Bloomquist et al. BMIC Developmental Biology (2017) 17:3
DOI 10.1186/512861-017-0146-0

A compendium of developmental gene

BMC Developmental Biology

@ CrossMark

expression in Lake Malawi cichlid fishes

R. F. Bloomquist'“", T. E. Fowler'", J. B. Sylvester’, R. J. Miro" and J. T. Streelman"

Abstract

Background: Lake Malawi cichlids represent one of a growing number of vertebrate models used to uncover the
genetic and developmental basis of trait diversity. Rapid evolutionary radiation has resulted in species that share
similar genomes but differ markedly in phenotypes including brains and behavior, nuptial coloration and the
craniofacial skeleton. Research has begun to identify the genes, as well as the molecular and developmental

pathways that underlie trait divergence.

Results: We assemble a compendium of gene expression for Lake Malawi cichlids, across pharyngula (the phylotypic
stage) and larval stages of development, encompassing hundreds of gene transcripts. We chart patterns of expression
in Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF), Hedgehog (Hh), Notch and Wingless (Wnt)
signaling pathways, as well as genes involved in neurogenesis, calcium and endocrine signaling, stem cell biology, and
numerous homeobox (Hox) factors—in three planes using whole-mount in situ hybridization. Because of low sequence
divergence across the Malawi cichlid assemblage, the probes we employ are broadly applicable in hundreds of species.
We tabulate gene expression across general tissue domains, and highlight examples of unexpected expression
patterns.

Conclusions: On the heels of recently published genomes, this compendium of developmental gene expression in Lake
Malawi cichlids provides a valuable resource for those interested in the relationship between evolution and development.

Keywords: Cichlid fishes, Evolution of gene expression, Lake Malawi, Developmental pathways

Background
Comparative gene expression is a hallmark of the evolution
and development research program [1]. This is particularly
the case among closely related vertebrate species, like
hominids [2], beach mice [3], cavefishes [4], stickleback [5],
and cichlid fishes [6]. In these examples and many others,
diversity in key traits evolves via spatial, temporal and/or
quantitative variation in gene expression. Despite the
importance of changes in gene expression to the evolution
of closely related species, comprehensive surveys of spatial
expression patterns are typically confined to laboratory
models (e.g., zebrafish, [7]).

Consequently, we have produced a compendium of spatial
gene expression across early development, in Lake Malawi
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cichlid fishes. This resource should find broad applicability
for three reasons. First, genomic surveys demonstrate ex-
treme genetic similarity among Malawi species [8, 9], and
other lineages from East Africa [10]. This means the probes
we develop will be useful across hundreds of African cichlid
species. Second, Malawi cichlids in particular have been used
to study the genetic and developmental basis of key
vertebrate phenotypes, like nuptial coloration [11-13], the
cranio-dental skeleton [14—18], and the brain [19]. The
developmental pathways we highlight here are relevant to
continued study of these important evolutionary phenotypes.
Third, recently developed means to manipulate cichlid
genomes and development (e.g., transgenics, treatment with
small molecules, genome editing: [17, 20, 21] are informed
by observations of gene expression in time and space. We
use whole mount iz situ hybridization (ISH) to document
spatial expression patterns for approximately 160 genes,
across 12 major categories. We tabulate expression domains
for each gene at pharyngula and larval stages, in three planes
of view (Fig. 1). This compendium of developmental gene
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Fig. 1 Schematic of planes: a frontal, b lateral, ¢ dorsal planes and domains of expression color coded according to legend
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expression should be a valuable resource for biologists inter-
ested in the relationship between development and evolution.

Methods

Fish husbandry

Lake Malawi cichlids used for this study included Metria-
clima zebra [MZ)] and Petrotilapia chitimba “thickbar” [PC].
These species were used owing to their availability and the
fact that they belong to the ‘mbuna’ rock dwelling lineage.
While Malawi cichlid species share qualitative expression
domains across species, those from different ecotypes
(mbuna versus ‘non-mbuna’) may exhibit heterochronic and
quantitative differences in expression [6, 17]. Adult cichlids
were maintained in re-circulating aquarium systems at 28 °C
(Georgia Institute of Technology). Fertilized embryos were
removed from the mouths of brooding females and staged
in days post-fertilization (dpf), according to the Nile tilapia
developmental series [22]. Embryos were raised to 4dpf or
6dpf and euthanized with sodium bicarbonate buffered
anesthetic MS-222, before fixation in 4% paraformaldehyde.
Pre-hatching embryos at 4dpf were dechorionated using fine
forceps to achieve proper fixation and reagent penetration.

Primer and probe design

Primers were designed using recently assembled and anno-
tated tilapia and MZ genomes [10] (accession numbers
KT906433-KT906561) as well as partial genome assemblies
[9] (accession numbers KC633830- KC633846, EU867210-
EU867217, KT851376— KT851399) were used to amplify
cichlid ¢cDNA. Amplified DNA was inserted into the
pGEM-T Easy vector system (Promega) and transformed
into JM109 competent cells (Promega). Upon amplification
and purification (Qiagen, Plasmid Maxi Kit), riboprobes

were prepared using the Promega Riboprobe System Sp6/
T7 kit. There is minimal sequence divergence between
Malawi cichlid species; the average nucleotide diversity is
0.28%, less than that among laboratory strains of zebrafish
[9]. Cloned plasmid insert sequences used for probe gener-
ation have been deposited in GenBank (Accession numbers
are shown in Tables 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11).

In situ hybridization

Specimens for ISH were fixed a minimum of 48 h in 4%
paraformaldehyde at 4 °C and then dehydrated into a graded
series of methanol for further fixation and storage at —20 °C
O/N. Embryos were rehydrated and permeabilized in 10 pg/
mL proteinase K for one hour. They were then refixed in
4% PFA and incubated in prehybridization solution at 70 °C.
Embryos were incubated overnight at 70 °C in digoxigenin-
labeled antisense riboprobes. The following day, embryos
were washed through a graded series of saline-sodium cit-
rate buffer solutions and blocked with blocking solution (5%
blocking buffer, 5% goat serum in MABT). Embryos were
then hybridized with 1:3000 anti-digoxigenin-AP FAB frag-
ments in blocking buffer overnight at 4 °C. Excess antibody
was removed by washing, and color reaction with NBT/
BCIP was performed on the AP-conjugated anti-dig anti-
bodies. Gene expression was imaged in whole mount, using
a LeicaDFC295 compound light microscope.

Results and discussion

Bone morphogenetic protein and transforming growth
factor beta pathway

The transforming growth factor beta (TGF-p) superfamily
is a class of cytokines organized into TGF-s, bone mor-
phogenetic proteins (BMPs), and activin/inhibins that bind
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Table 1 Expression data for the TGF-3/BMP pathway genes at pharyngeal (blue) and larval (orange) stages
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to Type I and II serine/threonine kinase receptors [23].
Upon ligand activation, type II receptors phosphorylate
type I receptors, leading to SMAD protein activation and
ultimately gene regulation. TGF-3/BMPs play a major role
in almost every aspect of vertebrate biology, from gastru-
lation and organization of the body plan, to the genesis of
almost every organ, to renewal and adult tissue mainten-
ance [23, 24]. Inasmuch, mutations in the TGF- super-
family and its regulators have been demonstrated as
causative for the evolution of major adaptations.

BMPs are believed to control multiple aspects of cichlid
jaw shape and function [25, 26], are in part responsible for
evolutionary novelty in beak shape of Darwin’s finches
[27], and have a direct dose-dependent effect on the cra-
niofacial skeleton when transgenically titrated in mice
[28]. All of the BMP pathway factors we include are
expressed in the jaw once it has formed in the larval stage,
and many are also expressed in the pharynx, as indicated
in Table 1. bmp2 and bmp4 pattern, generate, shape, and
regenerate teeth in mice, squamates, and cichlids [29-35]
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Table 2 Expression data for FGF pathway genes at pharyngeal (blue) and larval (orange) stages
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while a large-effect QTL containing bmp6 has been
reported for a doubling of pharyngeal tooth number in
stickleback [36]. bmper may regulate tooth number in
Malawi cichlids [17].

In mice, bmp2 and bmp7 regulate dorso-ventral pattern-
ing of the brain and in chicken, undifferentiated neural
ectoderm has been induced to express dorsal-specific
markers by addition of the protein products of these genes
[37]. In Fig. 2 we observe expression of ligands bmp2,
bmp4 and bmp7, as well as endothelial regulator bmper
and receptors bmprla and bmpr2, along the dorsomedial
telencephalon and in distinct patterns in the forebrain,
similar to expression reported in mouse [38]. After muta-
tion of bmprla in mouse the choroid plexus fails to form
from the dorsal telencephalon, demonstrating a role of this
receptor in forebrain specification [39]. While bmpria is
expressed in all three regions of the brain, bmprib is local-
ized to the developing cerebellum, preoptic region, and eyes
at 4dpf; and at 6dpf is seen in the eyes and somites. chd! is
expressed in the optic nerve, pharynx, notochord, and gut.

In Fig. 3, BMP inhibitor fst is heavily expressed through-
out the brain at 4dpf, and by 6dpf this expression
sharpens. Inhibitors nogl and nog2 are seen in the verte-
brae and brain, with nogl diffusely throughout the brain
and exhibiting localized expression in the hindbrain and
somites at 6dpf. nog2 demonstrates more restricted areas
of expression in the preoptic region and lens at 4dpf, and
additional expression in the developing dental placodes at
6dpf. Transcription factor osrl is expressed in the optic
tectum and hindbrain at both stages, and osr2 is heavily
expressed in the gut and behind the eyes at 4dpf and in
the retinae at 6dpf.

Tumor-suppressor smadl is phosphorylated in response
to BMP pathway activation, and regulates transcription. We
observe smadl throughout the brain, fins, eyes, somites/
vertebrae, jaw, and pharynx. Transcription factors snail
and snai2 exhibit distinct expression patterns. snail is in all
three brain regions, notably along the longitudinal fissure at
6dpf, as well as the vertebrae/somites. snai2 appears around
the eyes pretectum, and pectoral fins, along with heavy

Table 3 Expression data for Forkhead Box family genes at pharyngeal (blue) and larval (orange) stages
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Table 4 Expression data for Hedgehog pathway genes at pharyngeal (blue) and larval (orange) stages
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expression in the pharyngeal arches and somites. We ob-
serve sostdcl in the pharynx and cranial lateral line, and
tgfbl around the eyes, retinae, pharynx, and fins.

Fibroblast growth factor pathway

Much like the TGF-/BMP pathway, the Fibroblast growth
factor (FGF) pathway plays a part in eukaryotic development
and homeostasis across ontogeny, and is particularly import-
ant for organogenesis and the generation of evolutionary
novelty. FGFs and FGF receptors (FGFRs) are part of a
larger family of Tyrosine Kinases and high-affinity cell sur-
face receptors known as Receptor-Tyrosine Kinases (RTKs)
that function through activation of Ras/MAP kinase and
phospholipase-C gamma pathways [40]. Conserved across
all metazoans, FGFs have gained redundancy in higher ver-
tebrate genomes, presumably for the formation of complex
traits. In Amphioxus, FGF’s coordinate segment reduction,
perhaps permissive for the evolution of the vertebrate head
[41]. In frog, FGFs work synergistically with BMPs to induce
neurulation [42]. By contrast, FGFs have long been recog-
nized as competitors of the BMP pathway in patterning limb
outgrowth in mammals [43], and formation and regener-
ation of fish fins [44]. Genetic ablation of the FGF antago-
nists Spry4 and Spry2 produces mice with tusks for incisors
[45], and heterochrony of fgf8 expression in the blind cave-
fish neural plate contributes to defective retinal morphogen-
esis [4]. It is apparent that FGFs are one of the key pathways
exploited by nature during animal evolution [46].

In Fig. 4 and Table 2, we report expression of ligands
faf3, fef7, fgf10 and fgf20; receptors fgfrla and fgfr2; tran-
scription factors etv5, sp8 and twistl; and repressor spry4.
Expression of etv5 can be seen in the hindbrain, eyes, jaws,
fins and pharynx. The four ligands included have unique
expression patterns with fgf3 most evident in the isthmus
(midbrain-hindbrain boundary, MHB), fgf7 in the jaw,
fgfI0 in the midbrain and around the eyes, and fgf20 in
the hindbrain, olfactory placodes, and pharynx. Receptors
fefrla and fgfr2 are both heavily expressed in the central
nervous system, along the longitudinal fissure of the brain,
and in the pharynx and jaw.

Zinc-finger transcription factor sp8 acts under the regu-
lation of fgf10 and Wnt/B-catenin, and has been shown to
regulate fgf8 for limb formation during chicken develop-
ment [47]. We observe sp8 along the spinal region and
throughout the brain and olfactory placodes in a pattern
similar to that seen in zebrafish [48]. Repressor spry4 and
transcription factor twistl are both expressed along the
somites, as well as in the pharynx, fins, eyes, and jaws.

Forkhead box pathway

The Forkhead Box transcription factors share an evolution-
ary conserved “forkhead” or “winged-helix” 100 amino-acid
DNA binding domain. The moniker for the Fox family was
coined when the first homolog forkhead (fkh) was identified
in Drosophila, with mutant flies exhibiting split heads [49].
Moreover, the helix-turn-helix motif of this domain is com-
prised of 3 a-helices and two large loops that resemble
“wings.” To date, over 100 Fox transcription factors have
been identified across eukaryotes and much work has been
done to clarify their nomenclature [50]. For example, in
humans there are over fifty Fox proteins categorized into
19 subgroups (FOXA to FOXS) [51].

While the characteristic protein domain of the Fox fam-
ily has remained tightly conserved, individual genes have
evolved greatly outside of these domains and have taken
on a myriad of highly divergent and specialized functions
such as tumor suppression, cell signaling, apoptosis, and
DNA repair. Although functionally divergent, redundant
roles exist for family members such as FoxAI and FoxA2
in both lung and liver formation [52, 53]. In Fig. 5, we ob-
serve expression of foxa2 in the diencephalon-midbrain
boundary (DMB), the oral/pharyngeal cavity and in the
developing spinal cord, while foxa3 is expressed in the
gut. foxgl is expressed in the retina and telencephalon,
and is differentially expressed in rock- vs. sand-dwelling
Malawi cichlids [6]. As in zebrafish, foxil is expressed in
pharynx, jaw, vertebral elements, and otic placodes [54]
and in Malawi cichlids expression strongly resembles that
of neural crest marker foxd3.
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In vertebrates,

FoxP2 has demonstrated roles

in

vocalization and the ability to learn language. Deletions
in FoxP2 result in verbal dyspraxia and a collapse of the
communication system at both the neural and muscular

levels [55]; furthermore Foxp2 has evolved episodically
in hominids [56]. In cichlids, foxp2 is expressed in dis-
tinct foci in the thalamus and telencephalon, as well as
in the pharyngeal arches where sound is produced [57],
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Table 6 Expression data for Calcium, Endocrine, and Insulin signaling factors at pharyngeal (blue) and larval (orange) stages

pharynx forebrain midbrain hindbrain

lateral line

somites

Accession Number
vertebral

olfactory

bhlhed0

calb2

calb2a

cdknla

KT906532.1

KT851380.1

KT906441.1

cldn15a

gadl

gad2

glast

KT906513.1

KT906445.1

KT906472.1

KT906471.1

iafbps

isl1

itpr1

KT906474.1

KT906482.1

KT906484.1

kiss1r

KT906485.1

KT906488.1

KT906531.1

KT906538.1

in the otic placodes and tectum where sound is received
and processed, and in the fins.

Hedgehog pathway

The Hedgehog pathway executes pervasive roles in embry-
onic development, stem cell renewal, and cancer biology.
Hedgehog proteins are a group of soluble morphogens that
include Indian Hedgehog, Desert Hedgehog, and perhaps
the most well studied ligand in embryology, Sonic Hedgehog

(SHH). These morphogens bind to the transmembrane
receptor Patched (Ptch), releasing co-receptor Smoothened
(Smo) and permitting activation of Hedgehog signaling. The
Hh pathway is involved in the specification and morphogen-
esis of nearly all animal organs [58].

In Fig. 6, we report expression of transcription factors
glil, gli2 and gli3, receptors ptchl, ptch2 and smo, and
the ligand skh. Similar to expression seen in zebrafish
[59], we find that all of the Hh pathway genes included

Table 7 Expression data for Mitogens, Stem, and Tumor Suppressor factors at pharyngeal (blue) and larval (orange) stages
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Table 8 Expression data for Notch pathway genes at pharyngeal (blue) and larval (orange) stages
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exhibit t-shaped expression in the ZLI boundary of the ptchl is responsible for adaptive variation in jaw shape
diencephalon at both stages, as well as expression in the [60] and function [14]. We see ptchl and ptch2
pharynx and fins (Table 4). We observe heavy expression  expressed in the jaw and throughout the central nervous
of gli2 and gli3 in the midbrain and dorsal telenceph-  system and somites, and ptchl additionally in the olfac-
alon, but expression of glil is less prominent. In cichlids, tory and otic cups. Ligand skh exhibits similar but more

Table 9 Expression data for brain development and neurogenesis factors at pharyngeal (blue) and larval (orange) stages
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Table 10 Expression data for brain development and neurogenesis factors at pharyngeal (blue) and larval (orange) stages
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restricted patterns of expression in the forebrain, jaw,
and somites. Similar to results found in zebrafish [61],
smo appears at the midline and somites, as well as in the
brain and fins at both stages.

Homeobox pathway

Called the “Rosetta Stone of developmental biology,” the
homeobox gene family is best known for its role in or-
ganizing the metazoan body plan. Hallmark to this
family is the “homeobox,” a conserved homeodomain

sequence approximately 60 amino acids in length that
binds DNA. With an estimated 300 homeobox genes,
comprised of true genes and pseudogenes, Hox tran-
scription factors are often divided into classes (approxi-
mately eleven) and subclasses that represent their
general developmental functions [62]. Belonging to the
Antennapedia gene of Drosophila (ANTP) class, we re-
port expression in cichlids of barxl and barx2 of the
NK-like (NKL) subclass (Fig. 7). barxl expression has
previously been demonstrated in cichlid pharyngeal
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Table 11 Expression data for developmental genes at pharyngeal (blue) and larval (orange) stages

midbrain

jaws pharynx forebrain

hindbrain lateral line olfactory otic optic fins
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Accession Number
vertebral

KT906433.1

EU867213.1

EU867214.1

KT906487.1
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teeth [63], and here we describe expression of barxI and
2 in the oral jaws, pharynx, and the gut.

dilxla, dix2, dix3b, dix5, emx3, msx1, nkx2-1 and nkx2-
5 belong to the ANTP class and members have been
well described as mediators of zebrafish jaw [64] and
lamprey pharynx development [65], as well as important
for fish brain development [66]. In Fig. 7 we note strik-
ingly similar expression of dixla and dix2, and expres-
sion of Dlx and Msx genes in the jaws and pharynx. The

DIx and Nkx genes are expressed in the ventral regions
of the mid and/or forebrain. emx3 is expressed in the
dorsal telencephalon early, and at later stages is seen
throughout the brain and trunk.

We also present expression of Paired gene of Drosoph-
ila PRD class factors dmbxla, gsc, hopx, otx2, paxl,
pax6, pax9, pitx2, pitx3 and rx3. Many of the members
of the PRD class are known to be important for eye
development [67-69], and we note expression of each of

é

frontal orientations

Fig. 2 Expression of genes from the TGF-3/BMP pathway at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and
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Fig. 3 Expression of genes from the TGF-3/BMP pathway at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and

these factors in either retinal or lens development at the
pharyngula or larval stages. dmbxla exhibits expression
in the midbrain at 4dpf, and at 6dpf expression is visible
throughout the optic tectum and hindbrain. gsc and
hopx are both expressed in the pharynx and eye struc-
tures, while ozx2 exhibits heavy expression in the fore-,
midbrain and eyes. In Fig. 8 we note expression of the
Pax genes in the somites, and expression of paxl and
pax9 in the pharynx and jaw. Paired-Like Homeodomain
factors pitx2 and pitx3 demonstrate expression in the
eyes, brains, and somites, while rx3 is localized to the
presumptive hypothalamus/preoptic region.

gbx2 and hoxalOb of the HOXL subclass are expressed
in foci of the jaw joint [70] and fins respectively, the latter

of which has been described as crucial for proper limb
and fin patterning [71].

In the three amino acid loop extension (TALE) super-
class we demonstrate expression of irx1b, irx2 and meis2,
all three of which are expressed in the eyes and brain. Be-
longing to the LIM class we present expression of LIM
homeobox 2 (Ihx2), Ihx6 and [hx9. hx2 and [hx9 exhibit
essentially identical expression patterns in the brain, fins,
and spinal region, while /x6 is only expressed in the jaw,
pharynx, and preoptic region.

In the POU class, named for Pit, Oct, and Unc transcrip-
tion factors (POU class), we document expression of pou5f1,
and in the SINE class we show expression of six! and six3.
In Fig. 9 we observe expression of sixl in the brain, eyes,
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Fig. 4 Expression of genes from the FGF pathway at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations
.

somites, and fins, while six3 is expressed only in the
diencephalon, telencephalon, nasal placodes and eyes.
Finally, we report expression of runx2 and runx3 in the
jaws and pharynx, and transcription factor thx1 through-
out the brain and in the fins.

Calcium, endocrine, and insulin signaling

While proteins such as insulin and regulators of calcium are
essential for maintaining endocrine homeostasis in adult an-
imals, their roles in embryogenesis are pervasive, but not
well known. Entire families of signaling proteins exist to pre-
cisely coordinate cellular communication and resulting de-
velopmental differentiation, often in the same places where
they will signal later in ontogeny. One example is calcium

signaling, which is essential for proper odorant detection
and olfaction [72]. In Fig. 10, we note expression of calcium
signaling regulators calb2, calb2a, cldnlSa, kisslr, and sparc
in the olfactory placodes and resulting nasal epithelium. We
also observe expression of calb2 in the cephalic lateral line,
pharynx, gut, and somites, and calb2a in the hindbrain, as
well as in the spinal region. Tight junction factor cldni5a is
expressed in the three brain regions, pharynx, fins and jaw,
while itprl expression is restricted to the forebrain and cere-
bellum (Table 6). Receptor kissIr exhibits notable expression
in the eyes and hindbrain at 4dpf, and by 6dpf expression
also appears in the jaw and pharynx. Extracellular matrix
factor sparc is expressed generally across the integument
and along the cephalic lateral line and spinal region.
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Fig. 5 Expression of Forkhead Box genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

As another example, gadl and gad2 (also known as
gad67 and gad65, respectively) encode enzymes for the pro-
duction of the neurotransmitter GABA and have known
roles in schizophrenia and Parkinson’s disease. As in zebra-
fish [73] and other organisms, we note expression of gadl
and gad?2 throughout the brain early in pharyngeal and
larval stages of development. Plasma membrane transporter
glast is expressed in cephalic lateral line placodes, where
ion exchange will mediate sensory signaling later in the
fully functional organ. In the insulin pathway, we report ex-
pression of igfbp5 in lateral line and all brachial arches. is/1,
or Insulin gene enhancer protein, binds to insulin enhancer
sites to regulate insulin gene expression and has known
roles in diabetic disease. It is commonly used as a marker
of pancreatic cells early and late in zebrafish ontogeny [74]
and we show is expressed similarly in cichlids, as well as in
forebrain neuronal subsets. Factors involved in endocrine
signaling, such as bhlhe40, cdknla, and th, are all diffusely
expressed in the brain. bhlhe40 exhibits notable expression
in the eyes at both stages, and additional expression in the
pharynx and somites at 6dpf.

Mitogens, stem cell factors and tumor suppressors

The biomedical world has greatly invested in understanding
the processes of cellular renewal and division because of
implications in regenerative medicine and cancer. Despite
this focus, little attention has been paid to embryo-wide ex-
pression patterns of the genes involved (Fig. 11). bmil, an
epithelial stem cell marker in intestinal tissues, along with

lgr5 [75], is expressed along the lateral line and in the brain,
eyes and fins (see Fig. 11 for expression of lgr4 and lgr6).
fut4 is a reported mitogenic factor involved in tumor
suppression [76] expressed in cichlid brain structures.
Arsenate resistance protein, srrt, has been shown to pro-
mote self-renewal of mouse neural stem cells by regulating
sox2 expression [77]. We observe expression of srrt in the
hindbrain and eyes.

Mesenchymal stem cells (mSCs) can be difficult to define
due their loose spatial arrangement and degrees of potency.
We report expression of celsrl, mcam, pdgf, and vim, which
have recently been hypothesized to maintain mSCs [78, 79]
in structures including brain, eyes, lateral line, and fins.

Crucial to the dichotomy of stem cell potency is the
genetic environment that houses these cells, known as the
niche. For instance, a set of key genes known as the
Yamanaka factors, cmyc, kif4, oct4, and sox2 are important
for maintaining pluripotent stem cells (PSCs), and through
retroviral induction can transfate mouse fibroblasts into in-
duced PSCs (iPSCs) [80]. We have cloned oct4, reported as
pousfl in the Hox panel (Fig. 9). Similar to reports in zebra-
fish [81] we see little whole-mount expression of oct4 past
neurulation, presumably because of its defined roles in PSC
maintenance. However, we report expression of kif4, noted
in lateral line, fins, and brain, as well as sox2, noted even at
later larval stages in adult organs capable of self-renewal, in-
cluding teeth, taste buds, and the cephalic lateral line. The
ability of sox2 to persist and localize to epithelial stem cell
(eSC) niches has been noted before [82]. sox2 has been
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Fig. 6 Expression of Hedgehog pathway genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

reported as an eSC marker in a host of adult organs [83, 84],
along with bmil and [gr5 [75] in the intestine, and tumor
suppressor [rig] as a master regulator of eSCs [85]. We ob-
serve [rigl throughout the brain, spinal region, fins, and
eyes. Finally, we report expression of neural crest stem factor
sox10 in the pharynx and somites, and mitogenic factor
tp63 in the jaw, pharynx, CNS, cephalic lateral line, and fins.

Notch pathway

The intercellular Notch signaling cascade is a highly con-
served pathway involved in animal cell specification and
proliferation [86]. Notch signaling exhibits versatility
through a gamut of posttranslational modifications that
alter receptor response to ligand. Notch activation occurs
primarily by juxtacrine signaling from Delta, Serrate, and
Jagged class ligands, which bind the Notch receptor extra-
cellular domain of an adjacent cell. This binding causes
proteolytic cleavage of a cytosolic domain to enable it to act
as a transcription factor. The Notch pathway is of particular
interest in axial patterning during embryogenesis because
of this characteristic signal transduction between neighbor-
ing cells. In vertebrate models, including chicken [87], and

mouse [88], temporal regulation of Notch in the pre-
somitic mesoderm plays an important role in segmentation.
In zebrafish, segmentation can be restored in Notch-
deficient embryos via delivery of artificial pulses of Notch
[89]. In cichlids, the Notch pathway is involved in pattern-
ing and regeneration of teeth [32], and in the renewing
mouse incisor Notch has a role in maintaining the stem
niche [90].

In Fig. 12 we document expression of deltaA, deltaB,
dlkl, jagl, and jag2 ligands, Notch inhibitor /nfg, transcrip-
tion factor hesl, and notchl, notch2, and notch3 receptors.
As indicated in Table 8, we observe deltaA throughout the
brain at 4dpf, with notable expression in the mid- and hind-
brain. By 6dpf, expression is concentrated along the central
midline of the fore- and midbrain and around the eyes.
deltaB exhibits a similar pattern in the brain, but has add-
itional expression in the somites and pharynx at both stages.

In Drosophila, Notch signaling has been shown to regu-
late cell fate in the eye by acting at specific ommatidium
photoreceptors [91]. We observe expression in the retina
(see frontal view) for deltaA, hesl, jagl, notchl and notch?2,
as well as expression of deltaB, dlkl, jag2, and notch3 in
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Fig. 7 Expression of ANTP class Homeobox genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

the eyes. At 4dpf, dlkI expression is restricted to small areas
in all three regions of the brain and dorsal side of the eyes,
and by 6dpf this expression has spread to the telenceph-
alon, optic tectum, and hindbrain. ses! expression at 4dpf
is seen in the head and lateral line, and at 6dpf expression
is also evident in the vertebral somites and jaw.

Jagged1 is important for endothelial tissue development,
and has been correlated with human congenital diseases
of the heart [92]. We observe expression of jagl and jag2
throughout the brain and fins at both developmental
stages, and jag2 additionally in the somites and jaw. Infg is
expressed in the brain and eyes, with heavy expression
along the central midline. We also observe /nfg in the so-
mites, where it is critical for somite segmentation accord-
ing to studies performed in mouse [93]. Notch receptors

notchl, notch2 and notch3 all exhibit expression along the
center midline of the brain and in the jaw, somites, phar-
ynx, and lateral line.

Brain development and neurogenesis
The formation of the brain and nervous system is highly
conserved and requires the integration of many, often
competing, molecular signals. Cichlid brains evolve di-
versity via subtle modification of conserved gene regula-
tory networks [6, 19]. Here we show expression of
transcription factors and other components of nervous
system development as well as guidance cues involved in
neurogenesis and axonal growth.

In vertebrates, transcription factor ap2a is required for
ectodermal migration during neural tube closure and
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Fig. 8 Expression of PRD and HOXL Homeobox genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and

J

cell fate specification, and mediates regulatory networks
that drive neural crest evolution [94]. In Fig. 13, ap2a is
notably expressed in the eyes and brain. We observe
arx, mutations of which are linked to improper CNS for-
mation and mental retardation [95], in the somites,
spinal region, and in a triangular pattern in the fore-
brain. Neural adhesion molecule gene chll is heavily

expressed throughout the CNS, jaws, fins, and lateral
line. We observe cntn3, a promoter of neurite out-
growth, throughout the CNS, in the eye, and in the jaw
joint. Integral membrane proteoglycan cspg4 is expressed
in the pharynx, gut, and dorsal fins. fezf2 expression in
the telencephalon exhibits a triangular pattern similar to
that of arx. We observe expression of transcription
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Fig. 9 Expression of Homeobox genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

[

factor tbrl in the telencephalon, olfactory bulbs and
eyes, similar to the results reported in zebrafish [48].
Glutamate transporter vglut2.1 expression is only weakly
in the eyes and throughout the brain. zashl, involved in
body segment formation and Hox regulation [96], is seen
in the brain and eyes. Disruption of highly conserved
transcription factor gata6 demonstrates its role in

vertebrate development [97]. We observe gata6 heavily
expressed throughout the brain, somites, fins, and gut.
In Fig. 13, egr4 is expressed throughout the brain at
6dpf while neuronal differentiation factor neurodl can
be seen in the brain and pharyngeal arches. neurod2 ex-
pression at 4dpf is localized to the telencephalon and
eyes, but at 6dpf this expression appears throughout the
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Fig. 10 Expression of Calcium, Endocrine, and Insulin signaling factors at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and
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Fig. 11 Expression of WNT pathway genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

brain and nerve cord. neurogl expression is evident in
the brain and the dorsal trunk.

Semaphorins are a family of secreted and membrane-
bound proteins that guide the axonal growth cone during
neurogenesis [98]. The semaphorin superfamily is divided
into eight subclasses, all of which have a conserved 500
amino acid N-terminal sema domain [98] with variable C-

terminals. In Fig. 14 we show expression of class 3 sema-
phorins, present in vertebrates, which are secreted pro-
teins that act through a heterocomplex receptor of
transmembrane plexins, cell adhesion molecules, and neu-
ropilins. Specific combinations of these three receptor
components allow selective binding of different Sema-
phorin 3 genes depending on cell type, developmental
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Fig. 12 Expression of Notch pathway genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

stage, and location. A model developed in the mouse
molar indicates that the Wnt and Tgf-p pathways signal
from the dental epithelium to sema3a in the adjacent
mesenchyme, which acts to guide the growing axon via
short range repulsion along the boundaries of the nerve
pathway [99].

We observe receptors nrpla and nrpn2a in similar pat-
terns in the eyes and brain, with heavier expression of
nrpla in the fore/midbrain and pharynx. plxna3 is
expressed throughout the brain and eyes, while plxna4 is
localized to more restricted regions of the eyes and in the
dorsal region of the cerebellum. We report expression of
semaphorins 3a, 3c, 3e, and 3f in the retinal tissue similar
to expression reported in zebrafish [100], at both the phar-
yngula and larval stages. All four of these semaphorins are

expressed in the early jaw, pharynx, nasal pits, somites,
and presumptive optic and otic regions.

Wingless pathway

The Wingless (Wnt) signaling pathway involves many
factors that alter transcription, regulate calcium levels,
and affect cell polarity during embryonic development
through paracrine and autocrine signal transduction.
Wnt ligands initiate the pathway by binding the N-
terminal extracellular domain of Frizzled family recep-
tors, which then bind cytoplasmic Dishevelled within the
cell to propagate the signal. This pathway is highly con-
served across vertebrates and invertebrates, with more
than 20 mammalian Wnt ligands identified [101].
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Fig. 13 Expression of brain development and neurogenesis factors at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and
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The canonical Wnt pathway regulates transcription by the
translocation of cytoplasmic [(-catenin (ctnnbl) into the
nucleus, where it co-activates Tcf/Lef family transcription
factors. In the absence of Wnt activation, cytoplasmic [-
catenin is ubiquitinated for proteasomal destruction by a
complex containing Axin, APC, and GSK3 proteins. In
Fig. 15, we observe expression of axinl, axin2 and ctnnbl in
the brain, and additional ctnnbl expression along the cichlid
trunk, pharynx, jaw, and fins. Dickkopf family inhibitor dkk3
exhibits expression in the brain, eyes, pharynx, and vertebral
region. We also include four Frizzled family receptors, fzd1,
fzd2, fzd7 and fzd8, which demonstrate similar expression
patterns in the brain, somites, fins, jaw, and pharynx.

Developmental roles for Wnt signaling have been dem-
onstrated for decades, and knowledge of the effects of this
pathway has continued to grow. In 1980, lethal mutations
of wingless were shown to affect Drosophila larvae body
segments, making boundaries between body axes indistin-
guishable [102]. This was further demonstrated in Xenopus
embryos, which exhibited duplicated axes when injected
with mouse Wntl RNA [103], and similar duplication was
observed by injection of other Wnt related factors. This
pathway is important for regulation of cell fate in self-
renewing tissues, including mouse intestinal epithelium
[104], and in zebrafish has been shown to be important in
early neural crest development.
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Fig. 14 Expression of brain development and neurogenesis factors at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and
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Nuclear (-catenin mediates transcriptional activation
by transcription factors Lefl and Tcf. We observe not-
able expression of lefl in the midbrain and forebrain in
a similar pattern to that of t¢f712 in Fig. 15. tcf3 exhibits
expression in the brain, eyes, fins, and somites. Add-
itionally, we report R-spondin receptors lgr4 and lgré6 in
distinct patterns in the brain, gut, eyes, fins, and somites,

and the secreted R-spondin rspo2 in restricted regions of
the fore- and hindbrain.

In Fig. 16, we show expression of Wnt antagonist sfipI
in the hindbrain at 4dpf, and at 6dpf in the pharynx,
eyes, jaw, and olfactory bulbs. sfrp5 is expressed in all
three brain regions, somites, jaw, and pharynx (Table 10).
In cichlids, Wnt signaling is thought to affect bone
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Fig. 15 Expression of WNT pathway genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

deposition to regulate phenotypic changes in craniofacial
development [15]. wntl and wnt8 are involved in telen-
cephalon and diencephalon development [6]. We see se-
creted Wnt ligands wntl, wnt4, wnt5a, wnt7b, wnt8,
wntlOa and wnt10b expressed in the hindbrain, fins and
pharynx and specific Wnts, for example wntl0b and
wntSa, differentially expressed in the midbrain.

Other developmentally expressed genes

Our final expression panel (Fig. 17) includes factors not
specifically involved in the above pathways and processes.
We show factors involved in muscle contraction including
actin gene acta2 and keratin krt8, which polymerizes into
cytoplasmic filaments in epithelial cells. As in zebrafish,
smooth muscle actin acta?2 is expressed in the myotomes
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Fig. 16 Expression of developmental genes at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and frontal orientations

of the trunk and in the intestinal musculature [105], and
we also observe expression around the eyes.
Transmembrane protein ectodysplasin A (eda) acts
through receptor edar in ectodermal tissue development.
This signaling pair helps pattern early embryonic struc-
tures including skin, hair, and teeth, from germ layers, and
outlines placode derived structures such as scales and pre-
cisely patterned chicken feathers [106]. We observe eda

and edar localized to the tooth placodes and fins at these
stages, and note expression in and around scales later in
development (not shown). Both factors appear to be
expressed more heavily in pharyngula stage than at the
larval stage. We see krt8 expressed generally across the
entire integument at both stages of development.

Vascular endothelial growth factors vegfa and vegfc are
involved in angiogenesis, vasculogenesis, and cell migration.
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Fig. 17 Expression of Mitogens, Stem, and Tumor Suppressor factors at pharyngeal and larval stages. Imaged whole-mount in dorsal, lateral, and

Overexpression of this family of genes is seen in the
vascularization of cancerous tumors [107], and is the target
of many emerging cancer therapies. We observe expression
of vegfa along the midline of the brain, as well as in the
hindbrain and somites. We also observe vegfc in the so-
mites, as well as in the olfactory, optic, and otic regions.

Conclusions
Novel expression domains
Here, we provide a set of probes for spatial analysis of gene
expression, useful across hundreds of East African cichlid
fishes, for studies of evolution and development. Gene ex-
pression patterns are captivating, and provide important
clues to the evolution of gene regulation. Gene expression is
context-dependent, dynamic in space and time. Our com-
pendium of gene expression for early Lake Malawi cichlid
development provides examples of (i) expression patterns
conserved with many other animals, as well as (ii) expres-
sion patterns that can be considered novel, because they
haven't been assayed at these particular spaces and times.
We highlight a few of these novel expression domains.
Calcium and endocrine signals (Fig. 10) as well as the stem
cell/mitogenic factors (Fig. 17) are rarely studied at these
stages, in whole mount. Particularly striking spatially delim-
ited gene expression patterns are observed for many of these
genes, including calb2, calb2a, cldni5a, kisslr, glast, sparc,
stral3, bmil, pdgf, celsrl, kif4, trp63 and vim, suggestive of
precise roles in embryonic development. We also observe

new expression domains from well-studied genes. Notable
from this class are osr2 (Fig. 3; expression in fins) foxp2 (Fig. 5;
expression in fins and jaws), hopx (Fig. 7; expression in the
pharynx), mrpla, sema3a, sema3c and sema3e (Fig. 14;
expression in fins and jaws). These novel expression domains
set the stage for future exploration of function.
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