Zorn AM, Wells JM: Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009, 25: 221-51. 10.1146/annurev.cellbio.042308.113344.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM: FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev. 2006, 123: 42-55. 10.1016/j.mod.2005.10.001.
Article
CAS
PubMed
Google Scholar
Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP, et al: Depletion of definitive gut endoderm in Sox17-null mutant mice. Development. 2002, 129: 2367-79.
CAS
PubMed
Google Scholar
Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J, Beck F: Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA. 2004, 101: 7641-5. 10.1073/pnas.0401654101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parlato R, Rosica A, Rodriguez-Mallon A, Affuso A, Postiglione MP, Arra C, Mansouri A, Kimura S, Di Lauro R, De Felice M: An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol. 2004, 276: 464-75. 10.1016/j.ydbio.2004.08.048.
Article
CAS
PubMed
Google Scholar
Heller N, Brandli AW: Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet. 1999, 24: 208-19. 10.1002/(SICI)1520-6408(1999)24:3/4<208::AID-DVG4>3.0.CO;2-J.
Article
CAS
PubMed
Google Scholar
Wendl T, Adzic D, Schoenebeck JJ, Scholpp S, Brand M, Yelon D, Rohr KB: Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals. Development. 2007, 134: 2871-9. 10.1242/dev.02872.
Article
CAS
PubMed
Google Scholar
Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA: Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004, 131: 953-64. 10.1242/dev.00966.
Article
CAS
PubMed
Google Scholar
Maeda Y, Dave V, Whitsett JA: Transcriptional control of lung morphogenesis. Physiol Rev. 2007, 87: 219-44. 10.1152/physrev.00028.2006.
Article
CAS
PubMed
Google Scholar
Sherwood RI, Chen TY, Melton DA: Transcriptional dynamics of endodermal organ formation. Dev Dyn. 2009, 238: 29-42. 10.1002/dvdy.21810.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lania G, Zhang Z, Huynh T, Caprio C, Moon AM, Vitelli F, Baldini A: Early thyroid development requires a Tbx1-Fgf8 pathway. Dev Biol. 2009, 328: 109-17. 10.1016/j.ydbio.2009.01.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH: Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development. 2005, 132: 35-47.
Article
CAS
PubMed
Google Scholar
Bayha E, Jorgensen MC, Serup P, Grapin-Botton A: Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis. PLoS One. 2009, 4: e5845-10.1371/journal.pone.0005845.
Article
PubMed Central
PubMed
Google Scholar
Wang Z, Dolle P, Cardoso WV, Niederreither K: Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev Biol. 2006, 297: 433-45. 10.1016/j.ydbio.2006.05.019.
Article
CAS
PubMed
Google Scholar
Desai TJ, Malpel S, Flentke GR, Smith SM, Cardoso WV: Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol. 2004, 273: 402-15. 10.1016/j.ydbio.2004.04.039.
Article
CAS
PubMed
Google Scholar
Chen Y, Pan FC, Brandes N, Afelik S, Solter M, Pieler T: Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol. 2004, 271: 144-60. 10.1016/j.ydbio.2004.03.030.
Article
CAS
PubMed
Google Scholar
Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dolle P, Gradwohl G: Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol. 2005, 284: 399-411. 10.1016/j.ydbio.2005.05.035.
Article
CAS
PubMed
Google Scholar
Chen Y, Pollet N, Niehrs C, Pieler T: Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev. 2001, 101: 91-103. 10.1016/S0925-4773(00)00558-X.
Article
CAS
PubMed
Google Scholar
Lynch J, McEwan J, Beck CW: Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis. Gene Expr Patterns. 2011, 11: 112-7. 10.1016/j.gep.2010.10.003.
Article
CAS
PubMed
Google Scholar
Lipscomb K, Schmitt C, Sablyak A, Yoder JA, Nascone-Yoder N: Role for retinoid signaling in left-right asymmetric digestive organ morphogenesis. Dev Dyn. 2006, 235: 2266-75. 10.1002/dvdy.20879.
Article
CAS
PubMed
Google Scholar
Hyatt BA, Resnik ER, Johnson NS, Lohr JL, Cornfield DN: Lung specific developmental expression of the Xenopus laevis surfactant protein C and B genes. Gene Expr Patterns. 2007, 7: 8-14. 10.1016/j.modgep.2006.05.001.
Article
CAS
PubMed
Google Scholar
Zuo YY, Veldhuizen RA, Neumann AW, Petersen NO, Possmayer F: Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. Biochim Biophys Acta. 2008, 1778: 1947-77. 10.1016/j.bbamem.2008.03.021.
Article
CAS
PubMed
Google Scholar
Tata JR: Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol Cell Endocrinol. 2006, 246: 10-20. 10.1016/j.mce.2005.11.024.
Article
CAS
PubMed
Google Scholar
Small EM, Vokes SA, Garriock RJ, Li D, Krieg PA: Developmental expression of the Xenopus Nkx2-1 and Nkx2-4 genes. Mech Dev. 2000, 96: 259-62. 10.1016/S0925-4773(00)00400-7.
Article
CAS
PubMed
Google Scholar
El-Hodiri HM, Seufert DW, Nekkalapudi S, Prescott NL, Kelly LE, Jamrich M: Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid. Int J Dev Biol. 2005, 49: 881-4. 10.1387/ijdb.052011he.
Article
CAS
PubMed
Google Scholar
Chen F, Desai TJ, Qian J, Niederreither K, Lu J, Cardoso WV: Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development. 2007, 134: 2969-79. 10.1242/dev.006221.
Article
CAS
PubMed
Google Scholar
Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS: Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 1998, 12: 3156-61. 10.1101/gad.12.20.3156.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, et al: Fgf10 is essential for limb and lung formation. Nat Genet. 1999, 21: 138-41. 10.1038/5096.
Article
CAS
PubMed
Google Scholar
Chen F, Cao Y, Qian J, Shao F, Niederreither K, Cardoso WV: A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest. 2010, 120: 2040-8. 10.1172/JCI40253.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teng M, Duong TT, Johnson AT, Klein ES, Wang L, Khalifa B, Chandraratna RA: Identification of highly potent retinoic acid receptor alpha-selective antagonists. J Med Chem. 1997, 40: 2445-51. 10.1021/jm9703911.
Article
CAS
PubMed
Google Scholar
Grapin-Botton A: Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's PhD thesis. Int J Dev Biol. 2005, 49: 335-47. 10.1387/ijdb.041946ag.
Article
CAS
PubMed
Google Scholar
Naltner A, Ghaffari M, Whitsett JA, Yan C: Retinoic acid stimulation of the human surfactant protein B promoter is thyroid transcription factor 1 site-dependent. J Biol Chem. 2000, 275: 56-62. 10.1074/jbc.275.1.56.
Article
CAS
PubMed
Google Scholar
Mansouri A, Chowdhury K, Gruss P: Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998, 19: 87-90. 10.1038/ng0598-87.
Article
CAS
PubMed
Google Scholar
Tindall AJ, Morris ID, Pownall ME, Isaacs HV: Expression of enzymes involved in thyroid hormone metabolism during the early development of Xenopus tropicalis. Biol Cell. 2007, 99: 151-63. 10.1042/BC20060074.
Article
CAS
PubMed
Google Scholar
Nieuwkoop PD, Faber J: Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. 1994, New York: Garland Pub
Google Scholar
Satoh W, Matsuyama M, Takemura H, Aizawa S, Shimono A: Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis. 2008, 46: 92-103. 10.1002/dvg.20369.
Article
PubMed
Google Scholar
Roszko I, Sawada A, Solnica-Krezel L: Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol. 2009, 20: 986-97. 10.1016/j.semcdb.2009.09.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Rankin SA, Sinner D, Kenny AP, Krieg PA, Zorn AM: Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. Genes Dev. 2008, 22: 3050-63. 10.1101/gad.1687308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collop AH, Broomfield JA, Chandraratna RA, Yong Z, Deimling SJ, Kolker SJ, Weeks DL, Drysdale TA: Retinoic acid signaling is essential for formation of the heart tube in Xenopus. Dev Biol. 2006, 291: 96-109. 10.1016/j.ydbio.2005.12.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harland RM: In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991, 36: 685-95.
Article
CAS
PubMed
Google Scholar
Zorn AM, Mason J: Gene expression in the embryonic Xenopus liver. Mech Dev. 2001, 103: 153-7. 10.1016/S0925-4773(01)00341-0.
Article
CAS
PubMed
Google Scholar