. 2009, 19 (4): 602-610. 10.1101/gr.087932.108.
PubMed Central
PubMed
Google Scholar
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, et al: The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013, 45 (6): 701-706. 10.1038/ng.2615.
PubMed Central
CAS
PubMed
Google Scholar
Shaffer B, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, et al: The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome biology. 2013, 14 (3): R28-10.1186/gb-2013-14-3-r28.
PubMed
Google Scholar
Amemiya CT, Powers TP, Prohaska SJ, Grimwood J, Schmutz J, Dickson M, Miyake T, Schoenborn MA, Myers RM, Ruddle FH, et al: Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proc Natl Acad Sci U S A. 2010, 107 (8): 3622-3627. 10.1073/pnas.0914312107.
PubMed Central
CAS
PubMed
Google Scholar
Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, et al: The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013, 496 (7445): 311-316. 10.1038/nature12027.
PubMed Central
CAS
PubMed
Google Scholar
Nelson JS: Fishes of the world. 2006, New York: John Wiley & Sons Inc
Google Scholar
Prince VE, Joly L, Ekker M, Ho RK: Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development. 1998, 125 (3): 407-420.
CAS
PubMed
Google Scholar
Woltering JM, Durston AJ: The zebrafish hoxDb cluster has been reduced to a single microRNA. Nat Genet. 2006, 38 (6): 601-602. 10.1038/ng0606-601.
CAS
PubMed
Google Scholar
Zou SM, Jiang XY, He ZZ, Yuan J, Yuan XN, Li SF: Hox gene clusters in blunt snout bream, Megalobrama amblycephala and comparison with those of zebrafish, fugu and medaka genomes. Gene. 2007, 400 (1–2): 60-70.
CAS
PubMed
Google Scholar
Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH: Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res. 2004, 14 (1): 1-10.
PubMed Central
CAS
PubMed
Google Scholar
Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, et al: Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002, 297 (5585): 1301-1310. 10.1126/science.1072104.
CAS
PubMed
Google Scholar
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004, 431 (7011): 946-957. 10.1038/nature03025.
PubMed
Google Scholar
Lee AP, Koh EG, Tay A, Brenner S, Venkatesh B: Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci U S A. 2006, 103 (18): 6994-6999. 10.1073/pnas.0601492103.
PubMed Central
CAS
PubMed
Google Scholar
Kurosawa G, Takamatsu N, Takahashi M, Sumitomo M, Sanaka E, Yamada K, Nishii K, Matsuda M, Asakawa S, Ishiguro H, et al: Organization and structure of hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. Gene. 2006, 370: 75-82.
CAS
PubMed
Google Scholar
Santini S, Bernardi G: Organization and base composition of tilapia Hox genes: implications for the evolution of Hox clusters in fish. Gene. 2005, 346: 51-61.
CAS
PubMed
Google Scholar
Hoegg S, Boore JL, Kuehl JV, Meyer A: Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics. 2007, 8: 317-10.1186/1471-2164-8-317.
PubMed Central
PubMed
Google Scholar
Thomas-Chollier M, Ledent V: Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni: comment. BMC Genomics. 2008, 9: 35-10.1186/1471-2164-9-35.
PubMed Central
PubMed
Google Scholar
Moghadam HK, Ferguson MM, Danzmann RG: Evolution of Hox clusters in salmonidae: a comparative analysis between atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol. 2005, 61 (5): 636-649. 10.1007/s00239-004-0338-7.
CAS
PubMed
Google Scholar
Moghadam HK, Ferguson MM, Danzmann RG: Evidence for Hox gene duplication in rainbow trout (Oncorhynchus mykiss): a tetraploid model species. J Mol Evol. 2005, 61 (6): 804-818. 10.1007/s00239-004-0230-5.
CAS
PubMed
Google Scholar
Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL: Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012, 109 (34): 13698-13703. 10.1073/pnas.1206625109.
PubMed Central
CAS
PubMed
Google Scholar
Henkel CV, Dirks RP, de Wijze DL, Minegishi Y, Aoyama J, Jansen HJ, Turner B, Knudsen B, Bundgaard M, Hvam KL, et al: First draft genome sequence of the japanese eel. Anguilla japonica. Gene. 2012, 511 (2): 195-201.
CAS
PubMed
Google Scholar
Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu CH: Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci. 2009, 128 (2): 109-120. 10.1007/s12064-009-0056-1.
PubMed Central
CAS
PubMed
Google Scholar
Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, et al: Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res. 2004, 14 (1): 11-17.
PubMed Central
CAS
PubMed
Google Scholar
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH: Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. J Exp Zool B Mol Dev Evol. 2011, 316 (6): 451-464.
CAS
PubMed
Google Scholar
Ledje C, Kim CB, Ruddle FH: Characterization of Hoxgenes in the bichir Polypterus palmas. J Exp Zool. 2002, 294 (2): 107-111. 10.1002/jez.10152.
CAS
PubMed
Google Scholar
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D: Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev. 2011, 13 (3): 247-259. 10.1111/j.1525-142X.2011.00477.x.
PubMed
Google Scholar
Crow KD, Smith CD, Cheng JF, Wagner GP, Amemiya CT: An independent genome duplication inferred from Hox paralogs in the american paddlefish–a representative basal ray-finned fish and important comparative reference. Genome Biol Evol. 2012, 4 (9): 937-953.
PubMed Central
PubMed
Google Scholar
Roy SW, Irimia M: Mystery of intron gain: new data and new models. Trends Genet. 2009, 25 (2): 67-73. 10.1016/j.tig.2008.11.004.
CAS
PubMed
Google Scholar
Santini S, Boore JL, Meyer A: Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 2003, 13 (6A): 1111-1122.
PubMed Central
CAS
PubMed
Google Scholar
Feiner N, Ericsson R, Meyer A, Kuraku S: Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members. J Exp Zool B Mol Dev Evol. 2011, 316 (7): 515-525.
CAS
PubMed
Google Scholar
Genome 10K Community of Scientists: Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered. 2009, 100 (6): 659-674.
PubMed Central
Google Scholar