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Abstract

Background: How epithelial cells adopt their particular polarised forms is poorly understood. In
a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved
gene previously characterised in yeast.

Results: In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes
contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In
addition, the mutant cells can also display altered cell polarity, forming multiple layers in follicle cells
and leaving the epithelium in imaginal discs. In yeast, sds22 encodes a PP| phosphatase regulatory
subunit. Consistent with this, we show that Drosophila Sds22 binds to all four Drosophila PP1s and
shares an overlapping phenotype with PP/ beta9c. We also show that two previously postulated PP
targets, Spaghetti Squash and Moesin are hyper-phosphorylated in sds22 mutants. This function is
shared by the human homologue of Sds22, PPPIR?7.

Conclusion: Sds22 is a conserved PP| phosphatase regulatory subunit that controls cell shape and
polarity.

Background

Epithelial tissues are composed of polarised cells con-
nected by adherens junctions to form continuous sheets
with apical and basal surfaces. How epithelial cells main-
tain their polarity, adhesion and shape remains poorly
understood. Polarity in epithelia is founded on the segre-
gation of determinants into apical and baso-lateral mem-
brane domains. Adherens junctions are located at the
interface of these domains and connect the actin cytoskel-
eton to neighbouring cells. Actin filaments are visible
around the entire plasma membrane, but a particularly

prominent belt of actin filaments runs around the apical
cortex, overlapping with the ring of adherens junctions.
This apical contractile bundle of actin filaments is likely to
be a critical element in organising the polarised form of
epithelial cells (reviewed in [1]). Molecules regulating the
spatial organisation of the actin cytoskeleton and genera-
tion of forces upon it are therefore of particular interest.

Erzin-Radaxin-Moesin (ERM) proteins link actin fila-
ments with the plasma membrane and are necessary to
organise the cortical actin cytoskeleton (reviewed in [2]).
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Drosphila has a single ERM family member, Moesin, that
is essential for maintenance of epithelial cell polarity and
shape. Cells lacking Moesin are unable to maintain their
polarised form, disassemble adherens junctions and leave
the epithelium, ultimately undergoing apoptosis [3].

Myosin II can slide two actin filaments against each other
to create tension (reviewed by [4]. This is the basis for
muscle contraction in skeletal muscle, but also has impor-
tant force-generating roles in non-muscle cells. Drosophila
has a single non-muscle myosin II heavy chain encoded
by zipper (zip) and a single non-muscle myosin II regula-
tory light chain (MRLC) encoded by Spagetti-Squash (Sqh).
Analysis of mutant alleles of these genes has revealed that
non-muscle myosin II is required for maintenance of epi-
thelial cell shape, as well as other processes involving
dynamic cell shape changes such as gastrulation move-
ments and cytokinesis [5-9].

Both Moesin and Myosin II are activated by phosphoryla-
tion and concentrated at the apical membranes of Dro-
sophila epithelial cells. Several kinases that phosphorylate
Moesin (Slik kinase; [10]) and Sqgh/MRLC (Rho kinase;
see for example [9] have been identified). One of the four
Drosophila PP1 phosphatases, PP1B9c¢, has been shown to
antagonise Sqgh/MRLC phosphorylation [11]. Here, we
identify Sds22, a PP1 phosphatase regulatory subunit,
that binds to all four Drosophila PP1 phosphatases and
restricts the activity of both Sqgh/MRLC and Moesin. We
show that loss of Sds22 has a similar but stronger pheno-
type than loss of PP1B9c¢, disrupting both epithelial cell
shape and polarity.

Results

sds22 is required for epithelial morphology in imaginal disc
epithelia

In a PiggyBac transposon-mutagenesis screen in the Dro-
sophila eye imaginal disc, we recovered an insertion imme-
diately upstream of the start codon of sds22 (PB1173)
which disrupts epithelial morphology, causing lethality
(Additional Fig 1). The lethality and mutant phenotypes
of this allele were reverted when the PiggyBac transposon
was excised. The PiggyBac transposon allows transcription
(data not shown) but is expected to prevent translation of
the sds22 mRNA. The sds22PB1173 phenotype was also res-
cued by expression of a UAS.sds22-GFP transgene (Addi-
tional Fig 2). Finally, expression of a UAS.sds22-IR
transgenic RNAi line (VDRC 11788) produced pheno-
types highly similar to that of sds22PB1173 (data not
shown). Although we have not specifically established
that sds22 expression was reduced or absent in the inser-
tion mutant, we presume that this is the case as the
mutant is rescued by an sds22 transgene and phenocopied
by Sds22-RNAi. Together, these results show that the
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observed phenotypes are caused by disruption of the sds22
gene.

To examine the effect of this mutant more closely, we
induced sds22 mutant clones in the developing wing
imaginal disc, a commonly used model system for study-
ing the growth and morphology of clones of cells. The
wing disc is composed of a columnar epithelium, a pseu-
dostratified monolayer, that is continuous with an overly-
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sds22 is required to maintain epithelial morphology
in imaginal discs. Mitotic recombination clones were
induced in developing wing imaginal discs with the hs.FLP sys-
tem and marked by the absence of GFP. (A) Wildtype clones
induced 84 hrs after egg laying (AEL) and allowed to grow for
2 days. (B) sds22 mutant clones induced 84 hrs AEL grow to
a similar size as wildtype clones after 2 days. (C) sds22
mutant clones induced 60 hrs AEL are largely eliminated after
3 days. (D) Wildtype clones induced in a Minute background
at 84 hrs AEL grow to large sizes after 2 days. DAPI marks
nuclei. (E) sds22 mutant clones in a Minute background
induced at the same developmental stage (84 hrs AEL) grow
to smaller sizes and exhibit morphological defects after 2
days. DAPI marks nuclei. (F) sds22 mutant clones induced
earlier in development (60 hrs AEL) and allowed to grow for
3 days are eliminated and often leave ectopic folds behind.
DAPI marks nuclei. (G) sds22 mutant clones induced at 84
hrs AEL and allowed to grow for 2 days. The morphogenesis
defect in mutant clones was visualised by staining for phalloi-
din and DAPI. The arrow points to an island of wild-type tis-
sue surrounded by deeply folded sds22 mutant tissue. (H)
Phalloidin channel of (G). (I) DAPI channel of (G).
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sds22 mutant cells change shape and are extruded
from imaginal disc epithelia. Confocal cross-sections
through wing discs containing sds22 mutant clones marked
by the absence of GFP (A and B) or by the presence of RFP
(C). DAPI (blue) marks nuclei. Phalloidin or Armadillo
strongly labels apical cell junctions and more weakly labels
cell outlines. TOP: A diagram of a wing imaginal disc in cross
section. (A) A disc containing a small Minute+ clone of sds22
mutant cells. Mutant cells change shape, shortening along
their apical-basal axis and assuming a more cuboidal mor-
phology. In wild-type tissue, nuclei are positioned in a pseu-
dostratified manner, while in mutant tissue nuclei are aligned
in a more linear fashion. Note that mutant cells retain cor-
rect localisation of the apical adherens junction marker
Armadillo. (B) A disc containing several large Minute+ clones
of sds22 mutant cells. Mutant cells again shorten to a more
cuboidal form with a more linear alignment of nuclei. In addi-
tion, several cells have been extruded from the epithelium
and are undergoing apoptosis, visible as pyknotic nuclei near
the apical or basal surface of the epithelium (arrow). Deep
infolding of the mutant tissue causes islands of wild-type tis-
sue to be cut off from surrounding cells. (C) When apoptosis
is blocked in sds22 mutant cells by expression of the caspase
inhibitor p35, mutant clones (marked by expression of RFP)
are still extruded from the epithelium. A ball of mutant cells
with no epithelial character has dropped basally from the epi-
thelium.

ing peripodial epithelium, a squamous monolayer (Fig
1A). We induced GFP negative clones of wild-type (Fig
1A) and sds22 mutant (Fig 1B and 1C) cells and allowed
the clones to grow for two (Fig 1A and 1B) or three days
(Fig 1C). The sds22 mutant clones survived and grew sim-
ilarly to wild-type clones for the first two days (Fig 1A and
1B) but were eliminated by three days (Fig 1C). This phe-
notype suggests that the sds22 mutant cells are sensitive to
cell competition, a phenomenon whereby weaker cells are
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killed off by their more strongly growing neighbours (see,
for example, [12]).

We therefore gave sds22 mutant clones a growth advan-
tage over their neighbours with the Minute technique. This
technique slows the growth of cells neighbouring the
clone by making these cells heterozygous mutant for a
Minute gene, encoding a ribosomal subunit. With this
method, wild-type clones grow to very large sizes (Fig 1D)
after 2 days. In contrast, sds22 mutant cells formed smaller
clones over the same time period and exhibited defects in
epithelial morphology (Fig 1E). After 3 days, the sds22
mutant cells were still largely eliminated from the tissue,
being extruded basally from the epithelium and undergo-
ing apoptosis (Fig 1F). Extrusion of the sds22 mutant cells
left behind dramatic folds in the epithelium (Fig 1F),
more easily appreciated when the filamentous actin
cytoskeleton was visualised by staining with phalloidin
(Fig 1G, H &I).

To examine the cellular basis for these phenotypes, we
examined confocal cross-sections of discs carrying sds22
mutant clones (Fig 2). By examining both smaller,
younger clones (Fig 2A; marked by absence of GFP) and
larger, older clones (Fig 2B; marked by absence of GFP)
we observed a progressively stronger phenotype. In
smaller clones, the mutant cells appear abnormally short
in their apical-basal axis, adopting a more cuboidal mor-
phology than their pseudostratified columnar neighbours
(Fig 2A). Although the mutant cells in these small clones
are abnormally short, they retained their polarised epithe-
lial character, with normal localisation of the adherens
junction component, Armadillo (Arm; Fig 2A). In larger
clones, abnormally short mutant cells were also visible,
but, more dramatically, infolding and extrusion of the
mutant cells created islands of wild-type epithelium, sur-
rounded by mutant cells (Fig 2B; also visible in Fig 1G,
arrow). A large number of pyknotic nuclei, indicating
apoptotic cells, were visible in the sds22 mutant clones
(Fig 2B), some of which appeared to have left the epithe-
lium entirely (Fig 2B, arrow). These results suggest that
sds22 mutant cells first change shape, adopting a more
cuboidal morphology, and later leave the epithelium and
apoptose, leaving behind a deep infolding of the tissue.

We next tested whether extrusion of sds22 mutant cells
from the epithelium was a cause or consequence of their
apoptosis. We therefore prevented apoptosis of sds22
mutant cells by expression of the baculovirus caspase
inhibitor, p35. We found that mutant cells were still
extruded from the epithelium, collecting as a ball of
round cells on the basal side of the disc (Fig 2C; positively
marked by expression of RFP). These results show that
sds22 is essential to maintain the epithelial integrity of
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wing imaginal disc cells and suggest that extrusion of
mutant cells is the cause of apoptosis.

sds22 is required for epithelial morphology in ovarian
follicle cells

To test whether the sds22 is specifically required in imagi-
nal discs or more generally required in epithelia, we exam-
ined the follicular epithelium of Drosophila egg chambers
(Fig 3A). As in the wing, sds22 mutant clones showed a
spectrum of defects in epithelial morphology, depending
on clone size. In smaller clones, cells appear abnormally
contracted along their apical-basal axis (Fig 3A). In many
larger clones, cells rounded up and tended to form double
layers (Fig 3B&C). When markers of apical-basal polarity
were analysed in sds22 mutant clones (not shown) or in
clones expressing RNAi against sds22 (UAS.sds22-IR; Fig
3D, E&F, clones marked by GFP expression), abnormal
spreading of baso-lateral markers (anti-DIg or anti-a-
Spectrin 3A9 staining) around the cell into apical regions
was detected. In some clones, the apical marker aPKC
appeared relatively normal (Fig 3E), while in others aPKC
staining appeared reduced and more diffuse (Fig 3D&F).
These results indicate that follicle cell epithelia deficient
for sds22 show both cell shape and polarity defects.

sds22 mutant cells have a defective actin cytoskeleton
We next examined the actin cytoskeleton in sds22 mutant
cells in egg chambers. Staining with an antibody recognis-
ing both monomeric G-actin and filamentous F-actin, we
found a striking punctate accumulation of actin in mutant
cells in both the follicular epithelium and giant nurse cells
(Fig 4A & B). A similar accumulation of F-actin was not
observed with Phalloidin staining (Fig 3A, 4C) indicating
that G-actin is preferentially accumulating in sds22
mutant cells. Notably, in the nurse cells, breakdown of the
plasma membrane and underlying cortical actin cytoskel-
eton led to multinucleated nurse cells (stained with Phal-
loidin; Fig 4C). Strikingly, these sds22 mutant phenotypes,
together with the apico-basal contraction phenotype
described above, are similar to phenotypes reported for a
mutant in the PP19c phosphatase [11].

sds22 encodes a highly conserved PP| phosphatase
regulatory subunit

Experiments in yeast and mammalian cells suggest that
Sds22 binds to and regulates PP1 phosphatases. We there-
fore tested whether this is also the case for Drosophila
Sds22. Drosophila has four PP1 phosphatases, named after
their isotype and cytological location: PP1 a96a, B87b,
B13cand B9c. We expressed HA-tagged versions of each of
these PP1s with GFP-tagged Sds22 in Drosophila cells and
subjected cell lysates to immunoprecipitation with anti-
HA antibodies (Fig 5A). GFP-tagged Sds22 was efficiently
co-precipitated when any of the four HA-tagged PP1s was
co-expressed. In the absence of HA-tagged PP1s, only a
small background level of GFP-Sds22 associated with HA-
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sds22 is required to maintain epithelial cell shape and
polarity in follicle cells. (A-C)sds22 mutant clones induced
in the follicular epithelium of Drosophila egg chambers with
hs.Flp and marked by the absence of GFP. (A) An sds22
mutant clone showing altered cell shape. Cells have short-
ened along their apico-basal axes. Phalloidin (red) marks the
filamentous actin cytoskeleton, which can be seen to be
slightly weaker along lateral cell membranes within the
mutant clone. DAPI (blue) marks nuclei. (B) An sds22 mutant
clone showing both altered cell shapes and cells beginning to
round up and form a double layer. Phalloidin (red) marks cell
outlines. DAPI (blue) marks nuclei. (C) An sds22 mutant
clone showing multi-layering of mutant cells, indicating loss of
apico-basal polarity. Phalloidin (red) marks cell outlines.
DAPI (blue) marks nuclei. (D-F) UAS.sds22-IR and GFP
expressing clones stained for anti-aPKC (apical marker, blue)
and anti-Dlg or anti-a-Spectrin 3A9 (both baso-lateral mark-
ers, red). (D) Small UAS.sds22-IR and GFP expressing clone
showing spreading of basolateral marker (Dlg, red) around
the plasma membrane. Mutant cells have a rounded appear-
ance. Note, only one mutant cell is a polar cell, identified by
strong aPKC staining (blue). Other mutant cells (e.g.: arrow-
head) show reduced or diffuce aPKC staining. (E) Larger
UAS.sds22-IR and GFP expressing clone showing spreading of
basolateral marker (anti-a-Spectrin 3A9, red) around the
plasma membrane, indicating a failure to maintain apical-basal
polarity. aPKC staining (blue) remains largely apical in this
clone. Arrow points to the absence of anti-o.-Spectrin 3A9
staining in wild-type apical membranes. (F) A very large
UAS.sds22-IR and GFP expressing clone showing spreading of
the basolateral maker (Dlg, red) around the plasma mem-
brane. The cells form a double layer. aPKC staining (blue)
appears abnormally reduced or diffuse.
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Figure 4

sds22 mutant cells accumulate G-actin and exhibit
breakdown of F-actin. sds22 mutant clones in ovarian folli-
cle cells and giant nurse cells, marked by the absence of GFP.
(A) Globular actin (G-actin, red) is upregulated in sds22
mutant clones in follicle cells. (B) Globular actin (G-actin,
red) is also upregulated in sds22 mutant nurse cells. (C)
Nurse cell membranes, lined with filamentous actin (marked
by Phalloidin, red), break down in sds22 mutant nurse cells,
leading to large cells containing multiple nuclei.

beads. The results indicate that Sds22 binds to PP1s, con-
firming results in yeast and mammalian cells.

Phosphorylation of two potential PPI targets, Sphaghetti
Squash and Moesin, is increased in sds22 mutant cells

We next sought evidence that Sds22 is required for PP1
phosphatase activity in Drosophila. Previous work sug-
gested that Sqh/MRLC is a target of PP1 $9c¢, because lev-
els of phospho-Sqh are elevated in PP1 9¢ mutant cells
[9,11]. In addition, evidence from mammalian cells sug-
gested that the same phosphatase that targets Myosin 11
regulatory light chain may also target Moesin (Moe), the
sole Drosophila ERM protein [13]. We therefore examined
levels of phospho-Sgh and phospho-Moe in sds22 mutant
cells by immunostaining with phospho-specific antibod-
ies. Levels of both phospho-Sqh (Fig 5B) and phospho-
Moe (Fig 5D) were elevated relative to total Sgh (Fig 5C)
and Moe (Fig 5E) in sds22 mutant cells. Note that the
excess phospho-Sqh and phospho-Moe staining accumu-
lates on both apical and baso-lateral membranes in
mutant cells (in contrast to their apical concentration in
wild-type cells). Thus, sds22 is required to restrict the
phosphorylation of both Moe and Sqh/MRLC.

Conserved function of Sds22 in human cells
Sds22 is widely conserved in the animal kingdom, includ-
ing a mammalian homologue PPP1R7. We therefore
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Figure 5

Sds22 binds to all four Drosophila PP1 proteins and
sds22 mutant cells exhibit hyper-phosphorylation of
the PP1I targets Sqh/MRLC and Moe. (A) Co-immuno-
precipitation of Sds22-GFP with each of the four HA-tagged
PP isoforms (labelled: 96, 87, 13 and 9) from Drosophila S2
cell lysates. Beads conjugated to anti-HA antibodies were
used to precipitate each of the HA-tagged PPIs and Sds22-
GFP was found to efficiently co-precipitate. Note that, in the
absence of transfected HA-tagged PPI, only a tiny amount of
Sds-22 protein precipitates with the HA-beads. (B) Phospho-
rylated Sqh/MRLC (P-Sqh, red) is elevated and spreads
basally in sds22 mutant clones (marked by absence of GFP,
green). (C) Levels of total Sgh/MRLC protein (monitored by
a Sqh-GFP transgene, green; [27] are not altered in sds22
mutant clones (marked by absence of beta-Gal, red). (D)
Phosphorylated Moesin (P-Moe, red) is elevated and spreads
basally in sds22 mutant clones (marked by absence of GFP,
green). (E) Overall protein levels of Moesin (Moe, red) do
not increase in sds22 mutant clones (marked by absence of
GFP, green).
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investigated if PPP1R7 performed similar functions in
mammalian cells to Sds22 in Drosophila. A431 cells are
keratinocytes that retain adherens junctions and grow in
'quasi-epithelial' clusters despite being transformed. First,
we investigated the morphology of A431 cells lacking
PPP1R7. Control A431 cells formed colonies with an aver-
age of 10 cells (Fig 6D&E) whereas cells depleted for
PPP1R7 formed smaller clusters usually consisting of 4-6
cells (Fig 6D&E). Thus, PPP1R7 helps to maintain the
cohesion of groups of human cells of epithelial origin.

We next tested whether the PPP1R7 knockdown pheno-
type reflected a conserved function in regulating the phos-
phorylation status of Ezrin, Radixin and Moesin (hereafter
refered to as ERM proteins) and Myosin Light Chain
(MLC). Depletion of PPP1R7 with siRNA oligos caused a
dramatic increase in the phosphorylation of both ERM
proteins and MLC (on Ser19; Fig 6A, B & E). This striking
result indicates that the biochemical function of Sds22/
PPP1R7 is conserved between Drosophila and mammals.
To verify the RNAi effect, we measured depletion of
PPP1R7 mRNA levels in A431 cells by quantitative RT-
PCR (Fig 6C). The mild variations observed between the
extent of knockdown and phenotypic strength with differ-
ent siRNA oligos are likely to result from experimental dif-
ferences between the staining and PCR.

Discussion

Our results show that Sds22, a protein previously identi-
fied as a PP1 phosphatase regulatory subunit in yeast, is
essential for PP1 function in Drosophila tissues. We have
also shown that the phosphorylation state of both Moesin
and Sqh/MRLC depends upon the Sds22/PP1 phos-
phatase. Our experiments do not prove that Moesin and
Sqh/MRLC are direct substrates of Sds22/PP1, but this is a
distinct possibility, as previous work has shown that Sqh/
MRLC can be found in a complex with PP1. We have
shown that this function of Sds22 is conserved in mam-
malian cells, consistent with previous biochemical evi-
dence that PPP1R7 (the mammalian Sds22 homologue)
binds to PP1 proteins.

Moesin and Sqh/MRLC are key regulators of the actin
cytoskeleton. Our work favours a model in which
restricted activation of Moesin and Sgh/MRLC maintains
an apical contractile bundle of actin filaments that is
essential for the shape and integrity of epithelial cells.
Both Moesin and Sqgh/MRLC are activated by phosphor-
ylation at the apical membranes of epithelia. In the case of
Moesin, this phosphorylation is essential for epithelial
integrity and depends on the apically localised kinase Slik
[10]. In the case of Sgh/MRLC, this phosphorylation is
essential for cells to maintain their columnar shape and
depends on Rho kinase [9]. Our work indicates that this
restricted activation of these proteins at the apical mem-
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Figure 6

The function of Sds22 is conserved in human cells.
The human homologue of Sds22, PPPIR7, was depleted with
four siRNA oligos in the human A43| squamous cell carci-
noma line. (A) Western blot showing changes in ERM protein
phosphorylation and total Ezrin levels in control and PPPIR7
siRNA transfected A431 cells. Bar chart shows fold changes
in p-ERM levels normalized to total Ezrin levels in control
and PPPIR7 transfected A431 cells. (B) Bar chart shows fold
changes in p-S19-MLC levels normalized to total MLC levels
in control and PPPIR7 transfected A431 cells. (C) RT-PCR
showing beta-actin and PPPIR7 levels in control and PPPIR7
siRNA transfected A431 cells. Bar chart shows % changes in
PPPIR7 levels normalized to beta-actin levels. (D) Bar graph
showing the average number of cells per cluster in control
and PPPIR7 transfected A431 cells. (E) Representative
images of p-ERM and p-S19-MLC staining in control and
PPPIR7 transfected A431 cells.

brane is complemented by dephosphorylation of Moesin
in other parts of the cell by ubiquitous PP1 phosphatases
containing the regulatory subunit Sds22. In sds22
mutants, these actin regulators are activated along the
entire cell membrane at high levels, leading to an abnor-
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mal contraction of the cells along their apical-basal axis. A
similar, but milder, phenotype is visible in PP1 9¢ mutant
clones [11] and in clones overexpressing a phospho-
mimetic form of Sqgh/MRLC [14,15].

A second phenotype observed upon depletion of Sds22 is
a loss of apical-basal polarity, associated with cells round-
ing up and forming multi-layers. Baso-lateral polarity
markers appeared to be more strongly affected than apical
markers in follicle cell epithelia. In imaginal discs, loss of
polarity in sds22 mutant clones would explain the extru-
sion and apoptosis of these cells. Importantly, both the
loss of polarity in follicle cells and the extrusion of imag-
inal disc cells were most commonly visible in larger, older
clones, indicating that this phenotype takes longer to
manifest than the abnormal cell shape phenotype. This
raises the possibility that Sds22 may not be a direct regu-
lator of cell polarity, but rather is required for polarity as
a consequence of its regulation of Sgh/MRLC and Moesin.
Alternatively, there may be additional targets of Sds22
that regulate the localisation of polarity markers.

Evolution of Sds22 and PP functions

sds22 was first identified in the single-celled vyeast,
Schizosaccharomyces pombe where it encodes a nuclear pro-
tein that directly binds to and regulates a PP1 phosphatase
[16,17]. In S. pombe, Sds22 is essential for this phos-
phatase to control events during mitosis [16,17]. In meta-
zoans, the PP1 family has expanded and Sds22 has
aquired additional functions in cell shape and polarity.
Accordingly, in both Drosophila and mammals, Sds22 is
not exclusively localised to the nucleus and is instead
found throughout the cell (Additional Fig 3; [18,19]).

Discrepancies between sds22 and PP | mutant phenotypes
in Drosophila

Drosophila have four PP1 phosphatases, named after their
isotype and cytological location:PP1 13¢,PP1 87c, PP1 96a
and PP1 9c. The potential for redundancy among these
four genes complicates genetic analysis. Nevertheless,
mutation of individual PP1 genes indicates that some may
have unique functions. Mutant alleles of PP1a87c, which
contributes 80% of the total PP1 phosphatase activity
[20], show strong defects in mitosis [21]. Of the other
three Drosophila PP1s, only one is essential, PP1B9c. Inter-
estingly, the morphological phenotype of PP1 9¢-mutant
cells resembles that of sds22 mutant cells in both follicle
cells and nurse cells [11]. In PP1 9¢ mutant clones of the
follicular epithelium, cells are shortened in their apical-
basal axis and cytosolic levels of G-actin and phospho-
Sqgh are increased [11]. However, PP1 9¢ mutant cells were
not reported to show defects in cell polarity.

Why do sds22 mutants not exhibit the mitotic defects
found PP1 87c¢ mutants? A likely explanation is that our
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sds22 mutant allele is not a null. In fact, depletion of sds22
by RNAi in Drosophila cells was recently reported to cause
mitotic defects [22]; [D. Glover, personal communica-
tion]. Thus, our sds22 allele may be a hypomorph that
reveals the function of Sds22 in regulating cell shape and
polarity.

Why do PP1 9¢ mutants not exhibit the polarity defects
found in sds22 mutants? A plausible explanation is that
the presence of the three other PP1s masks this pheno-
type. PP1 87¢ mutants, which remove 80% of PP1 activity,
might therefore be expected to show a polarity defect.
However, the mitotic defects in these mutants prevent
growth of clones, obscuring any potential polarity defect.
Thus, sds22 mutations are a convenient way of modulat-
ing PP1 activity that can reveal otherwise hidden pheno-

types.

Finally, other proteins have been identified which link
PP1 phosphatases to target proteins in Drosophila. These
include MYPT-75D, which appears to recruit Sqgh to PP1
and its loss has a weaker phenotype than loss of Sds22
[11]. Another MYPT is MBS, whose loss of function phe-
notype even more strongly resembles that of Sds22 [23].
While these two related MYPTs may be partially redun-
dant with one another, it is unlikely that they are also
redundant with Sds22. Redundancy between Sds22 and
MYPTs would likely result in Sds22 being non-essential.
Further experiments will be necessary to establish whether
the Sds22/PP1 complex and MYPT/PP1 complexes act
independently or together in cells.

Conclusion

We have confirmed work in other organisms by showing
that Sds22 acts as an essential subunit of PP1 phos-
phatases in both Drosophila and mammals and controls
cell shape and polarity in epithelial cells. There is an inter-
esting parallel between the sds22 mutant phenotype in
Drosophila and the escape of metastasising tumour cells
from epithelia to invade local tissues. Interestingly,
PPP1R7 has been reported to be significantly downregu-
lated in human squamous cell carcinomas (HNSCCs) and
other cancers, such as melanoma and prostate cancer
http://www.oncomine.org/. Thus, downregulation of
Sds22/PPP1R7 may contribute to tumour progression in
humans.

Methods

Generation of mutant sds22 alleles

The PiggyBac transposon based mutagenesis screen has
been described [24,25]. PiggyBac insertion sites were
mapped by inverse PCR. The PiggyBac is contains a gene-
trap module designed to prevent translation of down-
stream genes. Excision of the PiggyBac insertion in
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sds22PB1173 was achieved by introduction of the PiggyBac
transposase.

Molecular Biology

sds22 cDNA was amplified by PCR from the GM06266
cDNA clone (Berkley Drosophila Genome sequencing
project), cloned into a pEGFP-N1 vector (Clontech Labo-
ratories) to create a C-terminal GFP fusion, and then sub-
cloned into a pUAST expression vector [26] for P-element
transformation.

Fly genetics

The tubulin.Gal4, ¢204.Gal4 (BL3751) and engrailed.Gal4
fly lines are described in Flybase and available from the
Bloomington stock centre.

Clones of genetically marked homozygous sds22 mutant
cells were generated using the following genotypes:

yw ey.flp/+; FRT82 Minute Ubi.GFP/FRT80 82 sds22PB1173
(eye discs)

w hsp70.flp/+; FRT82 Ubi.GFP/FRT80 82 sds22FB1173 (wing
discs, eye discs and egg chambers)

w hsp70.flp/+; FRT82 Minute Ubi. GFP/FRT80 82 sds22PB1173
(wing discs, eye discs and egg chambers)

w  hsp70.flp/+;Sqh.GFP/+; FRT82 arm.lacZ/FRT80 82
sds22PB1173 (Sqh-GFP gift of R. Karess; egg chambers)

w hsp70.flp UAS.RFP/+; tub.Gal4/UAS.p35; FRT80 82
sds22PB1173/FRT82 tub.Gal80 (the MARCM system for
expressing p35 in mutant clones in wing discs)

yw ey.flp UAS.GFP; tub.Gal4/+; FRT80 82 sds22PB1173/
FRT82 tub.Gal80 (the ey.flp-MARCM system for eye discs)

yw ey.flp UAS.GFP; tub.Gal4/UAS.Sds22-GFP; FRT80 82
sds22PB1173/FRT82 tub.Gal80 (transgenic rescue with the
ey.flp-MARCM system)

For imaginal wing discs, hs.flp clones were generated by
heat shocking larvae at 37°C for 1 hr at 60 + 12 hrs or 84
+ 12 hrs of development. For egg chambers, third instar
larvae were heat shocked for 1 hr at 37°C. Adults were fat-
tened on yeast for 2 days prior to dissection.

The UAS.sds22-IR transgenic RNAi line was obtained from
the Vienna Drosophila RNAi Centre (VDRC, transformant
number 11788) and driven in clones by induction of Gal4
with the 'flip-out' system in females of the following gen-

otype:

hs.flp; actin. FRT.y STOP.FRT.Gal4 UAS.GFP/UAS.sds22-IR

http://www.biomedcentral.com/1471-213X/9/14

Immuno-fluorescence in Drosophila

Imaginal discs and egg chambers were dissected on ice,
fixed in 4% formaldehyde for 20 min and incubated with
primary antibodies overnight at 4°C in BBT (PBS, 0.2%
TritonX-100, 0.1% BSA; for the a-Sqh antibody: PBS,
0.3% Tween-20, 0.1% BSA). Secondary antibodies, Phal-
loidin and DAPI were added for 2 hrs at room tempera-
ture. The following antibodies and chemicals were used:
rabbit o-aPKC (1:200; Santa Cruz Biotech), mouse a-
alpha-Spectrin (1:50; Developmental Studies Hybridoma
Bank, DSHB), mouse o-Dlg (1:100; DSHB), mouse a-
Armadillo (1:10; DSHB), rabbit a-actin (1:100; preferen-
tially stains G-actin; Sigma Aldrich), rabbit o-betaGal
(1:100; Cappel) rabbit a-Moesin (1:100; a gift from D.
Kiehart), rabbit a-Phospho-Moesin (1:100; Cell Signaling
Technologies), rabbit a-Phospho-MRLC (1:500; a gift
from D. Bennett), 488_Phalloidin and 568_Phalloidin
(1:1000; Molecular Probes, Invitrogen), DAPI (1:1000;
Sigma Aldrich). As secondary antibodies, goat a-rabbit
Cy5 and goat a-rat Cy5 (1: 200; Jackson Immuno
Research laboratories) were used. Images were taken with
a Leica TCS SP2 Confocal Microscope.

Immuno-precipitation

Drosophila S2 cells were transfected with combinations of
Sds22-GFP and HA-tagged PP1 proteins, expressed from
the pUAST vector by co-transfection of the Copper-induc-
ible pMT-Gal4 plasmid. 2 days after induction with 700
pM CuSO,, cell lysates were harvested and incubated
overnight at 4 degrees with agarose beads conjugated to
mouse anti-HA antibodies. The beads were spun down
and washed several times. Precipitated proteins were
eluted from the beads by boiling in SDS-sample buffer
and then analysed by western blotting with rat anti-HA
and rabbit anti-GFP antibodies.

Cell culture and siRNA Transfection

A431 cells were grown in DMEM supplemented with 10%
FCS. A431 cells were transfected using OligofectamineTM
Reagent (invitrogen #12252-011). Briefly, cells were
plates at 60% confluence and subjected to transfection the
following day using 100 nM final concentration of siRNA.
siRNA against PPP1R7 was purchased from Dharmacon
and sequences are: oligo 1: ggacagagaugcagaggauuu (D-
019589-01), oligo 2: wuaacagagcuggagauucuuu (D-
019589-02); oligo3: gaaaauaucagccaucuaauu (D-019589-
03); oligo 4: gacauugcaucaaauagaauu (D-019589-04).
Transfections were stopped after 48 h.

Immuno-fluorescent staining of cultured cells

A431 cells were fixed using 4% PFA in PBS for 15 minutes
at room temperature, washed with PBS and permeabilised
with 0.2% Triton X100 in PBS for 15 minutes. They were
blocked with 5%FBS in PBS prior to incubation with
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PERM or pS19MLC antibodies (Cell Signaling #3141 and
#3671 respectively) or TRITC-phalloidin (Sigma #P1951).

Western blotting

Cells lysates were analysed using 15% SDS-PAGE gels fol-
lowed by western blotting using pERM, ezrin, pMLC or
MLC antibodies (Cell Signalling #3141, #3145, #3671
and #3672 respectively)

RT-PCR

RNA was isolated from cells using RNeasy Mini kit fron
Qiagen. cDNA was synthesized using random primers and
M-MLV RT H(-) (Promega). Briefly, 2 ng RNA was mixed
with 1 pg random primers. RNAase free water was added
to 14 pl. The mixed was heated to 75°C for 5 min and
cooled on ice for additional 5 min. 5 ul M-MLV 5x reac-
tion buffer, 5 ul nucleotide pool and 1 ul M-MLV reverse
transcriptase H(-) were added. The mixed was incubated
at room temperature for 10 min and at 40°C for 50 min.
After this, RNAase free water was added to a final volume
of 100 pl. Quantitative real-time PCR was carried out
according to manufacturer instructions using Platinum®
SYBR® Green qPCR SuperMix UDG from Invitrogen
(#11744-500) on a Chromo 4 detector (MJ Research). The
primers used for actin as control were: (5'-ctgacggccaggt-
catca-3', 5'-agaccaaaagccttcatacatc-3') and for PPP1R7: (5'-
catcgaaggggttgacaagt-3', 5'-ccccaaaaacaaactctcca-3')
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Additional material

Additional Figure 1

A genetic screen for genes regulating epithelial morphology recoveres
sds22. The principle of a genetic screen, based on the eyeless.Flp
(ey.Flp) system is shown. Homozygous mutant eyes were generated in
otherwise heterozygous animals. This screen made use of Minute (or
alternatively, cell lethal) mutations to ensure that large homozygous
mutant clones occupied the entire eye (see methods). (A) Viable and phe-
notypically normal flies were generated when eyes were homozygous for
control FRT chromosomes. (B) Pupal lethality was observed when eyes
were homozygous mutant for the sds22 gene, caused by insertion of a pig-
gyBac transposon (PB1173). (C) Cell lethal mutations allowed develop-
ment of viable flies with tiny or absent eyes. (D) A third instar eye
imaginal disc generated with the ey.Flp Minute system showing that cells
homozygous for a control FRT chromosome (marked by absence of GFP)
occupy almost the entire eye. (E) A third instar eye imaginal disc that is
composed largely of sds22PB1173 mutant cells (marked by absence of
GFP), generated with the ey.Flp Minute system. The morphology of the
eye disc epithelium is severely disturbed. (F) A third instar eye imaginal
disc generated with the ey.Flp Minute system using an FRT cell lethal
chromosome. Most eye cells are eliminated, while the antennal portion of
the disc is unaffected.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-14-S1.jpeg]

Additional Figure 2

Transgenic rescue of the sds22 phenotype. The ey.Flp MARCM system
was used to induce clones of GFP positive cells in the Drosophila eye
imaginal disc (see methods for genotypes). (A) Control clones of
homozygous wild-type cells produce a normal disc morphology. (B) Clones
homozygous mutant for sds22 severely disrupt disc morphology, causing
many folds in the epithelium. (C) Clones homozygous mutant for sds22
that also express UAS.Sds22-GFP are rescued. Normal disc morphology
is restored.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-9-14-S2.jpeg]

Additional Figure 3

Subcellular localisation of an Sds22-GFP fusion protein. (A) Confocal
section of follicle cell epithelium expressing UAS.Sds22-GFP under the
control of c204.Gal4 and stained for phalloidin (red). Sds22-GFP
(green) is found in both nucleus and cytoplasm. (B) Confocal X-Z section
of third instar wing disc expressing Sds22-GFP (green) in the posterior
compartment under the control of the en.Gal4 driver. Sds22-GFP is
found in both nucleus and cytoplasm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-9-14-S3.jpeg]
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