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Abstract

Background: Nearly half of all individuals with Down Syndrome (DS) have some type of congenital heart defect
(CHD), suggesting that DS sensitizes to CHD but does not cause it. We used a common mouse model of DS, the
Ts65Dn mouse, to study the contribution of Tbx5, a known modifier of CHD, to heart defects on a trisomic
backgroun. Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny
were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic
hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by
luciferase assays.

Methods: Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny
were fixed in 10 % formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in
embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was
verified by luciferase assays.

Results: We crossed mice that were heterozygous for a Tbx5 null allele with Ts65Dn mice. Mice that were trisomic
and carried the Thx5 mutation (Ts65Dn:Tbx5"7) had a significantly increased incidence of overriding aorta
compared to their euploid littermates. Ts65Dn;Tbx5™~ mice also showed reduced expression of Pitx2, a molecular
marker for the left atrium. Transcript levels of the trisomic Adamts1 gene were decreased in Tbx5"~ mice compared
to their euploid littermates. Evidence of a valid binding site for TBX5 upstream of the trisomic Adamts] locus was
also shown.

Conclusion: Haploinsufficiency of Tbx5 and trisomy affects alignment of the aorta and this effect may stem from
deviations from normal left-right patterning in the heart. We have unveiled a previously unknown interaction
between the Tbx5 gene and trisomy, suggesting a connection between Tbx5 and trisomic genes important during
heart development.
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Background

Congenital heart defects (CHD) comprise the most com-
mon congenital anomaly in live births [1]. There is an
especially high incidence of CHD in Down syndrome
(DS) as 40 — 50 % of individuals with trisomy for human
chromosome 21 (Hsa21) are affected [2—7]. In particular,
atrioventricular septal defect (AVSD) occurs in about
20 % of people with DS, a frequency about 2000-fold
higher than in the population at large [8]. Since half of
those with DS have a normal heart, additional genetic
and environmental factors must interact with DS to
cause CHD. Thus, dosage effects of Hsa21 genes com-
prise a complex modifier that, in conjunction with other
risk factors such as single-gene variants, alters outcomes
of heart development. Trisomy can be thought of as a
genetically sensitizing condition that de-stabilizes nor-
mal heart development, unveiling roles of disomic modi-
fiers of CHD [8, 9]. Attempts to identify genes
predisposing to CHD in DS have understandably focused
on Hsa21, while there has been little consideration of di-
somic modifiers that may contribute to this increased
risk.

We consider the role of Thx5, a known contributor to
heart development, as a modifier and assess its inter-
action with trisomy. 7Thx5, a transcription factor, has
well-described effects in cardiac and limb development
[10, 11]. Mutations in this gene are associated with
Holt-Oram syndrome and about 85 % of affected
individuals have a structural heart defect and/or abnor-
malities in the cardiac conduction system. Holt-Oram
patients most often present with atrial septal defects
(ASDs) and ventricular septal defects (VSDs) [12]. Thx5
has a well-studied role in the morphogenesis of the four
heart chambers. It is expressed in the left ventricle (LV)
and both atria during chamber maturation and septation
[13]. Ectopic expression in the right ventricle (RV), or
deletion of Thx5 in the left ventricles (LV) of mice sup-
presses formation of the ventricular septum, resulting in
formation of a single ventricle [14]. Its importance in
heart development suggests that variants affecting Thx5
expression might affect heart development on the “sensi-
tized” trisomic background.

Animal models provide important information for
understanding the pathogenesis of CHD and the mo-
lecular mechanisms that give rise to these conditions.
Orthologs of many genes on Hsa21 are found on mouse
chromosome 16 (Mmul6), with smaller subsets on
Mmul0 and Mmul7 [15]. The most widely studied DS
mouse model, Ts65Dn, is trisomic for a segment of
Mmul6 containing about half of the mouse genes
orthologous to Hsa2l [16]. The freely segregating extra
chromosome carrying these genes also contains genes
from Mmul7 that are not conserved with Hsa21, thus
this is not an exact model [17, 18]. Ts65Dn mice display
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a number of the features of DS, including cardiac ab-
normalities, although these occur at a lower frequency
than in people with DS [9, 19]. Our lab has previously
identified the Creldl and Hey2 genes as disomic modi-
fiers of septal development on this trisomic background
[9]. Haploinsufficiency for either of these disomic mod-
ifiers alone did not affect heart development, but on a
trisomic background the frequency of maldevelopment
was increased significantly. The Ts65Dn model thus
sensitizes heart development to other genetic perturba-
tions. We used the Ts65Dn mouse model here to exam-
ine the role of ThxS5 in heart development.

A mouse model with a null allele for Thx5 has been
described [20]. Homozygous null Thx5~'~ embryos
(Black Swiss/Sv] background) die by embryonic day
10.5 (E10.5) and lack cardiac looping and endocardial
cushion formation, among other severe defects [20].
The viability of and defects observed in Thx5™~ mice
are greatly influenced by genetic background. Bruneau
et al. report a 10 % frequency of the Thx5 null allele
on a 129SvEv/129Sv] background at birth and 28 %
on a Black Swiss/129Sv] background, instead of the
expected Mendelian ratio of 50 %. Deviation from the
expected frequency indicates that prenatal loss has
occurred; the different frequencies in different mouse
strains suggest that genetic background contributes to
the penetrance and expressivity of heart phenotypes
in this situation [20]. Therefore, the effects of Thx5
dosage are susceptible to additional genetic modifiers.
The molecular mechanisms by which Thx5 influences
heart development are incompletely described and
possible interactions between 7Tbx5 and genes on
Hsa21 are unknown. We hypothesize that Thx5 acts
as a genetic modifier to alter CHD in Ts65Dn mice.
Here we provide evidence of an interaction between
Thx5 and trisomy and the effects of that interaction
on trisomic gene expression and left-right patterning
of the heart.

Results

Viability of Tbx5"~ mice is dependent on genetic
background

Crosses between B6.7bx5"'~ male mice and B6C3.Ts65Dn
females were established to examine the role of Thx5 as a

Table 1 Strain dependent viability of euploid Tbx5™~ mice at

weaning

Genetic background Frequency of Tbx5"~ genotype
C57BL/6) 11 % (n=591)

B6,C3H (75 % B6, 25 % C3H) 21 % (n=131)

129SvEV/1295v) 10 %°

Black Swiss/SvJ 28 %°

°[20]
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Table 2 Ratios of all genotypes in a Ts65Dn x Thx5™~ mating
on a B6;,C3H (75 % B6, 25 % C3H background at PO

Genotype Number (%), n =180
Tox5™* 52 (289 %)
Toxs"~ 51 (28.3 %)
Ts65Dn;Tbxs ™" 46 (25.6 %)
Ts65Dn;Tbx5"~ 31 (17.2 %)

modifier of CHD. Genetic background of the Thx5 mice
affected viability (Table 1 and [20]). At birth, 7hx5 geno-
types appeared at Mendelian ratios on a B6 x C3H (75 %
B6, 25 % C3H) background (Table 2), but by weaning, the
frequency of the Thx5"~ genotype was 21 % rather than
the expected 50 %. On a B6 background, the frequency of
the Thx5""~ genotype at weaning was 11 %. Thus, genetic
factors appear to contribute to perinatal lethality associ-
ated with ThxS™".

We examined Thx5 expression in hearts at E11.5 and
confirmed the expected down-regulation in 7hx5 hetero-
zygous null mice (Fig. 1). The original characterization
of these mice demonstrated Tbx5 RNA levels substan-
tially less than 50 % at E8.5 [21], and the very low ex-
pression seen here at E11.5 reflects that difference, as
well. Surprisingly, 7hx5 mRNA was also reduced in
Ts65Dn. There may be an additive effect between the
two conditions, as the measured levels of Tbhx5 mRNA
were lower still in Ts65Dn; Thx5*~ mice.
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Trisomy affects patterns of CHD in Tbx5"~ mice

Progeny of the Ts65Dn x Thx5*'~ crosses were collected
within hours of birth, prepared for histology and
assessed for the presence of CHD. All animals examined
for CHD were on the B6 x C3H (75 % B6, 25 % C3H)
background. There is some loss of Ts65Dn fetuses dur-
ing late gestation and the observed frequency of 42 %
trisomic pups at PO (Table 2) was in the expected range
[22, 23]. Thx5*'~ mice were recovered at Mendelian ra-
tios within hours of birth. CHD is highly penetrant in
Thx5*'~ mice and we saw only a slight overall increase
in the percentage of heart defects when the null allele
occurred on a trisomic background (Table 3 and
Additional file 1: Table S1). However, the pattern of ef-
fects was altered significantly by trisomy.

We observed overriding aorta (OA) in ~58 % of
Ts65Dn; Thx5"'~ mice but only ~18 % of Thx5*'", a sig-
nificant difference (Table 3, p = 0.0004). OA consists of a
VSD and an improperly positioned aorta directly over
the VSD (Fig. 2b). The penetrance of AVSD was some-
what elevated in Ts65Dn;Tbx5"'~ mice, with ~19 % af-
fected by AVSD vs. 5 % of Thx5*'~ mice, although it did
not reach formal statistical significance (p =0.07). ASD
and Gerbode’s defect, an abnormal communication be-
tween the right atrium and left ventricle (Fig. 2c,d), were
also seen more frequently in Ts65Dn;Tbx5*~ but did
not reach statistical significance. We performed CT-
based Virtual Histology™ on six Ts65Dn;Tbx5"~ mice
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Fig. 1 Quantitative PCR of Tbx5 mRNA levels in pooled E11.5 hearts. mRNA expression was reduced to almost 10 % of wild type levels in Tbx5"~
mice (p=0.004). Note that previous studies found expression levels reduced to 20 % of wild type levels in E8.5 Tbx5"~ embryos on a mixed Black
Swiss/129 background [21]. We found expression was also reduced to 30 % of wild type levels in Ts65Dn mice (p=0.01), and 2 % of wild type
levels in Ts65Dn;Tbx5" hearts (p < 0.001). Error bars are standard deviation from the mean
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Table 3 CHDs in Tbx5"~ trisomic and euploid mice®

Genotype ASD VSD only Overriding Aorta® Gerbode's defect AVSD® No defect Total mice
Tox5"~ 11 (275 %) 10 (25 %) 7 (17.5 %) 4 (10 %) 2 (5%) 13 (325 %) 40
Ts65Dn; Thx5™~ 12 (38.7 %) 6 (194 %) 18 (58.1 %) 6 (194 %) 6 (194 %) 5(16 %) 31

2Several animals had more than one defect. (see Additional file 1: Table S1)

PThere is a significant difference between euploid and trisomic Thx5 heterozygous mice in the occurrence of overriding aorta (p = 0.0004)
The difference between euploid and trisomic Tbx5 heterozygous mice in AVSD is approaching significance (p = 0.07)

(Numira Biosciences, Salt Lake City, UT; see Methods).
Three of these animals were affected, with an AVSD,
ASD and VSD, respectively (see Additional file 2: video 1,
Additional file 3: video 2 and Additional file 4: video 3).

Candidate trisomic gene interaction with Tbx5

The simplest explanation for the increased incidence
of overriding aorta in Ts65Dn;Thx5"~ mice is an
interaction between Thx5 and a trisomic gene(s) that
is regulated by this transcription factor. We consid-
ered 109 genes that are trisomic in Ts65Dn mice

[24] and generated a list of candidate trisomic genes
based on expression patterns (Additional file 5:
Figure S1). Sixty-four of these genes are expressed in
the heart during development and 43 of them con-
tained regions that associated with TBX5 in a ChIP
study [25]. However, examination of the genomic se-
quences of these 43 revealed a T-box binding element
(TBE) in only six (Adamtsl, Dyrkla, Rcanl, Ripply3,
Sh3bgr and Wrb). We used the Transcription Element
Search System program (TESS; see Methods) to iden-
tify potential TBEs in the first exons and/or promoter

WT

Ts65Dn; Thx5-

gy

Fig. 2 CHDs seen in newborn Tbx5"~ trisomic and euploid mice. Coronal histological sections of wild type (a) and Ts650n;Tbx5"~ (b-e)
newborn mice stained with H&E. Overriding aorta (b), Gerbode's defect (c), ASDs (d), and VSDs (e) were seen in the examined animals. RA/LA:
right/left atrium, RV/LV: right/left ventricle
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Fig. 3 Interaction between Tbx5 and trisomic gene, Adamts1. Quantitative PCR of Adamts7 mRNA levels in pooled E11.5 hearts (a). Adamts1
expression levels are significantly increased in euploid Tbx5™ ‘mice (1.95x, p = 0.04). No other changes were significant compared to the wild type
expression. Error bars are standard deviation from the mean. TBX5 binding upstream of the Adamts1 locus alters transcription (b). Cells
transfected with the Adamtsi-luc construct showed increased luciferase when compared to the pGL3 construct (p=1.28 x 107%). Cells transfected
with the Adamts1-luc construct and Tbx5 siRNA showed significantly lower luciferase levels when compared to those transfected with the
Adamts1-luc construct alone (p=3.35x 10"*, compared to Adamts1-luc). Luciferase levels dropped significantly when the TBE was mutated to
inhibit TBX5 binding (p=1.51x 10~). Addition of Tbx5 siRNA did not affect transcription when the TBE was mutated (p = 0.9) Error bars are
standard deviation. The region inserted into the basic pGL3 vector is 121 bp upstream of the Adamts1 gene, contains a putative TBE and
associated with TBX5 in a ChiP study. Tbx5 over expressing cells were harvested 48 h after transfection. The FGF10-luciferase construct was used
as a positive control. Graph represents one experiment representative of all replicates
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regions of those genes [26] (see Methods). Based on
prior reports of possible effects on heart development,
evolutionary conservation, the presence of TBEs and
binding sites for other heart specific transcription fac-
tors, we selected Adamts1 for further investigation.

Adamtsl encodes an extracellular matrix protease.
Transcript levels were increased in Thx5™" mice
(p=0.04) (Fig. 3a), suggesting that Thx5 may act as a re-
pressor of Adamtsl. Using TESS, we found a putative
TBE upstream of the Adamtsl locus and tested it using
a luciferase reporter assay. The putative site, located
229 bp upstream of the Adamtsi transcription start site,
was identical to the canonical TBE (RGGTGTVR) [27].
He et al. [25] found that this region is bound by TBX5
in a chromatin immunoprecipitation assay. A 238 bp re-
gion containing the putative site and located 121 bp up-
stream of the Adamtsl transcription start site, was
amplified by PCR and cloned into the pGL3 luciferase
vector (Additional file 6: Figure S2).

We transfected the construct into cells stably over ex-
pressing Thx5 (Additional file 7: Figure S3). Luciferase
levels were increased in cells transfected with the
AdamtsI-luc construct compared to cells transfected
with empty pGL3 vector (p=1.28 x 107h (Fig. 3b).
Introduction of siRNA directed at 7hx5 reduced this
effect (p =3.35 x 10™*). The putative TBE was mutated
to inhibit TBX5 binding and luciferase levels decreased
compared to the construct with the intact TBE
(p=151 x 107%).

Thx5 is generally considered to be an inducer of tran-
scription, consistent with the increase in luciferase signal
when TBX5 binds the upstream Adamtsl region in-
cluded in the construct. However, Adamts1 expression is
increased when Tbx5 is reduced in Thx5"~ mice
(Fig. 3a). This discrepancy is likely due to the involve-
ment of distal elements in transcriptional regulation that
were not included in the construct and/or the lack of
critical co-regulators in 3T3 cells. It is not surprising
that in vivo results would differ in the presence of the
entire promoter, as well as other transcription factors
and co-regulators.

Atrial isomerism in Ts65Dn;Tbx5"~ mice

Overriding aorta and Gerbode’s defect are seen more
often in Ts65Dn;Thx5™~ mice than in their Thx5"" lit-
termates or euploid controls. We hypothesized that
these might be accompanied by atrial isomerism. In this
situation both atria are mirror images of one another
and lack the typical morphological and molecular char-
acteristics of either the right or left atrium. Normally,
Pitx2 is specifically expressed in the left atrium and it is
absent or ectopically expressed in the right atrium in
cases of atrial isomerism [28]. To determine whether
atrial isomerism occurred in Ts65Dn;Thx5™" mice, in
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situ hybridization for Pitx2 was performed on coronal
paraffin sections of E13.5 thoraxes. Pitx2 expression can
be seen in the left atrium of the heart in euploid em-
bryos, but that expression is much weaker in the mu-
tants (Fig. 4a,c). These results were confirmed by
quantitative PCR of whole hearts from E13.5 embryos
(Fig. 4e), where Pitx2 expression was reduced in
Ts65Dn; ThxS™~ compared to euploid littermates (p = 0.01).
The expected expression pattern was observed in other
organs (Additional file 8: Figure S4). The weak Pitx2 ex-
pression in the atria of Ts65Dn,Thx5" embryos suggests
that these embryos have defects in laterality (i.e., atrial
isomerism). Thus, atrial isomerism likely contributes
to the significant increase in overriding aorta in the
Ts65Dn; Thx5*'~ animals.

Discussion

The interaction between Thx5 dosage and trisomy re-
sulted in a significant increase in defects of aortic align-
ment and revealed a potential effect on left-right
patterning of the heart. The action of genetic modifiers
in heart development is evident from the differences in
penetrance and patterns of heart phenotypes in DS, in
DS mouse models and when the Thx5 null allele is bred
onto different mouse genetic backgrounds. In addition,
Holt-Oram patients who inherit the same TBX5 muta-
tion have variable heart phenotypes, indicating that add-
itional factors affect development [29]. Previous work
from our lab and others has shown how interactions be-
tween trisomy and disomic modifier genes, both in
humans and in mouse models, can adversely affect heart
development [8, 9]. For example, VEGF-A, HEY2 and
the matricellular protein CRELD1 each have an impact,
but they represent a small subset of genes in which vari-
ants contribute risk of CHD. Individuals with DS and
mutations in TBX5 displaying OA and a number of add-
itional defects have been described [30]. Isolated OA is
not frequent in DS, however it is a component of Tetral-
ogy of Fallot which occurs in 1-8 % of DS births, far
higher than in the population at large [2]. Our results
demonstrate an interaction between altered Thx5 ex-
pression and trisomy with increased OA as a primary
outcome.

Disruptions in the left-right patterning pathway fre-
quently lead to the kinds of heart defects seen here. OA
is considered to be a milder form of double outlet right
ventricle (DORV), the most common defect seen in
Pitx2 knockout mice [31], arising in part due to aortic
shifting [32]. Reducing the level of Pitx2 expression is
sufficient to cause septal and valve defects [33]. Mice
lacking the Pitx2 and Cited2 genes which are involved in
left-right patterning exhibit phenotypes similar to the
ones reported, including Gerbode’s defect and overriding
aorta [32-37]. Pitx2 is an important determinant of left-
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(See figure on previous page.)

Fig. 4 Pitx2 expression in E13.5 WT and trisomic, Tbx5™~ embryos. In situ hybridization of coronal sections of wild type (a,b) and Ts65Dn;Tbx5™~
(c,d) mice. Pitx2 expression can be seen in the left atrium of the WT animals (a). Pitx2 expression is much weaker in the trisomic, Tbx5™~ mutants
(c). Scale bar equals to 100 pm. RA/LA: right/left atrium. In situ hybridization results were verified through quantitative PCR in E13.5 hearts (e).

Error bars are standard deviation from the mean

right asymmetry of the heart and gut [28, 33, 37-40]
and confers left atrial identity; its misexpression can re-
sult in atrial isomerism [28, 39, 41]. T-box family tran-
scription factors are known to regulate Pitx2 expression
[42], and Pitx2 regulates Thx5 expression in the abdom-
inal wall during development [43]. Ts65Dn; Thx5™~ em-
bryos have reduced Pitx2 expression, which can
contribute to atrial isomerism and aortic defects.

The left-right signaling pathway is affected when tri-
somy and 7Tbx5 haploinsufficiency are combined. We
suggested previously that a universal response deficit to
Sonic hedgehog signaling due to trisomy could explain
many of the clinical features of DS [44]; hedgehog sig-
naling plays a regulatory role in left-right patterning and
can regulate Pitx2 expression [45-47]. Expression of
Sonic hedgehog in the second heart field is essential for
proper growth of the dorsal mesenchymal protrusion,
without which AVSD occurs [48]. A response deficit to
SHH in Ts65Dn could contribute to the altered localization
of Pitx2 expression seen here.

Finally, we discovered that mice with reduced 7bhx5
dosage show increased expression of the AdamtsI gene.
Adamtsl is important in the development of the extra-
cellular matrix in endocardial cushions [49], and is a
regulator of the VEGF pathway [50]. It is interesting that
individuals with DS who have an AVSD show an excess
of deleterious variants in VEGF pathway genes relative
to those with DS who do not have CHD [8]. Reduced
Thx5 dosage may contribute to the risk of heart defects
by a role in transcriptional regulation of the Adamtsl
gene, a regulator of the VEGF pathway.

Defects in left-right patterning likely contribute to the
significant increase in overriding aorta in Ts65Dn; Thx5""
mice relative to either genetic defects in isolation. The
mechanism likely involves reduced expression of Pitx2, a
gene with known roles in laterality. In addition, we demon-
strated that a change in Thx5 dosage affects transcription
of Adamtsl, suggesting it is a target of TBX5 in normal
heart development in vivo.

Conclusions

We have shown that Thx5 dosage and trisomy interact
to affect the outcome of heart development, potentially
altering left-right patterning of the heart. We provided
evidence of weak Pitx2 expression, important for left-
right patterning, in the Ts65Dn;Thx5"~ mice. We have
also provided evidence that TBX5 plays a role in

regulation of the trisomic Adamtsl gene. A valid TBX5
binding site was shown upstream of the AdamtsI locus
and mutation of the site significantly affected
transcription.

Methods

Animal husbandry

Animals were maintained in a virus and antibody-free
facility with food and water ad libitum. Ts65Dn mice
(B6EIC3H-a/A-Ts(17'¢)65Dn) were obtained from The
Jackson Laboratory and maintained as an advanced
intercross on the B6;C3H background. Thx5 heterozy-
gous null mice (Thx5*'") [20] were kindly provided by
Dr. Jonathan Seidman. We backcrossed the Thx5"~
mice onto a C57BL/6] background for at least five gen-
erations. All data was taken after mice had been back-
crossed for at least five generations. Progeny in Tables 1
and 2 were the result of separate experiments. Progeny in
Table 1 were obtained by crossing Thx5™~ mice on a B6
background with wild type B6 mice (obtained from Jackson
Laboratory) or B6;C3H mice bred in our lab. Progeny in
Tables 2 and 3 were obtained at PO via crosses between
Ts65Dn females (B6;C3H) and Thx5*~ males on a B6
background. All procedures were approved by the Institu-
tional Animal Care and Use Committee.

Genotyping

We extracted genomic DNA from tail tips of mice by
heating at 90 °C for 2 h in 10 mM NaOH, 0.2 mM
EDTA and used for genotyping by PCR. Sequences of
primers for Ts65Dn genotyping are as follows: C17F: 5'-
GTGGCAAGAGACTCAAATTCAAC-3’; Cl6R: 5'-TG
GCTTATTATTATCAGGGCATTT-3"; IMR5: 5'-AAA
GTCGCTCTGAGTTGTTAT-3'; IMR6: 5'-GGAGCG
GGAGAAATGGATATG-3". For Ts65Dn genotyping,
PCR was done under the following cycling conditions:
95 °C 3 min, (94 °C 10s, 58.7 °C 20s, 72 °C 27 s) for
31 cycles, 72 °C 5 min. For Thx5 genotyping, three
primers designed to amplify either the wild type or null
alleles were added together in each reaction [20]. The
sequences of the primers for Thx5 genotyping are as
follows: 3 F2: 5'-CCCAGCGGCAGGCGTAGAC -3';
Loxp-F: 5'-GCAGCGCAGTCCTCACCAG -3’; Loxp-R:
5'-AAATTCCAACCCCTTCCACAGAT -3'. The PCR
was done under the following cycling conditions: 94 °C
3 min, (94 °C 30s, 59.7 °C 30s, 72 °C 1 min) for 35 cycles,
72 °C 10 min.



Polk et al. BMC Developmental Biology (2015) 15:30

Histology

We collected the progeny of Ts65Dn x Thx5"~ crosses at
postnatal day 0 (P0) within hours of birth. We euthanized
pups and removed and fixed thoraxes in 10 % formalin for
at least 48 h. Tissues were embedded in paraffin, sectioned
at 7 pm and stained with hematoxylin/eosin using stand-
ard methods. The heart morphology in each animal was
scored under a dissecting stereomicroscope (Nikon
SMZ1500, Japan) by at least two individuals blinded to
genotype. Pictures were taken using the NIS-Elements Br
software (Nikon, Japan).

Virtual Histology™ was performed on six Ts65Dn; Thx5™~
mice (Numira Biosciences, Salt Lake City, UT). Virtual
Histology™ is a micro-CT based method that allows for
high resolution imaging. Specimens were stained in a pro-
prietary solution before being scanned at 20 pum resolution
with a volumetric micro-CT instrument. Using this
method tissues are left intact and imaging analysis can
be used to create “virtual” histological sections.

Identification of candidate genes

We examined 109 genes that are trisomic in Ts65Dn
mice for localization of expression in the heart using the
following databases: EMAGE gene expression database
[51], VisiGene image browser [52], the Chromosome 21
gene expression atlas [53], and the MGI gene expression
database [54]. Trisomic genes expressed in heart during
development, according to the above databases, were
compared to a list of genes bound by TBX5 in a chro-
matin immunoprecipitation (ChIP) study [25]. We gen-
erated a list of trisomic candidate genes expressed in
heart and bound by TBX5 (Additional file 5: Figure S1,
Additional file 9: Table S2). From the list of 43 genes, we
chose 6 as top candidates. The top 6 genes were the only
genes out of the 43 which had a TBE in their promoter
regions, were bound by other heart specific transcription
factors, had high evolutionary conservation and were
previously implicated in heart development. The Tran-
scription Element Search System [26] was used to search
for the TBE (RGGTGTVR) in regions of the 43 candi-
date genes that had a known or speculated role in heart
development [27].

Real-time analysis of gene expression

We extracted total RNA from the hearts of embryos using
the RNeasy mini kit (Qiagen, Venlo, Netherlands). cDNA
synthesis was carried out with the First-Strand cDNA syn-
thesis kit (Life Sciences Advanced Technologies, St. Peters-
burg, FL) using 1 pg of total RNA as template. PCR was
carried out on a 7500 Real-Time PCR System (Applied Bio-
systems, Carlsbad, CA). Thx5 was quantified using a Taq-
man FAM-labeled pre-designed assay (Mm0195728 ml)
from Applied Biosystems and normalized to a Gapdh VIC-
labeled assay (Mm99999915_gl) using Tagman Gene

Page 9 of 12

Expression master mix. POWER SybrGreen master mix
was used for all other expression assays (Applied Biosys-
tems, Carlsbad, CA). Primers used are as follows: Adamts1-
F: 5'-CACGTGTGACACTCTCGGAA-3'; AdamisI-R: 5'-
CGTGCGGCATGTTAAACACA-3'; Gapdh-F: 5'-TGCA
CCACCAACTGCTTAG-3"; Gapdh-R: 5'-GATGCAGG-
GATGATGTTC-3'; Pitx2-F: 5'-GCAGCCGTTGAATGT
CTCTTC-3; Pitx2-R: 5'-GTCCGTGAACTCGACCTTT
TT-3". PCR was done under the following cycling condi-
tions: 95 °C 15 min, (95 °C 15 s, 60 °C 1 min) for 40 cycles,
followed by a melt curve analysis between 95 and 60 °C.
Expression of candidate genes was normalized to Gapdh.
Fold change expression values were determined using the
delta delta Ct method [55].

Creation of Tbx5 constitutively over-expressing cells

We obtained a Tbx5 cDNA clone from the IL.M.A.G.E.
consortium and subcloned it into the pcDNA3.1+ vec-
tor (Life Technologies, Carlsbad, CA), putting it under
the control of the CMV promoter. NIH-3T3 cells were
transfected with the pcDNA-Tbx5 construct using
Lipofectamine 2000 (Life Technologies, Carlsbad, CA).
Stably transfected cell lines were selected with 1 mg/
ml Geneticin (Gibco, Carlsbad, CA). We maintained
the cells in Dulbecco’s Modified Eagle Medium with
high glucose (4.5 g/L) (Life Technologies, Carlsbad,
CA), 10 % fetal bovine serum, 1 mg/ml Geneticin, 1X
glutamine and penicillin/streptomycin at 37 °C and
5 % CO».

Functional studies and luciferase assay

We amplified the portion of the promoter region of
Adamtsl that was bound by TBX5 in a ChIP study [25], by
PCR with the insertion of cut sites for Kpnl and Xhol. PCR
primers are as follows, F: 5'-GGCGCTTATGGTACCTGGT-
CACACTTTTTTIGG-3; R 5- GGCGCTTATCTCGAG-
CACCTTCACAGAGGCTCA-3'. The amplified region
was subcloned into the pGL3 basic vector (Promega,
Madison, WI). Site directed mutagenesis was used to mu-
tate the putative TBE site found upstream of the Adamts1
promoter. The following primers were used to mutate the
putative TBE site and insert an EcoRI restriction site, Pri-
mer 1: 5'-CACAGCTCGTCACTCTGGGAATTCAAGA
CGCCGAAACAGCGCTG-3'; Primer 2: 5'-CAGCGC
TGTTTCGGCGTCTTGAATTCCCAGAGTGACGAGC
TGTG-3". We transfected the constructs into NIH-3T3
cells constitutively over expressing Thx5 (Additional file 7:
Figure S3). Thx5 siRNA and scrambled siRNA were pur-
chased from Life Technologies (Carlsbad,CA). Luciferase
levels were measured in a 1450 Wallac Jet MicroBeta liquid
scintillation and luminescence counter (Perkin-Elmer, Wal-
tham, MA) using the Dual Luciferase Assay Kit (Promega,
Madison, WT).
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In Situ hybridization

E13.5 embryos were fixed in 4 % paraformaldehyde for
1 h, rinsed in 1X PBS three times for 5 min and then
dehydrated in 25, 50 and 70 % ethanol for 1 h each.
After dehydration the embryos were stored at —20 °C in
70 % ethanol until embedded in paraffin and sectioned
according to standard methods. We performed in situ
hybridization using traditional dioxigenin (DIG)-labeled
RNA probes detected with alkaline phoshatase (AP)-
conjugated anti-dioxigenin antibody using nitro blue
tetrazolium chloride / 5-bromo-4-chloro-3-indolyl-phos-
phate toluidine-salt (NBT/BCIP) substrate. DIG RNA la-
beling mix, anti-DIG-AP antibody, blocking reagent, NBT/
BCIP were all purchased from Roche Applied Science
(Indianapolis, IN) and used according to the manufac-
turer’s instructions with minimal modifications. The
Pitx2 antisense and sense probes were described earlier
[56]. Images were taken with the Leica DMRB upright
light microscope using the Leica Application Suite Software
v4.3 (Leica Microsystems-W. Nuhsbaum Inc., McHenry,
IL). Composite images were compiled using Adobe
[lustrator CS4 (Adobe Systems, San Jose, CA).

Statistical analysis

The incidence of various heart defects for different ge-
notypes was compared by Fisher’s test using GraphPad
Prism version 5. A 2x2 contingency table was made
comparing the two groups for each separate phenotype.
The relative quantification of gene expression from dif-
ferent genotypes was compared by the student’s t-test
using delta Ct values. All tests were 2-tailed and P < 0.05
were considered significant.

Additional files

Additional file 1: Video 1. https.//jh.box.com/s/z307797mxgmiw5ow
bxcrey78069y2tir. VSD in a Ts65Dn; Thx5™~ PO animal. 3D rendering of
the heart of a PO Ts65Dn; Tbx5"~ depicting a VSD. At the start of the
video a coronal view of the heart can be seen. The left and right atria as
well as the ventricles are shown. The heart then rotates so the view is
now transverse. In the transverse view the heart is slowly cut away
revealing the interior ventricles and a ventricular septal defect.

Additional file 2: Video 2. https:/jh.box.com/s/3peeo5dazhdkil23ffx
b62xblloybsnk. ASD in a Ts65Dn; Thx5™~ PO animal. 3D rendering of the
heart of a PO Ts65Dn; Thx5"~ depicting an ASD. At the start of the video
a coronal view of the heart can be seen. The left and right atria as well as
the ventricles are shown. The heart rotates to a sagittal view. The heart is
then slowly cut away revealing the interior of the right atria and an atrial
septal defect.

Additional file 3: Video 3. https.//jh.box.com/s/2loh3n0x55hbmstcu
Akxn9rxt3tmf2x6. AVSD in a Ts65Dn; Tbx5™~ PO animal. CT scan of a PO
Ts65Dn; Thx5"~ depicting an AVSD. The video gives a coronal view of
data collected during a micro-CT scan. The first look at the heart can be
seen at 00:05. The video cuts away to reveal an atrioventricular septal
defect in the heart, most clearly seen at 00:16.

Additional file 4: Figure S1. Identifying trisomic gene candidates for

Tbx5 interaction. Gene expression databases were searched to find
expression domains of all Ts65Dn trisomic genes. Genes that were
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expressed in the heart during development were further investigated for
interaction with TBX5 in a ChIP study.

Additional file 5: Figure S2. Region of Adamts1 gene inserted into
pGL3 vector. The 238 bp region highlighted in gray contains the
canonical T-box binding site (RGGTGTVR) and was amplified by PCR
and cloned into a pGL3 luciferase vector (Promega). This region was
associated with TBX5 in a ChIP study. The TBE is located 229 bp
upstream of the Adamts] transcription start site.

Additional file 6: Figure S3. Tbx5 mRNA expression in transfected cells.
Quantitative PCR was used to measure Tbx5 expression in NIH-3T3 cells
transfected with a Tbx5-pcDNA3.1+ construct using Lipofectamine 2000
(Life Technologies, Carlsbad, CA). Stably transfected cells expressed about
70 times as much Tbx5 as the NIH-3T3 cells. Stably transfected cell lines
were selected with T mg/ml Geneticin (Gibco, Carlsbad, CA).

Additional file 7: Figure S4. Expression of Pitx2 with in situ
hybridization (ISH) in E13.5 WT and trisomic, Tbx5"/~ mutants in other
areas as pituitary (A, E, I, M), tooth bud (B, F, J, N), and midbrain(C, G, K,
0) in sagittal sections and spinal cord in horizontal sections (D, H, L, P).
Embryo faces to the right in sagittal sections. Sections come from same
animals as used for the heart studies and processed for ISH at the same
time. Spinal cord photos are from the exact same slides photographed
for heart studies. Arrowheads in Panel D and E mark expected Pitx2
staining in spinal cord neurons. Pitx2-AS: Pitx2 antisense probe, Pitx2S:
Pitx2 sense probe. Scale bar equals to 100 um.

Additional file 8: Table S1. Number of animals with multiple defects

Additional file 9: Table S2. Forty-three Ts65Dn trisomic genes
expressed in heart during development and bound by TBX5 in a ChIP
experiment.
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