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Abstract

Background: Dystroglycan (Dg) is a transmembrane protein that is a part of the Dystrophin
Glycoprotein Complex (DGC) which connects the extracellular matrix to the actin cytoskeleton.
The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites.
The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys) WW-
domain. However, our previous studies indicate that both Dystroglycan PPXY motives, VWWbsl
and WWhbsll can bind Dystrophin protein in vitro.

Results: We now find that both WW binding sites are important for maintaining full Dg function
in the establishment of oocyte polarity in Drosophila. If either WWV binding site is mutated, the Dg
protein can still be active. However, simultaneous mutations in both WW binding sites abolish the
Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally,
sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal
a high level of conservation. This preservation throughout evolution supports the idea that both
WW binding sites are functionally required.

Conclusion: Based on the obtained results we propose that the presence of the two WW binding
sites in Dystroglycan secures the essential interaction between Dg and Dys and might further
provide additional regulation for the cytoskeletal interactions of this complex.
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Background

The Dystroglycan-Dystrophin (Dg-Dys) complex has been
shown to provide cells with structural integrity by forming
a conduit between the extracellular matrix and the
cytoskeletal network and there are lines of evidence that
implicate an additional signaling role for the complex
[1,2] Dystroglycan binds to extracellular matrix compo-
nents, including Laminin at its N-terminus and the actin
cytoskeleton via Dystrophin at its C-terminus [3,4]
Defects in these interactions can result in muscular dystro-
phies (MD) and various epithelial cancers [5]

The characterization of the Dystrophin Glycoprotein
Complex (DGC) in Drosophila has revealed that it pos-
sesses similar roles in muscle integrity and neuronal
migration in flies as it does in humans [6] These abnor-
malities include age dependent muscle degeneration,
reduced mobility, defects in eye development as mani-
fested by altered photoreceptor axon path finding and
photoreceptor morphology. Additionally, mutations in
Dys and Dg affect cell polarity in Drosophila [6-8] Interest-
ingly, some of these phenotypes are affected by the nutri-
tion or energy metabolism in the animals [9] Recently, a
reduced lifespan, as well as heart and muscle abnormali-
ties, have been reported in Drosophila mutants of another
component of the DGC, -sarcoglycan [10] and heart and
further eye phenotypes have been observed in Drosophila
Dys and Dg mutants [11,12]

Analogous defects observed when the Dg-Dys complex is
disturbed in both flies and humans make Drosophila an
attractive model for further studies on clarifying the cellu-
lar function of the DGC. Recent biochemical and in vivo
structure-function analyses have revealed that a specific
set of C-terminal domains are critical for the function of
Dystroglycan. We have found that a putative SH3 domain
binding motif but, surprisingly, not the most C-terminal
Dystrophin WW domain binding motif is required for Dg
function in cellular polarity in Drosophila [13]. However,
since two potential WW binding sites exist near the Dg C-
terminus it is possible that the second WW binding site
can also bind Dystrophin in vivo, as has been shown in
vitro [13]. In this study we dissect the roles of the two WW
binding sites in the Drosophila Dystroglycan C-terminus in
vivo and, interestingly, find that the sites are essential and
their functions are partially overlapping.

Results

In order to understand the regulation of Dg and its role in
signaling, we have analyzed the binding motifs that are
required for the function of the Dg-Dys complex in cellu-
lar polarity in Drosophila. The proline-rich C-terminus of
Dg has several potential protein binding motifs, which
suggests that it may be involved in regulating the complex
and potentially may have signaling role(s). Proline-rich
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sequences have been shown to be the targets of several
protein interaction domains involved in signal transduc-
tion. The most C-terminal PPxY motif has been estab-
lished as a binding site for the WW domain of Dystrophin
in humans [14-16] and in Drosophila by in vitro binding
studies [6]. However, this WW domain binding site at the
very C-terminus of Dystroglycan, is not essential for the
function of the Dg-Dys complex in cellular polarity in
Drosophila. An internal region of the Dystroglycan C-ter-
minus containing a second WW domain binding site and
a putative SH3 domain binding site appear to be sufficient
for function in this context. We have also shown that Dys-
trophin can bind both the C-terminal and the internal
WW domain binding sites in wvitro [13]. We now test
whether the internal WW domain binding site is essential,
whether the two WW domain binding sites are redundant
or whether neither is required for Dg function in Dro-
sophila. To distinguish between these possibilities we used
both overexpression and loss-of-function rescue analyses.

Generation of transgenic lines expressing biochemically
verified WWbs mutations

Previous results show that two mutations designed from
computer predictions resulted in dramatic alterations in
the affinity between Dg and Dys in vitro [13] These two
mutations, predicted to abolish the WW but not the SH3
binding domain, resulted in very low binding affinities
between the Dystroglycan C-terminal peptide and the
Dystrophin WW domain with EF-hand region (DmW-
WhbsI-W: Kd = 178 uM and DmWWhbsII-G: Kd = 147 uM),
as compared to wild type peptides (DmWWhbsI: Kd = 16
pM and DmWWbsII: Kd = 46 uM). These values are com-
parable to the dissociation constant observed with a neg-
ative control for the assay (p53: Kd = 248 uM), suggesting
that specific binding is abolished. We therefore generated
transgenic lines expressing the following representative
mutations: PPSG, which has a mismatch in WWhbslI
(PPSY — PPSG) and 2WW, which has mutations in both
WW binding sites (WWbsl, PPPY - WAPY and WWhbsl],
PPSY — PPSG) (Figure 1). At least two independent trans-
genic Drosophila lines for each construct were obtained
and analyzed. Similar results with two independent trans-
genic lines confirmed that the phenotype was due to the
Dg mutation and not due to positional effects of the trans-
gene inserts.

We first tested the ability of the transgenic constructs to
produce functional forms of the Dg protein using the
Gal4/UAS system. In order to overexpress the transgenic
constructs in follicle cells we used the hsFlp; actin-
FRT<CD2>FRTGal4/UAS system in which clonal cells that
overexpress the gene of interest were marked with GFP.
Dg, in the wild type follicular epithelium, is located at the
basal membrane (Figure 2C; WT). Overexpression of the
transgenes resulted in Dg localizing to both the apical and
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Transgenic constructs with mutations of WW bind-
ing sites at the Dystroglycan C-terminal end. Sche-
matic drawing of pUASp constructs with mutations
in different WW binding sites. FL — construct which
encodes full length Dg, 2WW — constructs with mutations in
both WW binding sites, PPSG — mutation in the N-terminal
WW binding motif WWbsll PPSY — PPSG. CI| — deletion of
the proline-rich C-terminus.

basal sides of the follicle cells (Figure 2A, B). We also
tested the expression of the constructs in germline cells
using the MatTubGal4 and nanosGal4 drivers. During oog-
enesis, Dg is expressed at low levels in the germline (Fig-
ure 2C; WT). At stage 2-3 of oogenesis overexpression
with MatTubGal4 shows Dg levels are substantially
increased in germline cells (Figure 2C). Increased protein
levels were also observed using the nanosGAl4 driver
which showed a distinct pattern starting with high levels
in the germarium, lower levels during stages 3-6 and with
higher levels during later stages (Figure 2C). Similar pat-
terns and levels of the Dg constructs were observed with
all the transgenic lines analyzed in these experiments (Fig-
ure 2, Additional Figure 1, Additional Figure 4).

WW binding site function as assayed by oocyte polarity

To analyze whether the Dg mutant forms are functional in
oocyte polarity, we expressed mutant and wild type Dg
constructs in germline cells using a germline specific
driver (MatTubGal4), and examined oocyte polarity using
Orb protein as a marker. Orb is a member of the cytoplas-
mic polyadenylation element binding (CPEB) family of
RNA-binding proteins that are implicated in local protein
synthesis [17]. In Drosophila oogenesis Orb co-localizes
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Figure 2

Overexpression of Dg constructs with mutation in
WW binding sites in follicle and germline cells. A, B.
Overexpression of 2WW (A) and PPSG (B) constructs in fol-
licle cells marked by GFP. Dg in the wild type cells is
expressed at the apical side of the follicle cell epithelium, in
contrast to overexpression where Dg is localized in both api-
cal and basal sides (indicated by arrows). C. Overexpression
of the constructs in the germline cells.wt — Dg expression in
wild type germline cells, MatTubGal4;pUASp-PPSG,
nanosGal4/pUASp-PPSG — overexpression of transgenic con-
structs in germline cells. Both MatTub- and nanosGal4 have
distinct expression patterns.

with the microtubule organizing center (MTOC), which is
localized to the anterior of the oocyte during stage 1, and
then moves to the posterior by stage 3. Between stages 3
and 6, Orb is clearly localized to the posterior of the
oocyte, making it an excellent marker to analyze the polar-
ity of the oocyte (Figure 3A, 4A). Absent or mislocalized
Orb during these stages indicates a failure to establish
early oocyte polarity.

We have previously shown that overexpression of the wild
type form of Drosophila Dystroglycan (FL = full length) is
sufficient to generate oocyte polarity defects [13] (Figure
3B). When FL is overexpressed in the germline, Orb
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Figure 3

Overexpression of pUASp with MatTubGal4 in germ-
line disrupts the polarity marker Orb. (Orb-red, Dg-
green, DAPI — blue, separate channels for Orb are shown on
the side of each corresponding picture). A. wild type (wt)
stage 4 egg chamber shows normal Orb (red) localization at
the posterior side of the oocyte. B. Overexpression of the
pUASP-FL transgenic construct disrupts the normal Orb
localization. C. Overexpression of the pUASp-2WW does
not disrupt normal Orb (red) localization. Similar phenotype
is seen with Cl-construct that lacks the entire C-terminal
region of Dg (D; Fig. 1). E. Overexpression of pUASp-PPSG
constructs disrupts oocyte polarity indicated by mislocaliza-
tion of Orb which has an abnormal side location, F. Percent-
age of Orb mislocalization as the result of overexpression of
different pUASp-Dg constructs. (FL, 49 £ 2, PPSG 44 + 2,
2WW 19+ 2,CI 16 £ 3).

becomes mislocalized, surrounds the entire oocyte
nucleus, or accumulates in a clump to one side of the
oocyte instead of localizing to the posterior. Therefore,
Dystroglycan, when expressed at elevated levels in germ-
line cells, is sufficient to disrupt oocyte polarity. Overex-
pression of the full length form of Dg with the tubGal4
driver causes semi-lethality (data not shown). Similarly,
in vertebrates overexpression of Dg has been shown to
cause defects in neuromuscular junctions [18,19]. We
used the overexpression oocyte polarity assays to test
whether either of the WW domain binding sites is essen-
tial for Dystroglycan function.

To test the function of WWbsl in vivo we overexpressed the
PPSG mutant protein in germline cells using the
MatTubGal4 driver and determined the localization of the
early oocyte polarity marker Orb. As discussed, in wild
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Figure 4
Rescue of Dg loss-of-function germline clones with
expression of pUASp-Dg constructs. Orb (Red); GFP
(Green), DAPI (Blue) A', B, D' GFP of the corresponding
stages shown in a separate channel; A", B", D" Orb staining of
the corresponding stages shown in a separate channel with
dotted lines which indicates the border of the oocyte. A. Dg
loss-of-function germline clones (black, white arrow; hsFLP;
FRT42D Dg323) are arrested prior to stage 6 and have dis-
rupted oocyte polarity (absent or mislocalized Orb). B.
Expression of pUASp-FL with the nanos-Gal4 driver in Dg
clones partially rescues oocyte polarity in arrested clones
stages 3-6 as indicated by proper localization of Orb to the
posterior of 36% of the oocytes; (hsFLP; FRT42D Dg323;
P(w+:nanosGal4:VP-16)Ab-2/pUASp-FL) C. Expression of
pUASp-2WW with the nanos-Gal4 driver in Dg clones does
not rescues oocyte polarity in arrested clones stages 3—6
(arrow) [as indicated by development arrest and absent Orb
marker; (hsFLP; FRT42D Dg323; P(w+:nanosGal4:VP-16)Ab-2/
pUASPp-2WW)] D. Expression of pUASp-PPSG with the nanos-
Gal4 driver in Dg clones rescues oocyte polarity in arrested
clones stages 3—6 [as indicated by proper localization of Orb
to the posterior of the oocyte; (hsFLP; FRT42D Dg323;
P(w+:nanosGal4:VP-16)Ab-2/pUASp-PPSG)]E. Wild type egg
chamber with posterior Orb localization (+/+;
P(w+:nanosGal4:VP-16)Ab-2/pUASp-FL) F. FL, PPSG are able to
rescue Dg loss-of-function phenotypes, while 2WW and CI
do not (Red: rescued polarity index, Green: rescued growth
index).
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type cells Orb marks the localization of the microtubule
organizing center and is localized to the posterior side of
the oocyte during stages 3-6 (Figure 3A). Overproduction
of the PPSG protein results in the mislocalization of the
usually posterior Orb marker. In mutants Orb surrounds
the oocyte nucleus or localizes to the sides of the oocyte
nucleus in 44 + 2% of 3-6 stage oocytes (n = 147, Figure
3E-F). The level of this defect is similar to the one
observed with the FL construct [6,13], which contains
both WW binding sites (Figure 1; Figure 3B, D; 49 + 2%,
n = 80). These data suggest that disturbing the second WW
binding site at the Dg C-terminus does not dramatically
affect the functionality of the protein; similar to FL con-
struct, when overexpressed it still is sufficient to disturb
the oocyte polarity.

In contrast to the FL and PPSG constructs, overexpression
of a 2WW mutant construct did not result in a high per-
centage of Orb mislocalization (Figure 3C, F, 19 + 3%, n
= 123). With 2WW overexpression, Orb, in most cases,
was localized to the posterior of the oocyte (Figure 3C).
The frequency of mislocalization with the 2WW construct,
in which both WW binding sites were mutated was similar
to that of the C1 construct which lacked all the C-terminal
binding sites (Figure 1, Figure 3D, F, 16 + 2%, n = 86).

These data, in combination with our previous data [13]
show that a single mutation in WWbslII or the lack of
WWhbsl does not result in dramatic defects in Dg activity
in this sufficiency assay measuring the oocyte polarity.
However, simultaneous mutations in both WW binding
sites dramatically reduce the function of Dystroglycan in
this assay.

One WW binding site is required for Dystroglycan function
We also tested the function of the WW binding site
mutants in rescue experiments by expressing the trans-
genes in a Dg loss-of-function background. Dg323 germ-
line mutant clones are arrested prior to stage 3-4 and have
mislocalized or missing Orb protein (Figure 4A). We have
previously shown that these defects are partially rescued
by wild type (full-length) Dg expression [13] (Figure 4,
36-40% rescue). Full rescue is not expected since the
Dg323 deletion also affects a newly described neighboring
gene mRpl34 (Additional Figure 3) and recent data
implies that the level of nutrients and energy metabolism
in the animal may affect cellular polarity [9]. To test if our
mutant constructs were capable of rescuing the develop-
mental arrest and the defects in oocyte polarity on the
same level as the Dg full-length construct, we expressed
them using the germline driver nanosGal4 and calculated
the percentage of loss-of-function clones with rescued
growth and polarity. Using this assay we tested whether
the Dg WWbs mutations were capable of a similar level of
rescue as full-length Dg. If the Dg mutant with both WW
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binding sites mutated (2WW, Figure 1) could rescue the
Dg323 phenotype in oocyte polarity at the same level as
wild type Dg, we conclude that neither of the WW binding
sites in Drosophila is required for Dg activity. On the other
hand, if Dg with two WWbs mutations cannot rescue, we
conclude that both or just the internal WW binding site is
essential for Dg activity (we have already shown that the
C-terminal WWhbs is not essential [13]). As discussed
above, to distinguish between these possibilities, we have
generated a single mutation in WWbslI (PPSG, Figure 1)
and will test whether this mutant still has the full length
Dg activity in the loss-of-function rescue assays.

Similar to the full length Dg (FL, Figure 4B), the PPSG
mutant constructs were capable of partially rescuing the
Dg mutant phenotype (Figure 4D). Loss-of-function
clones with expression of FL (Figure 4B-B") and PPSG
(Figure 4D-D") had similar levels of posterior localization
of the polarity marker, Orb (Figure 4F, FL: 36 + 0.5% n =
52; PPSG: 41% n = 22). These mutants were also capable
of restoring the developmental arrest phenotype by show-
ing a higher percentage of loss-of-function clones that
were older than stage 4-6 (Figure 4F, FL: 47 + 8% n = 55;
PPSG 38% n =21). In contrast, 2WW was unable to rescue
(2WW rescued at the level of the C1 mutant that lacks
most of the Dg C-terminus; [13]; Figure 1.). Dg loss-of-
function clones with expression of 2WW and C1 showed
lower percentages of normal polarity (Figure 4F;, 2WW: 12
+0.6% n = 66; C1: 9% n = 22) and growth rescue (Figure
4F; 2WW: 19 + 2% n = 66; C1: 13%) than FL or PPSG con-
structs (Figure 4F). This result indicates that at least one
WW binding site is required for normal function of Dg but
a mutation in only one of the sites does not alter the func-
tionality of Dg protein dramatically.

Since a single WWbsII mutation or a WWhbsl deletion does
not cause a severe loss of Dg activity but the double
mutant does, we conclude that the two binding sites act,
at least partially in a redundant manner in oocyte polarity
and growth assays.

WW binding sites are highly conserved

Since both WW binding sites proved to be important in
our in vivo experiments we wanted to know if the impor-
tance of these sites has been preserved among the inter-
species population. To analyze the conservation of WW
binding sites, we tested for variability in the sequence of
those sites among all Drosophila species. For this purpose,
using the ClustalW program, we aligned the Dystroglycan
sequences of the 12 species of Drosophila obtained from
the GBrowse database. The alignment analysis indicates
that the two WW binding sites are fully conserved among
all 12 Drosophila species (Figure 5A). Some variation in
the nucleotide sequences of the WW binding sites were
observed between the species, however these changes did
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not lead to amino acid sequence changes (Additional Fig-
ure 2). Furthermore, both Dg WW binding sites were also
conserved between Drosophila and humans (Figure 5B).

In order to better understand patterns of polymorphisms
in human Dystroglycan (DAG), and, in particular, the
WW domains, we sequenced a 348 bp fragment spanning
the region of interest in 88 samples from six geographi-
cally diverse human populations. In total, only one segre-
gating site was identified among the 176 chromosomes
sequenced (table 1) and none were identified in either of
the WW domains. The estimated nucleotide diversity
(defined as the average number of pairwise differences
between two randomly selected chromosomes per nucle-
otide) in the combined sample is 3.24 x 10-5. In contrast,
the average nucleotide diversity of 322 genetic regions
that were sequenced in a panel of 23 European-Americans
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Figure 5

Both WW binding sites are conserved in all 12 spe-
cies of Drosophila. A. Amino acid sequence alignment of
the C-terminal end from |2 species of Drosophila using the
computer program ClustalW shows absolutely no variation
between both WWV binding sites. B. Both WW binding sites
are highly conserved between humans and Drosophila.
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Table I: Summary statistics of sequencing data.

Population N2 st Ow* nd
CEPH 40 0 0 0
Han Chinese 40 0 0 0
Middle East 20 0 0 0
Pygmy 20 0 0 0
South Africa 16 0 0 0
South America 20 | 5.26 x 103 2.73 x 104
South East Asia 20 0 0 0
Total 176 | 6.49 x 105 3.24 x 105

2 Number of chromosomes
b Number of segregating sites
¢ Watterston's theta per bp
4 Nucleotide diversity per bp

and 22 African-Americans is 8.53 x 104, suggesting that
the sequenced region of DAG is under significant func-
tional constraint. These data suggest that during evolution
both WW binding sites have been important and there-
fore are preserved among species.

Discussion

The functional redundancy of the WW binding sites poses
interesting questions: have both binding sites survived
through evolution to protect organisms from the muta-
tions in an essential complex or does each binding site
have a specific function in different tissues and/or devel-
opmental stages. Mutations in the DGC cause muscular
dystrophies; however only mutations in Dystrophin, but
not Dystroglycan per se, are associated with known types
of muscular dystrophies in vertebrates. In mice, mutations
in Dystroglycan are embryonic lethal, which suggests that
Dg is an essential gene and, perhaps the redundant Dys-
trophin binding sites in Dystroglycan provide an addi-
tional means for DGC regulation.

The comparative sequence analysis of Drosophila and
human WW binding motifs revealed very high conserva-
tion. However, each WWbs resides in a specific protein
micro-environment, which may suggest that each site has
specific binding partners. The previously performed
genetic screens for modifiers [20] of Dg and Dys showed
that the Dg-Dys complex interacts with components of
different signaling pathways and components involved in
cell/neuronal migration, cytoskeletal rearrangement and
muscle development. This suggests that the Dg-Dys com-
plex might be a major hub that regulates transfer of extra-
cellular information to the cytoskeleton. Therefore it will
be important in the future to test if WW binding sites have
specific and independent biological functions in different
tissues. This kind of analysis is likely to provide insights
into the specific functions of the Dg-Dys complex and
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serve as a basis for the development of novel therapeutic
approaches for the treatment of muscular dystrophy.

Conclusion

We have investigated the role of the WW binding sites at
the C-terminus of Dystroglycan protein and found that
both sites may bind to the WW+EF hand domain of Dys-
trophin. Our previous studies [6,13], indicate that WWbsI
and WWhbslI both can bind Dystrophin protein in vitro. To
test whether both WW binding sites can function and are
required in vivo we generated two transgenic mutants:
2WW, which has mutations in both WW binding sites
(WWbsl, PPPY —» WAPY and WWhbsll, PPSY — PPSG),
and PPSG, which has a mismatch in WWbsII (PPSY —
PPSG). We used the establishment of early oocyte polarity
as an assay to verify the functionality of WWbsl and WWb-
sll. Importantly, the data show that while each WW bind-
ing site mutation yields to close to normal Dg function,
the double WWbs mutation has lost Dg C-terminal activ-
ity. These data suggest that at least one WWbs is required
for full Dg function in vivo and that the two sites may be
partially redundant.

Methods

Fly Stocks

Drosophila melanogaster stocks were raised on standard
cornmeal/yeast/agar medium at 25°C. For overproduc-
tion of pUASp-Dg in the germline, we used the following:
NGT40; P(w+:nanosGal4:VP-16)Ab-2 [21,22] and Mat-a4-
TubGal4-VP16/CyO [23]. For overproduction of pUASp-
Dg in the follicle cells, we used hsFlp; act < FRT-CD2-FRT
< Gal4; UAS-GFP[24]. For generation of Dystroglycan
clones, we used FRT42D-Dg323/CyO (Dg323 is a Dystrogly-
can loss-of-function mutant with a 3324 bp deletion
between bp 32,345 and 35,669 of DS03910 | 7] disrupting
the Dg 5' region and the adjacent mRPL34 gene; Addi-
tional Figure 3) and hsFLP;FRT42D Ubi-GFP/CyO. For
overproduction of pUASp-Dg in a Dystroglycan mutant
background, we used FRT42D-Dg323/CyO; P(w nos-
Gal4:VP16)A4-2 I1I, and hsFLP; FRT42D Ubi-GFP/CyO;
pUASp-Dg/TM3 (pUASp-Dg refers to all Dystroglycan con-
structs: FL, C1, 2WW, PPSG). Two deletions in the Dystro-
glycan region exist; Dg248 (11985709:11986494) whose
breakpoints are 333 bp downstream of the Dg transcrip-
tion start site (11986042) and 3 bp upstream of the
mRpL34 start codon (11986498) and Dg3?3
(11983340:11986664) whose breakpoints are 2.7 kb
downstream of the Dg transcription start site and 166 bp
downstream of the mRpL34 start codon (Additional Fig-
ure 3). We also used: dg043 [25].

Generation of pUASp-Dg Transgenic Animal

Full length and modified Dystroglycan PCR products that
can be expressed in the germline were synthesized from
the template LD11619. pUASp-FL and pUASp-C1 con-

http://www.biomedcentral.com/1471-213X/9/18

structs used in this work have been described previously
[13]. To generate a construct with mutated WWbsII
(pUASp-PPSG) LD11619 was used as a template with the
following primers: 5'-GGGGTACCAACATGAGATTC-
CAGTGGTTCT-3' 5'-GCTCTAGATTATGGCGACACA-
CATA-TGGCGGT-3'. The PCR products were digested
with Kpnl and Xbal and cloned into the pUASp vector
[26]. The constructs were injected into embryos to obtain
at least two independent stable transformant lines. Injec-
tions were done by Rainbow Transgenic Flies, Inc. (Cali-
fornia, USA).

Overproduction of Dystroglycan in the Germline and
Follicle Cell

For overproduction in germline cells, balanced pUASp-Dg/
Mat-04-TubGal4-UP16/CyO or P(w: nanosGal4:VP-16)Ab-
2 animals were raised in yeasted vials at 25°C for 3 days
before dissection and analysis. For overproduction in the
follicle cells, hsFlp; UAS-GFP act <FRTCD2FRT <Gal4/
pUASp-Dg animals were heat-shocked at 37°C for 1 h,
raised in yeasted vials at 25 °C for 3 days before dissection
and analysis. All pUASp-Dg constructs used were crossed
to these three Gal4 drivers to test for proper overproduc-
tion of protein and correct localization of protein to the
membrane in the germline and somatic cells. The follow-
ing pUASp-Dg lines were used for germline analysis: FL-1,
5; C1-1, -2; 2WW-10.2, -5.6, -13, 15.4; PPSG-11.1, -12.5,
-6.3, -13.4. For the rescue experiments the following lines
were used: FL-1, -2, -5; C1-1, -2; 2WW-10.4, -13, -15.6;
PPSG-11.4, 11.1.

Antibody Staining Procedures

Drosophila ovaries were dissected rapidly in PBS and fixed
in 4% paraformaldehyde for 10 minutes. The antibody
staining procedure was the same as described previously
[13]. The following primary antibodies were used at the
following designated dilutions: rabbit anti-Dystroglycan
(1:3000 [7]), mouse anti-Orb (1:20; Developmental Stud-
ies Hybridoma Bank), the following secondary antibodies
were used at the designated dilutions: Alexa 488 anti-rab-
bit and Alexa 568 anti-mouse (1:500; Molecular Probes).

Western Blot and densitometry analyses

Sample preparation and SDS-PAGE have been described
previously [13]. Bio-Rad ready-made 4-20% polyacryla-
mide gels were used for protein separation. Proteins were
transferred to polyvinylidene difluoride (PDVF) mem-
branes (Immobilon) using a semi-dry transfer apparatus
(Bio-Rad). Primary affinity purified anti-Dg antibodies
were used at 1:30,000 dilutions. Goat anti-rabbit HRP
conjugated antibodies (Bio-Rad) were used as detection
reagents at 1:10,000 dilutions. Proteins were visualized
via enhanced chemiluminescence (Millipore). Densitom-
etry analysis was performed with the public domain NIH
IMAGE] program (developed at the US National Institutes
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of Health and available on the Web at http://
sb.info.nih.gov/ij/). Scans of immunoblots determined
to be in the linear range (i.e. twice the amount of protein
correlated with twice the signal seen on photographic
film) were used as sources for analysis.

Sequence alignment

Sequences of 12 species of Drosophila were obtained from
the FlyBase genome database. Sequence alignment was
done using software ClustalW designed by the European
Bioinformatics Institute http://www.ebi.ac.uk/Tools/clus

talw/index.html.

DNA samples used for sequencing

We sequenced a 348 bp fragment of DAG that includes
both WW domains in DNA samples from 88 humans rep-
resenting six populations. Samples were obtained from
the Coriell Institute for Medical Research Cell Repositor-
ies (Camden, NJ, USA). Coriell repository numbers for
these samples are as follows: CEPH European-American
(NA06990, NA07019, NA10830, NA10831, NA07348,
NAO07349, NA10842, NA10843, NA10844, NA10845,
NA10848, NA10850, NA10851, NA10852, NA10853,
NA10854, NA10857, NA10858, NA10860, NA10861,
NA17201) Han Chinese of L.A. (NA17733 - NA17747,
NA17749, NA17752 - NA17757, NA17759, and
NA17761), Middle East (NA17041 - NA17050), Pygmy
(NA10469 - NA10473, NA10492 - NA10496), South
Africa (NA17319, NA17341 - NA17348), South America
(NA17301 - NA17310) and South East Asia (NA17081 -
NA17090). We compared patterns of polymorphism to
322 genes that were sequenced as part of the SeattleSNPs
project [27].

DNA sequencing and statistical analysis
Sequencmg prlmers were demgned w1th primer3 (h ttp /]

primer sequences available upon request). We used stand-
ard PCR-based sequencing reactions using Applied Bio-
system's Big Dye sequencing protocol on an ABI 3130xl.
Sequence data was assembled using Phred/Phrap [28,29]
and the alignments were inspected for accuracy with
Consed [30,31]. Polymorphisms were identified with
PolyPhred 4.0 [32]. All polymorphic sites were manually
verified and confirmed by sequencing the opposite strand.
Standard measures of nucleotide diversity, including 6,
and ©t were calculated as previously described [27].
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Additional material

Additional file 1

Figure 1. Overexpression of Dg constructs with mutation in WW binding
sites in follicle and germline cells. A, B. Overexpression of 2WW (A) and
PPSG (B) constructs in follicle cells marked by GFP. Dg in the wild type
cells is expressed at the apical side of the follicle cell epithelium, in contrast
to overexpression where Dg is localized in both apical and basal sides
(indicated by arrows). To compare the expression levels of different con-
structs and insertions the intensities of Dg expression was compared to the
intensity of the GFP signal in the same cell. The observed mean intensity
ratios are similar in the two constructs (2WW = 1.2, PPSG = 1.1), sug-
gesting that the differences observed between these two conatructs in
oocyte polarity assay are not due to dramatically different levels of expres-
sion. C. Overexpression of the constructs in the germline cells.wt — Dg
expression in wild type germline cells, MatTubGal4; pUASp-WW,
nanosGal4/pUASp-WW — overexpression of transgenic constructs in
germline cells. Both MatTub- and nanosGal4 have distinct expression pat-
terns.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-18-S1.tiff]

Additional file 2

Figure 2. Comparative analysis of Dg C-terminus nucleic acid sequences
in 12 species of Drosophila.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-18-82.tiff]

Additional file 3

Figure 3. The genomic region of the Dystroglycan gene. The genomic
regions that are deleted in the Dystroglycan mutant alleles Dg323 and
Dg248 are indicated as black bars.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-18-S3.tiff]

Additional file 4

Figure 4. Western blot analysis of Dg protein in wild type, DgO43, 2WW
and PPSG ovaries and whole animals show the following Dg intensities
compared to OregonR (WT): DgO43 [25] = 0.4, 2WW = 1.3, PPSG =
1.2. The specific bands that correspond to different Dg forms can be seen
at ~180 (two bands), 110 and faintly at 70 kD. A presumable degrada-
tion product can be seen below 25 kD. Increased band intensities can be
seen with the 110 kD band and most notably with the higher 180 kD spe-
cies. Band intensities were normalized to actin and samples were run on
a gradient 4-20% gel.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-9-18-84.tiff]

Page 8 of 9

(page number not for citation purposes)


http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://www.ebi.ac.uk/Tools/clustalw/index.html
http://www.ebi.ac.uk/Tools/clustalw/index.html
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://www.biomedcentral.com/content/supplementary/1471-213X-9-18-S1.tiff
http://www.biomedcentral.com/content/supplementary/1471-213X-9-18-S2.tiff
http://www.biomedcentral.com/content/supplementary/1471-213X-9-18-S3.tiff
http://www.biomedcentral.com/content/supplementary/1471-213X-9-18-S4.tiff

BMC Developmental Biology 2009, 9:18

Acknowledgements

We thank members of the Ruohola-Baker lab for useful discussions and Dr.
R. Ray for fly lines. This work was supported by an AHA fellowship for
H.RS., CRDF for AS.Y., K.M.M,, H.RS. and H.R-B. and by the grants from
the National Institute of Health and Muscular Dystrophy Association for
H.R-B.

References

l. Russo K, Di Stasio E, Macchia G, Rosa G, Brancaccio A, Petrucci TC:
Characterization of the beta-dystroglycan-growth factor
receptor 2 (Grb2) interaction. Biochem Biophys Res Commun
2000, 274:93-8.

2. Zhou YW, Thomason DB, Gullberg D, Jarrett HW: Binding of lam-
inin alphal-chain LG4-5 domain to alpha-dystroglycan
causes tyrosine phosphorylation of syntrophin to initiate
Racl signaling. Biochemistry 2006, 45:2042-52.

3.  Davies KE, Nowak KJ: Molecular mechanisms of muscular dys-
trophies: old and new players. Nat Rev Mol Cell Biol 2006,
7:762-73.

4. Haenggi T, Fritschy JM: Role of dystrophin and utrophin for
assembly and function of the dystrophin glycoprotein com-
plex in non-muscle tissue. Cell Mol Life Sci 2006, 63:1614-31.

5. Barresi R, Campbell KP: Dystroglycan: from biosynthesis to
pathogenesis of human disease. | Cell Sci 2006, 119:199-207.

6.  Shcherbata HR, Yatsenko AS, Patterson L, Sood VD, Nudel U, Yaffe
D, Baker D, Ruohola-Baker H: Dissecting muscle and neuronal
disorders in a Drosophila model of muscular dystrophy.
Embo | 2007, 26:481-93.

7. Deng WM, Schneider M, Frock R, Castillejo-Lopez C, Gaman EA,
Baumgartner S, Ruohola-Baker H: Dystroglycan is required for
polarizing the epithelial cells and the oocyte in Drosophila.
Development 2003, 130:173-84.

8.  Poulton JS, Deng WM: Cell-cell communication and axis speci-
fication in the Drosophila oocyte. Dev Biol 2007, 311:1-10.

9. Mirouse V, Christoforou CP, Fritsch C, St Johnston D, Ray RP: Dys-
troglycan and perlecan provide a basal cue required for epi-
thelial polarity during energetic stress. Dev Cell 2009, 16:83-92.

10.  Allikian MJ, Bhabha G, Dospoy P, Heydemann A, Ryder P, Earley JU,
Wolf M), Rockman HA, McNally EM: Reduced life span with heart
and muscle dysfunction in Drosophila sarcoglycan mutants.
Hum Mol Genet 2007, 16:2933-43.

I'l.  Taghli-Lamallem O, Akasaka T, Hogg G, Nudel U, Yaffe D, Chamber-
lain JS, Ocorr K, Bodmer R: Dystrophin deficiency in Drosophila
reduces lifespan and causes a dilated cardiomyopathy phe-
notype. Aging Cell 2008, 7:237-49.

12. Zhan M, Yamaza H, Sun Y, Sinclair }, Li H, Zou S: Temporal and
spatial transcriptional profiles of aging in Drosophila mela-
nogaster. Genome Res 2007, 17:1236-43.

13. Yatsenko AS, Gray EE, Shcherbata HR, Patterson LB, Sood VD,
Kucherenko MM, Baker D, Ruohola-Baker H: A putative Src
homology 3 domain binding motif but not the C-terminal
dystrophin WW domain binding motif is required for dystro-
glycan function in cellular polarity in Drosophila. | Biol Chem
2007, 282:15159-69.

14.  Jung D, Yang B, Meyer |, Chamberlain ]S, Campbell KP: Identifica-
tion and characterization of the dystrophin anchoring site on
beta-dystroglycan. | Biol Chem 1995, 270:27305-10.

15.  Rentschler S, Linn H, Deininger K, Bedford MT, Espanel X, Sudol M:
The WW domain of dystrophin requires EF-hands region to
interact with beta-dystroglycan. Biol Chem 1999, 380:431-42.

16. Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck M]): Structure
of a WW domain containing fragment of dystrophin in com-
plex with beta-dystroglycan. Nat Struct Biol 2000, 7:634-8.

17.  Keleman K, Kruttner S, Alenius M, Dickson BJ: Function of the
Drosophila CPEB protein Orb2 in long-term courtship
memory. Nat Neurosci 2007, 10:1587-93.

18. Heathcote RD, Ekman JM, Campbell KP, Godfrey EW: Dystrogly-
can overexpression in vivo alters acetylcholine receptor
aggregation at the neuromuscular junction. Dev Biol 2000,
227:595-605.

19.  Kahl J, Campanelli JT: A role for the juxtamembrane domain of
beta-dystroglycan in agrin-induced acetylcholine receptor
clustering. | Neurosci 2003, 23:392-402.

http://www.biomedcentral.com/1471-213X/9/18

20. Kucherenko MM, Pantoja M, Yatsenko AS, Shcherbata HR, Fischer
KA, Maksymiv DV, Chernyk YI, Ruohola-Baker H: Genetic modi-
fier screens reveal new components that interact with the
Drosophila dystroglycan-dystrophin complex. PLoS ONE 2008,
3:e2418.

21. Jr WD Tracey, Ning X, Klingler M, Kramer SG, Gergen JP: Quanti-
tative analysis of gene function in the Drosophila embryo.
Genetics 2000, 154:273-84.

22. Doren M Van, Williamson AL, Lehmann R: Regulation of zygotic
gene expression in Drosophila primordial germ cells. Curr Biol
1998, 8:243-6.

23. Hacker U, Perrimon N: DRhoGEF2 encodes a member of the
Dbl family of oncogenes and controls cell shape changes dur-
ing gastrulation in Drosophila. Genes Dev 1998, 12:274-84.

24. Pignoni F, Zipursky SL: Induction of Drosophila eye develop-
ment by decapentaplegic. Development 1997, 124:271-8.

25. Christoforou CP, Greer CE, Challoner BR, Charizanos D, Ray RP:
The detached locus encodes Drosophila Dystrophin, which
acts with other components of the Dystrophin Associated
Protein Complex to influence intercellular signalling in
developing wing veins. Dev Biol 2008, 313:519-32.

26. Rorth P: Gal4 in the Drosophila female germline. Mech Dev
1998, 78:113-8.

27. Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson
DA, Kruglyak L: Population history and natural selection shape
patterns of genetic variation in 132 genes. PLoS Biol 2004,
2:e286.

28. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated
sequencer traces using phred. I. Accuracy assessment.
Genome Res 1998, 8:175-85.

29. Ewing B, Green P: Base-calling of automated sequencer traces
using phred. Il. Error probabilities. Genome Res 1998, 8:186-94.

30. Gordon D, Abajian C, Green P: Consed: a graphical tool for
sequence finishing. Genome Res 1998, 8:195-202.

31. Gordon D, Desmarais C, Green P: Automated finishing with
autofinish. Genome Res 2001, 11:614-25.

32. Bhangale TR, Stephens M, Nickerson DA: Automating resequenc-
ing-based detection of insertion-deletion polymorphisms.
Nat Genet 2006, 38:1457-62.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16475793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16475793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16475793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16971897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16971897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16710609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16710609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16710609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17215867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17215867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12441301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12441301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17884037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17884037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19154720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19154720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19154720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17855453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17855453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17623811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17623811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17623811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7592992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7592992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7592992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10355629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10355629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10355629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11071777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18545683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18545683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18545683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9436986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9053304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9053304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9858703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11282977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11282977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17115056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17115056
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Generation of transgenic lines expressing biochemically verified WWbs mutations
	WW binding site function as assayed by oocyte polarity
	One WW binding site is required for Dystroglycan function
	WW binding sites are highly conserved

	Discussion
	Conclusion
	Methods
	Fly Stocks
	Generation of pUASp-Dg Transgenic Animal
	Overproduction of Dystroglycan in the Germline and Follicle Cell
	Antibody Staining Procedures
	Western Blot and densitometry analyses
	Sequence alignment
	DNA samples used for sequencing
	DNA sequencing and statistical analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

