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Abstract

Background: In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the
postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia.
Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the
DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in
primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages
of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics
at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation.

Results: To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG
dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified
genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17)
and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7
blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data
and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including
DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos
coincident with imprint stabilization.

Conclusion: The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable
during the early stages of embryonic development, possibly requiring an active period of imprint stabilization.

Keywords: Embryo, DNA methylation, Genomic imprinting, Bovine, Preimplantation embryos, Epigenetic
reprogramming, DNA methyltransferases
Background
The epigenetic process of genomic imprinting enables
parent-of-origin expression of a cohort of mammalian
genes [1]. Imprinted genes have been shown to play a
pivotal role in embryonic growth, development, placental
function and postnatal behaviour and metabolism [2-5].
The distinctive monoallelic expression of imprinted genes
is facilitated through asymmetrical epigenetic marks on
either the maternal or paternal allele. Generally, imprinted
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genes are arranged in clusters containing differentially
marked, CpG rich domains, known as imprint control
regions (ICRs) and/or differentially methylated regions
(DMRs); the most extensively studied of these marks is
DNA methylation [6]. Mammalian DNA methylation
patterns required for genomic imprinting are subject to
periods of dynamic reprogramming during development
and are established at different developmental time
points, depending on which germline they are transmit-
ted through. Paternal DMRs acquire their methylation
marks in the prospermatagonia, with completion occur-
ring prior to birth [7,8]; while DNA methylation marks
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at maternal DMRs are established postnatally in the
growing oocyte [9-11].
Following fertilization, a global cascade of DNA de-

methylation is evident in the preimplantation embryos
of a number of mammalian species including mouse, rat
and cattle [12,13]. This demethylation event occurs ac-
tively on the paternal genome in one cell embryos
[14,15] and passively on the maternal genome following
each cell division from the two cell stage until blastocyst
in mouse [16] and up to the 8-cell stage in bovine [12].
Interestingly, studies in mice have shown that the DNA
methylation landscape at the DMR of the imprinted H19
gene is resistant to these pan-genomic demethylation
events [17,18]. Although information is available in mice
[19-21] and there is some information on non-imprinted
and imprinted genes in bovine embryos [22,23], the fate
of maternally methylated imprinted gene DMRs remains
largely undetermined during the early stages of bovine
embryogenesis, especially so between blastocyst stage
and implantation. Indeed, it has been suggested that
murine DNA methylation imprints may be dynamic in
the early embryo [24]. However, this study demonstrated
that regions around maternally methylated germ line
DMRs may undergo some changes, leaving a core DMR
methylated. Extensive work has been carried out to elu-
cidate which genes are involved with establishing and
maintaining DNA methylation marks, and it is now
widely accepted that the DNA methyltransferase genes
(Dnmt3a, Dnmt3b and Dnmt3L) are responsible for
establishing DNA methylation imprints in the male and
female germline [25]; with Dnmt1 and Uhrf1 being pri-
marily implicated with maintenance of methylation
marks following DNA replication [26-28]. Gene targeting
studies in mice have demonstrated that the methyltrans-
ferases Dnmt3a, Dnmt3b and Dnmt1 are indispensable for
embryonic survival [29,30]. With regards to Dnmt3L,
transgenic mice carrying homozygous null mutations are
viable [31]; however, Dnmt3L-/- male mice are infertile due
to reactivation of long interspersed elements (LINE-1) and
retrotransposons as well as meiotic catastrophe [32,33],
while females fail to deliver viable pups as a result of hy-
pomethylation at imprinted loci [34]. More recently, ex-
pression of Trim28/Kap1 and Zfp57 have been associated
with the regulation of epigenetic stability in mouse oocytes
and embryos [35,36]. In addition to establishing and main-
taining DNA methylation marks, evidence suggests that
the Ten-eleven translocation methylcytosine dioxygenase
(TET) family members play a central role in active de-
methylation [37].
In cattle, developmental epigenetic research has pri-

marily focused on cloned bovine embryos, due to the
low survival rates of embryos produced by somatic cell
nuclear transfer (SCNT). A high degree of SCNT embry-
onic loss occurs during the preimplantation period [38]
with further loss and morphological anomalies (enlarged
placentomes, enlarged umbilical cords and large off-
spring syndrome) being observed in embryos that suc-
cessfully implant and progress through gestation [39-41].
It has been suggested that this low survivability (5 - 8%
development to term) [42], may be due to erroneous epi-
genetic reprogramming [43,44], such as aberrant DNA
methylation patterns observed at the imprinted SNRPN
locus in Day 17 SCNT embryos [45]. Monoallelic ex-
pression and DNA methylation patterns of imprinted
genes associated with the human epigenetic disorder,
Beckwith-Wiedemann syndrome, have also been shown
to be conserved in bovine Day 65 concepti [46]. The
role of DNA methylation programming has also been
highlighted in studies involving DNMT1 siRNA-based
knockdown experiments during in vitro development of
bovine SCNT embryos. These investigations suggest that
a significant increase in development to blastocyst was
due to enhanced reprogramming efficiency elicited by
DNA demethylation in DNMT1 knockdown embryos
[47]. In a recent study using fluorescent labelling tech-
niques, Dobbs and colleagues revealed global methylation
patterns in pre-implantation bovine embryos [48]. Results
from this study showed that methylation patterns signifi-
cantly differ between male and female embryos and that,
in the blastocyst, the inner cell (ICM) mass is less methyl-
ated when compared to the trophectoderm (TE), confirm-
ing previous findings by Hou et al. [49]. However, in
contrast to the investigations carried out on cloned em-
bryos, non-manipulated in vivo derived embryos have
received limited attention, particularly prior to Day 17.
In the current study, we investigated the DNA methy-

lation profiles at DMRs of six bovine imprinted genes
(SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) in
in vivo derived embryos at several stages of development,
including blastocyst and peri-implanting conceptuses. In
addition, the abundance of RNA transcripts, and proteins,
known to be associated with the establishment and main-
tenance of DNA methylation imprints were determined in
embryos at parallel stages of development.

Methods
Ethical approval
All experimental procedures involving animals were li-
censed by the Department of Health and Children,
Ireland, in accordance with the Cruelty to Animals Act,
1897, and the European Community Directive 86/609/EC.
All procedures were sanctioned by the University College
Dublin, Ireland Animals Research Ethics Committee. All
animals were processed in a commercial abattoir.

Animal synchronization and embryo collection
Collection of in vivo derived bovine embryos was per-
formed using a previously described synchronization
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protocol [50,51]. Briefly, crossbred beef heifers (approxi-
mately 18-24 months old) were synchronized using an
8-Day CIDR treatment (Controlled Internal Drug Re-
lease device, 1.36 g progesterone; Pfizer Animal Health
Worldwide) with administration of a prostaglandin PGF2α
analogue (Estrumate MSD Animal Health, containing 0.5
mg cloprostenol) injection one Day prior to removal of the
CIDR. Animals were checked for estrus four times daily,
from 36 h following PGF2α injection. Animals that were in
standing estrus between 36-60 h were inseminated using
frozen thawed semen. Inseminated animals were slaugh-
tered and embryos recovered from reproductive tracts on
Days 7 (n = 10), 14 (n = 8), 17 (n = 10) and 25 (n = 8).
DNA modification
Isolation and bisulfite modification of DNA was carried
out using the EZ methylation direct method (Zymo Re-
search) according to manufacturer’s guidelines. Firstly,
proteinase k digestion was performed in a 20 μl reaction
volume, containing 1 μg/μl proteinase K and 1× M-
digestion buffer, at 50°C overnight. Sample input for the
digests were as follows; individual Day 7 or 2 μl (from a
total volume equal to 6 μl) of disaggregated Day 14, Day
17 embryonic disc and Day 25 embryo proper. For
trophectoderm (Day 17) and extraembryonic (Day 25)
samples a 2 ul aliquot was used. Following this, 130 μl
of fresh CT conversion reagent (sodium bisulfite conver-
sion solution) was added directly to the digests which
were then incubated at 98°C for 8 min and 64°C for 8 h.
Bisulfite DNA clean-up was carried out by adding the
CT conversion reactions to Zymo-Spin columns pre-
loaded with 600 μl M-binding buffer, centrifugation at
13,000 rpm, washing with 100 μl M-wash buffer, desul-
phonation at room temperature for 25 min and a further
two washes with 200 μl M-wash buffer. Samples were
eluted in 42 μl elution buffer, warmed to 50°C to en-
hance recovery. Liver, kidney and heart samples were
modified as in [11]. For experiments using limited start-
ing amounts of DNA, the DNA was extracted using an
AllPrep DNA/RNA Micro Kit (Qiagen) and quantified
using a Qubit® dsDNA high sensitivity assay kit and a
Qubit® 2.0 Fluorometer (LifeTechnologies).
Bisulfite PCR
Bisulfite PCR reactions were carried out in 25 μl reac-
tions using primers outlined in (Additional file 1: Table
S2) Each PCR reaction contained 1 X PCR buffer (minus
MgCl2), 0.2 μm forward and reverse primer, 2 mM
MgCl2, 1.25 U Platinum Taq DNA polymerase and 6 μl
bisulfite DNA template. Amplification conditions were
as follows: initial denaturation; 95°C 3 min, followed by
40 cycles of 95°C denaturation for 30 sec, variable °C an-
nealing for 30 sec and 72°C elongation for 30 sec, with a
final elongation step at 72°C for 5 min. All reagents were
supplied by Invitrogen Life Technologies™.
Pyrosequencing
Pyrosequencing assays for DMRs at maternally imprinted
genes were verified previously [11]. The H19 assay was de-
signed according to previously identified DMR [52] and
verified in Additional file 2: Figure S1. Biotin labeled bisul-
fite PCR products, verified by agarose gel electrophoresis,
were made up to 80 μl reaction volumes containing 2 μl
streptavidin-coated Sepharose beads (GE Healthcare),
20 μl nuclease free H20 and 40 ul binding buffer (Qiagen).
Mixtures were agitated, to enable binding of biotin labeled
strands to beads, by shaking at room temperature for 5
min. Template-bead complexes were immobilized to in-
dividual prongs on a Pyromark Q24 vacuum manifold
(Qiagen) and subjected to a 10 sec ethanol wash (70%
ethanol, Sigma); 15 sec denaturation step (PyroMark de-
naturation solution) and final 20 sec wash step in 1 X
PyroMark wash buffer. The vacuum manifold was turned
off and the bound template-bead complexes released into
25 μl primer mixes containing 0.3 μM sequencing primer
and PyroMark annealing buffer. Internal bisulfite controls
were included in each pyrosequencing assay performed.
Only sequences that passed the internal control (>95%
bisulfite conversion) were included in the analysis.
Statistical analysis of methylation data
For this study, DMR methylation value was treated as a
continuous variable. Pairwise group comparison of the
variance in methylation for each gene was analysed using
Levene’s homogeneity of variance test [53], which as-
sumes data are not normally distributed. A P-value
threshold of ≤ 0.05 was chosen to identify significant dif-
ferences in the variance between groups. All analyses
were performed using the Minitab version 16 software
package (Minitab Ltd, Coventry, UK).
Gene and protein expression analysis
The TPM values for each gene of interest were retrieved
from a bovine embryo RNA-seq dataset [54]. The TPM
values were log transformed and analyzed by the statis-
tical package SAS (SAS Institute, Cary, NC). Analysis
was performed using general linear model procedure
(PROC GLM) with Day as the main effect. Effect of Day
on embryo/conceptus gene expression were separated by
Tukey’s test and a P value of < 0.05 was considered sig-
nificant. Gene expression data are presented as the mean
TPM± SE. DNA methyltransferase protein analysis was
carried out using whole Day 7 embryos or small frag-
ments of Day 13 and 25 embryos essentially as described
previously [11].
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Experimental model
The methylation profiles of six bovine genes (Figure 1A)
known to undergo genomic imprinting were analysed
[11,52] (see also http://www.geneimprint.com/site/genes-
by-species.Bos+taurus). These included the maternally
imprinted small nuclear ribonucleoprotein polypeptide N
gene (SNRPN); mesoderm specific transcript homolog
[mouse] gene (MEST); insulin-like growth factor 2 recep-
tor gene (IGF2R); pleiomorphic adenoma gene-like 1 gene
(PLAGL1); paternally expressed 10 gene (PEG10) and the
paternally imprinted maternally expressed transcript gene
(H19). The number of DMR-associated CpG dinucleotides
analysed for each gene were as follows: SNRPN (n = 12,
number of CpGs in island = 67); MEST (n = 15, number of
A
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CpGs in island = 119); IGF2R (n = 12, number of CpGs
in island = 108); PLAGL1 (n = 11, number of CpGs in
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78) and H19 (n = 8, number of CpGs in island = 45).
The DNA methylation status of each individual CpG
was determined by pyrosequencing, with the average
methylation status of each gene (herein referred to as
methylation value) calculated for single in vivo embryos
at different stages of development (Additional file 3:
Table S1).
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similar mechanism exists at bovine imprinted loci. To
test this hypothesis, the methylation patterns at a panel
of DMRs, were assayed in embryos (Figure 1B) across
the pre- and peri-implantation axis: blastocyst (Day 7),
hatched ovoid embryo (Day 14), filamentous embryo
(Day 17) and implanting conceptus (Day 25). In addition,
the methylation status of these DMRs was analysed in
trophectoderm (Day 17) and extra embryonic (Day 25)
tissues. For the Day 17 embryos two sections of the
trophectoderm, embryonic disc adjacent (TE) and
trophectoderm peripheral (TP), were analysed, as differ-
ences in morphology [55] and function [56] have previ-
ously been identified between regions adjacent to the
embryonic disc and the periphery of the trophectoderm.
A minimum of 4 individual embryos were assayed at
each time point.

Results
DMR methylation during pre-implantation embryogenesis
Comparison across the different embryonic stages re-
vealed that the greatest range in methylation values
occurred at the Day 7 blastocyst stage (3-61% [SNRPN];
7-59% [MEST]; 13-44% [IGF2R]; 12-64% [PLAGL1]; 7-
59% [PEG10] and 20-32% [H19]), followed by the Day
14 hatched ovoid embryos (27-45% [SNRPN]; 31-36%
[MEST]; 28-89% [IGF2R]; 31-42% [PLAGL1]; 22-37%
[PEG10] and 21-31% [H19]). Notably, the range of
methylation values for all six genes analysed were nar-
rower at the Day 17 and Day 25 embryonic stages
(Figure 2).
Previous studies have shown that methylation at

DMRs of imprinted genes is stably maintained through-
out early embryonic development [57]. For each gene,
we compared the variances in sample group methylation
across the development time course. For this, each de-
velopmental stage was considered a sample group and
all possible pairwise group combinations were compared
using the Levene’s test [53] for homogeneity of variance
implemented in Minitab. This test does not assume an
underlying normal distribution and is appropriate for
comparing variances when sample sizes are small [58].
We hypothesised that stable inheritance and mainten-
ance of methylation at imprinted loci across the pre-
implantation developmental stages analysed will result in
non-significant differences in the variance of methylation
values between sample groups (Levene’s test P ≥ 0.05). In
contrast, fluctuations in methylation patterns across the
pre-implantation developmental will result in significant
differences in the variance of methylation values across
sample groups (Levene’s test P ≤ 0.05).
Pairwise group comparisons revealed statistically sig-

nificant differences (P ≤ 0.05) between the variance in
methylation values between the Day 7 blastocysts rela-
tive to the later embryos for all genes. The variance of
the PLAGL1 and PEG10 DMR methylation values at
Day 7 was significantly greater to the variances observed
for all three later developmental stages. In addition, the
variance of the IGF2R methylation at Day 7 was signifi-
cantly greater to that for the Day 17 and Day 25 em-
bryos. Significantly greater variances were also observed
for MEST (Day 7 versus Day 17), H19 and SNRPN (both
Day 7 versus Day 25). Notably, pairwise comparison of
the variance in methylation values of the six gene-
associated DMRs at the later developmental stages (Day
14, Day 17 and Day 25) revealed no statistically signifi-
cant differences (P ≥ 0.05). Furthermore, Day 17 and Day
25 embryonic methylation values were similar to those
of adult somatic samples, from heart, liver and kidney
(Figure 3). To address the possibility that the observed
variability in the blastocyst stage embryos could be due
to technical, not biological, variation pyrosequencing
analysis was performed using limited starting amounts
of DNA- representative of the DNA content from a sin-
gle (~1 ng DNA) or half (~500 pg DNA) a bovine
blastocyst. Variation of DMR methylation between the
two groups was assessed using the Levene’s test outlined
above. No significant differences were observed between
the two starting input amounts of DNA (Additional file
4: Figure S2A). However, further analysis of a subset of
DMRs (SNRPN, PEG10 and H19) using D7 methylation
values and methylation values using limited starting
amounts of embryonic and somatic (heart and liver)
DNA samples revealed some significant differences for
SNRPN and PEG10 (Additional file 4: Figures S2B-C)
and no differences for H19 (Additional file 4: Figure
S2D). When methylation was analysed using D17 methy-
lation values (Additional file 3: Table S1) with low input
(LI) D17 samples, with same cell equivalents of D7 sam-
ples, SNRPN and PEG10 showed no significant differ-
ences (Additional file 4: Figure S2B (i) & S2C (i)). In a
similar experiment using D25 samples SNRPN showed
significant difference, while PEG10 did not (Additional
file 4: Figure S2B (ii) & S2C (ii)). Comparison of D7
methylation values (Additional file 3: Table S1) with LI
somatic and LI embryonic methylation values demon-
strated that D7 values were significantly different to LI
somatic values and not to LI embryonic methylation
values (Additional file 4: Figure S2B (iii) & S2C (iii)).

Trophectoderm DMR methylation
As the elongating/filamentous embryo is comprised of
embryonic disc and trophectoderm tissues, we analysed
and compared the variance in methylation values for
each gene-associated DMR for these tissues at the Day
17 developmental stage. Three sample types were included
in this analysis—embryonic disc (ED), trophectoderm per-
ipheral (TP) and trophectoderm adjacent to the embry-
onic disc (TE). Comparisons of variance in methylation
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(See figure on previous page.)
Figure 2 Pyrosequencing analysis of DNA methylation at six bovine imprinted differentially methylated regions during early
embryogenesis. Bisulfite PCR and pyrosequencing was performed using genomic DNA isolated from embryos (n = 8 - 10) at four separate time
points; blastocyst (Day 7), hatched ovoid embryos (Day 14), filamentous embryos (Day 17) and implanting conceptuses (Day 25). At Day 17,
trophectoderm embryonic regions adjacent (TE) and peripheral to the embryonic disc (TP) were analysed. Trophectoderm samples at Day 25
were also included in the analysis. An overall trend of imprint stabilization can be observed for the six genes with increasing Days of embryonic
development, post blastocyst. (A) Methylation values for SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19 at Day 7 had the most significant differences,
when compared to Days 14, 17 or 25. (B) Top Panel; Standard deviations were calculated using individual methylation values (n = 4 - 9) for all
genes in each group. Overall, standard deviations are greatest in group 1 (Day 7 blastocyst) with the smallest degree of variation occurring in
the Day 25 implanting concepti (group 6) and Day 25 implanting concepti extra embryonic region. Bottom panel; Average methylation values,
plotted with standard deviation values, for embryos isolated 7, 14, 17 and 25 Days post insemination (groups 1-3 and 6 from top panel).
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values were performed for each gene between ED and TE,
ED and TP, and TP and TE. With the exception of the
comparison between the ED and TE tissues (P = 0.04) for
MEST, there were no significant differences in the variance
methylation observed (Figure 2A). Similarly comparison
of variance in methylation values was carried out using
data from Day 25 trophectoderm and Day 25 embryo
samples. With the exception of SNRPN (P ≤ 0.05) no sig-
nificant differences were observed.

Methylation machinery abundance during bovine
embryogenesis
Analysis of global transcriptomic data generated by
RNA-seq profiling of Day- 7, 10, 13, 16 and 19 bovine
embryos [54], revealed an overall effect of embryonic
stage on the RNA transcript abundance (transcripts per
million, TPM) of genes associated with the establishment
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Figure 4 Relative transcript abundance of DNMT3A, DNMT3B, DNMT1, TET family, UHRF1 family, TRIM28/KAP1 and ZFP57 over five
developmental stages. (A) The TPM values for each gene of interest were retrieved from a bovine embryo RNA-seq dataset (43) generated from
embryos (n = 5) at Day 7 (blastocyst), Day 10 (post hatching spherical embryo/conceptus), Day 13 (ovoid embryo/conceptus), Day 16 (filamentous
embryo/coneptus) and Day 19 (filamentous embryo/conceptus; initiation of implantation). Bars with similar superscripts (abcd) are not significantly
different (P < 0.05). A significant effect of embryonic stage on gene expression was observed for DNMT3A, DNMT3B, DNMT1 and TRIM28/KAP1.
Although a trend of decreasing transcript abundance is apparent for TET1-1, TET1-3 and ZFP57, the decrease was not statistically significant. Transcripts
per million (TPM). (B) Western blot analysis of the DNA methyltransferases; DNMT3A, DNMT3A2 and DNMT3B. All proteins were expressed in Day 7
blastocyst samples (n= 4) with DNMT3A and DNMT3B being expressed in all Day 13 embryos (n = 4). DNMT3 methyltransferase protein expression was
not detectable in Day 25 conceptuses (n = 4). A positive control (+Ctl) of total protein extracted from oocytes (shown previously to express the DNMT3
family members) was separated alongside the embryo samples.
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using protein isolated from Day 7, 13 embryos and Day
25 conceptuses samples (Figure 4B). A similar pattern of
expression was observed for these proteins that was also
present in the RNA-seq analysis; demonstrating that
both RNA and protein molecules are abundant during
the period of DNA methylation imprint stabilisation.

Discussion
The current study details the methylation dynamics at a
panel of differentially methylated imprinted gene loci,
during pre- and peri-implantation bovine development.
Results generated from this investigation have yielded
novel information regarding the stability of DNA methy-
lation imprints in this early developmental window. We
provide evidence suggesting that DMRs may be sub-
jected to a period of reprogramming in cattle, during the
ontogeny from bovine blastocyst to hatched ovoid em-
bryo/conceptus.
Current understanding of the fate of gametic DNA

methylation marks at imprinted genes following
fertilization has come from studies in mice [17,18].
These investigations, for example, have provided robust
information regarding the paternally transmitted H19
DMR, demonstrating its stability during early embryonic
development. Despite limited information regarding the
early embryonic stability of maternally derived DNA
methylation imprints, it is widely accepted that they follow
a similar path to that of H19 [16]. Here, we report for the
first time a high level of variability in DNA methylation at
the DMRs of imprinted genes in the bovine blastocyst,
relative to levels detected at later stages of peri-
implantation embryo development. This is similar to
previous results reported in human that showed, using
pyrosequencing, variability of DNA methylation at
DMRs of imprinted genes in single blastocysts [59].
These findings suggest that there possibly could be a
wave of imprint stabilisation post blastocyst stage, fol-
lowing which, embryonic DMR methylation values be-
come comparable to those observed in adult somatic
tissues.
This observed variability in methylation could, how-

ever, be due to a number of possible reasons. Firstly, it is
possible that the variation in DMR methylation observed
in the bovine blastocyst may be due, in part, to technical
issues, such as amplification bias of maternally- or
paternally-derived genome copies involving small start-
ing amounts of template material. To address this, pyro-
sequencing of each DMR was carried out using small
amounts of bisulfite-modified heart and liver DNA,
equivalent to the DNA content of single (1 ng) and half
a bovine blastocyst (0.5 ng). While the effect of preferen-
tial amplification of maternal or paternal alleles cannot
be fully excluded in the current study, there was a lack
of statistical differences in DMR methylation between
the two limited DNA starting concentrations demon-
strating reliability of the assays using small amounts of
gDNA. However, conflicting results were observed when
using low starting amounts of D17 or D25 DNA. No dif-
ferences were observed at the SNRPN, PEG10 or H19
DMRs when analysing D17 methylation values, but
SNRPN was significantly different between D25 samples,
suggesting the possibility of technical variation. Sec-
ondly, it is possible that there is an overrepresentation of
DNA from the ICM or the TE in the Day 7 samples.
Previous investigations have demonstrated differential
global methylation patterns between the ICM and TE in
bovine blastocysts. However, the results are unclear with
reports indicating that the TE is more methylated
[48,49] and another showing higher methylation within
the ICM [12]. Thirdly, the effect of hormonal treatment
during animal synchronization on DMR methylation
cannot be excluded as there is evidence to suggest that
superovulation/ovarian stimulation regimes may inter-
fere with methylation at the DMRs of imprinted genes
in the murine blastocyst [60]. Fourthly, murine DMRs
have been shown to be dynamic during murine pre-
implantation development in their ability to expand,
contract or shift [24]. To identify whether the DMRs
interrogated in this study were behaving in a similar
manner, and thus contributing to the observed variation,
methylation of individual CpGs for each gene was
assessed on an embryo by embryo basis in the Day 7
group (Additional file 6: Figure S3). These analyses re-
vealed that variation was consistent across all the CpGs
of each DMR, indicating that the methylation variability
was unlikely to be due to a small number losing or
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Figure 5 Overview of DMR methylation at imprinted genes and
expression of associated transcripts in pre-implantation bovine
embryos. Schematic representation of DNA methylation imprint
dynamics following the blastocyst stage of bovine embryogenesis.
Shaded grey area denotes the range of observed methylation values
at imprinted loci during pre-implantation embryo development.
Solid and dashed lines represents expression profiles of key genes
associated with imprinted establishment and maintenance; blue
dashed line DNMT3A and DNMT3B, solid orange line DNMT1 and
TRIM28/KAP1 and solid orange-dashed orange line ZFP57, UHRF1
family and TET family transcripts. Question marks to the left of the
vertical dashed red line denote that technical variation cannot be
completely excluded at this stage.
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gaining methylation. Finally, previous studies investigat-
ing methylation at imprinted genes (H19 and Igf2) in
embryonic germ cells, derived from either male or fe-
male primordial germ cells, identified that sex can con-
tribute to differential methylation patterns at these loci
[61-63]. Therefore, we cannot rule out that the sex of
the embryos may be having an effect at DMRs at
imprinted genes during the blastocyst stage.
Subsequent to the variability in methylation at D7,

there was no difference in DMR methylation between
trophectoderm regions and the embryo proper of
implanting conceptuses, illustrating a pan-embryonic
stability of DNA methylation at DMRs of imprinted
gene. Considering the role of the trophectoderm in im-
plantation and placenta formation [64], and given the
role of genomic imprinting in placental function [65],
these results are of particular interest. It has been previ-
ously proposed that normal function of the placenta
may be impaired through alterations in the epigenetic
landscape, such as those observed in cloned bovine pla-
centas [66,67]. Here, we show that non-manipulated
in vivo derived bovine embryos have a balanced methyla-
tion profile at DMRs of imprinted genes across the em-
bryo proper and trophectoderm regions, suggesting that
this may be the optimal imprinted gene methylation pro-
file to support implantation and subsequent placental
formation.
Targeted mining of bovine embryo global transcrip-

tomic data [54] revealed a distinctive temporal RNA
transcript profile for several key genes associated with
establishing and maintaining imprints (DNMT3A,
DNMT3B, DNMT1, TRIM28/KAP1 and ZFP57). High
levels of mRNA expression were observed during the
period of greatest imprint instability, followed by a
significant decrease in transcript abundance at later
stages of development, in tandem with DNA methylation
imprint stabilization. This pattern of expression was also
observed for DNMT3A, DNMT3A2 and DNMT3B, com-
plementing the gene expression profiles. In mice, trim28/
kap1 maternal knockouts present with severe phenotypic
and epigenetic variability resulting in embryonic lethality
[35], it has been proposed that an epigenetic complex
formed by TRIM28/KAP1 and ZFP57 facilitate imprint
maintenance/protection during the period of pre-
implantation reprogramming [68-70]. In addition, the
de novo and maintenance DNA methyltransferases,
DNMT3A/B and DNMT1, were shown to interact with
ZFP57 through its co-factor TRIM28/KAP1 to maintain
methylation imprints in embryonic stem cells [36,69].
Taking all things in to consideration, it is likely that
TRIM28/KAP1 and ZFP57, along with the DNA methyl-
transferases DNMT3A, DNMT3B and DNMT1 actively
facilitate a window of DNA methylation reprogramming
in bovine embryos post blastocyst development (Figure 5).
Conclusion
In conclusion, this is the first comprehensive analysis of
methylation patterns at maternally- and paternally-
transmitted imprinted gene associated DMRs during early
embryo development in cattle. In contrast to the murine
model, our evidence suggests that bovine germline-
acquired DNA methylation imprints may be susceptible
to instability at the blastocyst stage and are subse-
quently stabilized during a period involving notable in-
creases in the transcription of genes involved in the
regulation of DNA methylation. However, variation in
methylation in bovine blastocysts due to technical issues
associated with limited amounts of DNA cannot be fully
ruled out. Single nucleotide polymorphism analysis
(SNP) to identify the ratio of maternal and paternal al-
leles, and therefore eliminate/confirm amplification
bias, would be the most definitive approach to deter-
mine whether blastocyst methylation variability is bio-
logical or technical. Unfortunately this information was
not available for this investigation, but it should be con-
sidered in future studies investigating imprinted gene
methylation in samples with limited numbers of cells.
Finally, our studies highlight the usefulness of larger
mammalian species as models for investigating epigen-
etic regulation during embryo development.
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methylated region. To confirm the methylation status of the H19 DMR
included in this investigation it was analysed using three techniques.
Combined Bisulfite Restriction Analysis (A) and bisulfite sequencing show
that this DMR is hypomethylated in the oocyte and hemi-methylated in liver.
Pyrosequencing analysis of the same region confirmed these observations in
oocytes and liver and also illustrated that H19 is hypermethylated in
sperm DNA.

Additional file 3: Table S1. Individual methylation values for imprinted
gene DMRs during bovine pre-implantation embryo development.

Additional file 4: Figure S2A-B. DNA methylation analysis using limited
starting amounts of genomic DNA as input for bisulfite conversions.

Additional file 5: Figure S4. DNMT3L mRNA expression during bovine
embryonic development.

Additional file 6: Figure S3. D7 individual CpG methylation analysis.
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