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Abstract
Background: The maternal contribution of transcripts and proteins supplied to the zygote is
crucial for the progression from a gametic to an embryonic control of preimplantation
development. Here we compared the transcriptional profiles of two types of mouse MII oocytes,
one which is developmentally competent (MIISN oocyte), the other that ceases development at the
2-cell stage (MIINSN oocyte), with the aim of identifying genes and gene expression networks whose
misregulated expression would contribute to a reduced developmental competence.

Results: We report that: 1) the transcription factor Oct-4 is absent in MIINSN oocytes, accounting for
2) the down-regulation of Stella, a maternal-effect factor required for the oocyte-to-embryo transition
and of which Oct-4 is a positive regulator; 3) eighteen Oct-4-regulated genes are up-regulated in MIINSN

oocytes and are part of gene expression networks implicated in the activation of adverse biochemical
pathways such as oxidative phosphorylation, mitochondrial dysfunction and apoptosis.

Conclusion: The down-regulation of Oct-4 plays a crucial function in a sequence of molecular
processes that leads to the developmental arrest of MIINSN oocytes. The use of a model study in
which the MII oocyte ceases development consistently at the 2-cell stage has allowed to attribute
a role to the maternal Oct-4 that has never been described before. Oct-4 emerges as a key
regulator of the molecular events that govern the establishment of the developmental competence
of mouse oocytes.

Background
The early stages of mammalian development are sus-
tained by the presence of transcripts and proteins that

have been produced and stored in the oocyte during fol-
liculogenesis. This supply is used by the morula stage in
sheep and rabbit preimplantation embryos; the 4- to 8-
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cell stage in humans and the 2-cell stage in the mouse, at
which time zygotic gene activation (ZGA) occurs and
novel transcripts and proteins are expressed by the embry-
onic genome [reviewed in [1,2]]. What is the exact mater-
nal contribution during this period of transition from a
maternal to an embryonic control of development, and
how the maternal legacy of transcripts and proteins is
orchestrated through the first mitotic divisions prior to
ZGA, remains unclear. An altered maternal contribution
to a correct expression of zygotic genes leads to a develop-
mental block at the time of ZGA [1,2].

This developmental block is a feature of a group of fully
grown antral oocytes present in the mammalian ovary.
Based on their chromatin organisation, antral oocytes can
be classified in SN (surrounded nucleolus) oocytes, with
a ring of chromatin surrounding the nucleolus and in
NSN (not surrounded nucleolus) oocytes, with a more
dispersed chromatin not surrounding the nucleolus
[reviewed [3]]. These two types of gametes are present in
the ovaries of all the mammalian species studied includ-
ing rat [4], monkey [5], pig [6], mouse [7] and human [8].
They have been extensively studied in the mouse and a
number of morphological and functional differences have
been described. For example, in SN oocytes most of the
centromeres localise around the compact nucleolus,
whereas in NSN oocytes only the centromeres of chromo-
somes carrying the nucleolus organising regions are asso-
ciated with the nucleolus [9,10]. Microtubule organising
centres form around the nucleus of SN oocytes, but not
around that of NSN oocytes [11,12]. These morphological
differences have a biological relevance as they have been
correlated with changes in transcription [13-15]. NSN
antral oocytes are transcriptionally active and synthesise
all classes of RNA, whereas SN antral oocytes are transcrip-
tionally inactive [14].

The most striking difference between the two types of
oocytes is their developmental competence. When iso-
lated from the mouse ovary, matured to metaphase II
(MII) and fertilised in vitro, both types of oocytes (MIINSN

derived from antral NSN oocytes and MIISN derived from
SN oocytes) are capable of developing to the 2-cell stage,
but only MIISN oocytes are developmentally competent
beyond the 2-cell stage [16,17] and capable of reaching
full term development [18].

In this study we have compared the gene expression pro-
file of developmentally incompetent MIINSN oocytes with
that of developmentally competent MIISN oocytes, with
the aim of identifying genes and gene expression networks
whose misregulated expression would contribute to a
reduced developmental competence. To this end, fully
grown NSN and SN antral oocytes were isolated from the
ovaries, cultured in vitro to the MII stage and their profiles

of gene expression compared. We first focused our inves-
tigation on a group of maternal-effect genes whose altered
expression leads to preimplantation developmental
arrest. Then, using microarrays analysis and bioinformatic
resources, we identified major groups of genes, gene
expression networks and biochemical pathways character-
istic of the developmentally incompetent MIINSN oocytes.

Results
Stella, a maternal-effect protein required for the oocyte-
to-embryo transition, is not detected in developmentally 
incompetent MIINSN oocytes
Our study was first focused on a specific group of gene
transcripts and proteins accumulated during the oocyte
growth to become necessary, after fertilisation, for suc-
cessful embryogenesis. These gene products and their
effects are well documented in organisms such as Dro-
sophila melanogaster or Xenopus laevis [19,20], but in recent
years, increasing evidence has been produced that mater-
nal-effect genes are crucial in pre- [21-29] and post-
implantation [28,30,31] development.

We analysed the profile of expression of the following five
genes, known for playing a role during the oocyte-to-
embryo transition: Zar1, Npm2, Stella (Dppa3), Smarca4
(Brg1) and Prei3 [22,26,27,29].

The relative number of transcripts of the genes analysed
resulted equally represented in the two types of MII
oocytes, with the exception of Stella that was 1.4-fold
down-regulated (p < 0.05) in MIINSN oocytes (Figure 1).
Consistently with the down-regulation of gene expres-
sion, immunostaining with an antibody against Stella did
not detect the presence of the protein either in NSN antral

Down-regulation of Stella gene expression in MIINSN oocytesFigure 1
Down-regulation of Stella gene expression in MIINSN 

oocytes. The gel electrophoresis is representative of the 
relative number of transcripts for each of the five maternal-
effect genes analysed. When comparing MIINSN with MIISN 

oocytes, of the five genes analysed, only Stella was signifi-
cantly regulated with a 1.4-fold down-regulation in MIINSN 

oocytes. Samples 1–3 are three different single MIISN oocytes; 
samples 4–6 are three different single MIINSN oocytes; ∅1, 
RT blank; ∅2, first PCR blank; ∅3, second PCR blank; M, low 
mass ladder marker.
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or MIINSN oocytes (Figure 2D, J), whilst in SN antral
oocytes Stella co-localised around the nucleolus (Figure
2A) and in MIISN oocytes was dispersed within the whole
ooplasm (Figure 2G), as already shown in ovulated MII
oocytes [22].

Stella down-regulation is a good candidate to explain the
developmental block at the 2-cell stage that MIINSN

oocytes encounter following fertilisation [22]. For this
reason,, we wondered what induces the down-regulation
of Stella in MIINSN oocytes and whether other genes could
be involved in its regulation.

Stella is positively regulated by Oct-4 and Nanog based on
mouse Oct-4 ChiP-pet data [32], and it is also down-reg-
ulated upon RNAi-mediated Oct-4 knockdown in human

embryonic stem (ES) and embryo carcinoma (EC) cells
[33,34]. A recent study has demonstrated a strong link
between Stella and Oct-4, showing that the expression of
Stella in mouse ES cells is regulated by Oct-4 which is nec-
essary for maintaining a specific chromatin structure
within the locus containing Stella [35]. The authors
observed collapse of higher order chromatin structure
throughout the locus and down-regulation of Stella
expression following depletion of the Oct-4 gene. Addi-
tional studies using microarray analysis of gene transcrip-
tion in ES cells, have described Oct-4 involvement in the
regulation of chromatin modelling and chromatin-medi-
ated transcription regulation [36].

Next in our investigation, we addressed the question
whether the pattern of Oct-4 gene and protein expression

Stella and Oct-4 proteins are not detected in antral NSN and MIINSN oocytesFigure 2
Stella and Oct-4 proteins are not detected in antral NSN and MIINSN oocytes. (A-C) An SN antral oocyte nucleus 
which shows the binding of the antibody against Stella (A) around its nucleolus (n); (B) the characteristic ring of DAPI-positive 
chromatin surrounding the nucleolus. Bar, 3 μm. (D-F) An NSN antral oocyte nucleus negative to the antibody against Stella 
(D); (E) the nucleus is stained with DAPI. (G-I) A MIISN oocyte that shows the binding of the antibody against Stella dispersed 
within the whole cytoplasm (G). Bar, 20 μm. (J-L) A MIINSN oocyte negative to the antibody against Stella (J); (H, K) the arrow 
indicates the MII-plate, the arrowhead indicates the first polar body. (M-O) An SN antral oocyte nucleus that shows the binding 
of the antibody against Oct-4 localised mainly around the nucleolus. Bar, 3 μm. (P-R) An NSN antral oocyte nucleus negative to 
the antibody against Oct-4 (P). (S-U) A MIISN oocyte that shows the binding of the antibody against Oct-4 localised around the 
MII-plate; (U) an enlargement of the insert shown in T. The arrow indicates the MII-plate, the arrowhead indicates the first 
polar body. Bar, 20 μm. (V-X) A MIINSN oocyte negative to the antibody against Oct-4; (X) an enlargement of the insert shown 
in W.
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in developmentally incompetent MIINSN and competent
MIISN oocytes, in concert with the knowledge already
acquired on this gene, could establish Oct-4 as a key regu-
lator of Stella expression during the late phases of oocyte
maturation.

Oct-4, a chromatin-mediated regulator of Stella 
transcription, is down-regulated in developmentally 
incompetent MIINSN oocytes
Oct-4 (Pou5f1), a nuclear transcription factor that
belongs to the POU family, is involved in the regulation
of the expression of a number of developmental genes
and is required for the maintenance of cell pluripotency
[for a review see [37]]. Oct-4 is expressed throughout fol-
liculogenesis [38]; following fertilisation, it remains of
maternal origin until the 2-cell embryo, then at the 4- to
8-cell stage is first expressed by the embryonic genome
[40-42].

In an earlier study, we identified a 2-fold down-regulated
expression of Oct-4 in NSN antral oocytes compared to SN
antral oocytes [39]. In the present work, we found that
down-regulation of Oct-4 expression in MIINSN oocytes
correlated with a down-regulated expression of its
encoded protein as revealed by immunocytochemistry.
Figure 2M–2R illustrates the immunostaining pattern of
the Oct-4 protein in fully grown antral SN and NSN
oocytes. While in SN oocytes the protein was intensely
present and mostly localised around the nucleolus (Figure
2M), in NSN antral oocytes it was undetectable (Figure
2P). Following in vitro maturation to the MII phase, Oct-4
continued to be absent in MIINSN oocytes (Figure 2V–2X),
whereas MIISN oocytes maintained the presence of the
transcription factor localised around the MII plate and
partially within the cytoplasm (Figure 2S–2U).

In summary, since a sound experimental evidence has
demonstrated that Oct-4 regulates the expression of Stella,
Oct-4 and Stella down-regulation in MIINSN oocytes may
contribute to the inability of these gametes to develop
beyond the 2-cell stage. Our results suggest a novel role of
maternal Oct-4 in the regulation of the developmental
competence of the female gamete.

Oct-4-dependent transcriptional networks have been
described regulating self-renewal and pluripotency in
human [33,34,43,44] and mouse [32,36] ES and EC cells
and in human mesenchymal cells [44]. These studies
demonstrate that Oct-4 may interact with other genes to
regulate specific biological process.

We next asked the question, is Oct-4 a key regulator of
genes associated with or implicated in establishing devel-
opmental competence on oocytes? To address this, we
first analysed by microarrays, global differences in gene

expression between the two types of oocytes, and then
searched for genes known to be regulated by Oct-4 (based
on ChiP-on-chip and ChiP-Pet) in the array-derived list of
regulated genes.

Microarray-based analysis of the transcription profiles of 
developmentally competent and incompetent MII oocytes
The microarray platform that we used allowed the analysis
of a total of 39,450 genes and gene sequences (from now
on they will be all referred to as genes). Of these, 1,421
genes were expressed only in MIINSN oocytes; 1,967 genes
were expressed specifically in MIISN oocytes and 5,646
genes were expressed in both types of oocytes. A fold-
change cut-off of at least 1.5 and a p value < 0.05 was set
to filter the genes whose expression was differentially reg-
ulated. In the comparison between MIINSN and MIISN

oocytes, we identified a total of 380 regulated genes, of
these 303 were up-regulated in MIINSN oocytes, and 77
down-regulated (Additional file 1, see the 'MII-NSN vs.
MII-SN' data sheet). Using the Gene Ontology (GO)
annotations implemented in the Illumina platform (Illu-
mina®, 2007) and also by DAVID (Database for Annota-
tion, Visualization and Integrated Discovery) [45], we
identified 12 major biological themes that characterised
the group of regulated and annotated genes (Figure 3A):
transcription regulation (18%, mainly negative regula-
tion), protein biosynthesis (18%), cellular transport
(16%), metabolism (11%), development (8%), signal
transduction (8%), cell cycle (5%, mainly negative regula-
tion), carbohydrate metabolism (4%), DNA metabolism
(3%), cytoskeleton organisation (3%), apoptosis (3%),
chromatin/nuclear organisation (2%) and various GO
(1%); also, some genes fell into a group with undeter-
mined GO (162 unannotated genes). An inherent weak-
ness of the bioinformatic programs available to analyse
the patterns of gene expression obtained following micro-
arrays analysis is that they are limited to those genes with
assigned annotations or published relationships, and
depend on the accuracy of these annotations. The number
of down-regulated and up-regulated genes in each of the
12 categories and the list of these genes are shown in Fig-
ure 3B and Additional file 2, respectively.

To determine whether and how individual genes are inter-
related or interact with each other and to search for bio-
logical pathways and the inter-relationships between net-
work genes, we used the Ingenuity Pathways Analysis
(IPA) version 5.5 analysis tool (Ingenuity® Systems, http:/
/www.ingenuity.com). The genes of each gene group
(called focus genes) were uploaded as tab-delimited text
files and IPA queried the Ingenuity Pathways Knowledge
Base for interactions between focus genes and all other
objects stored in the knowledge base and generated a set
of networks. Those networks with a score ≥ 2 were consid-
ered for further analyses (see Additional File 3 for details).
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Genes up-regulated in MIINSN oocytes
The great majority (79.7%) of the regulated genes was up-
regulated. When IPA was performed on the up-regulated
focus genes, it generated 10 networks (Table 1) with a
score of 2 or higher, of these, 9 had 10 or more focus genes
(35 is the highest number of genes allowed in each net-
work). Because a score of 2 or higher has a confidence of
at least 99% of not being generated by chance, the high
confidence level obtained, particularly in the top nine net-
works, reveals the strong interrelation and interaction
among the genes that are up-regulated in MIINSN oocytes.
Figure in Additional file 4 shows the top 9 gene expression
networks obtained. The specificity of these networks to
the biology of the ovary was confirmed using IPA to
enquire public ovarian gene expression data sets. Network
1 has 23 focus genes and of these 21 (91.3%) are known
to be expressed in ovarian tissue. In networks 2–9, the per-
centage of ovarian genes decreased from 85.7% (network
4) to 50% (network 7). Comparison with data sets of
somatic tissues, namely liver, kidney, heart, lung and
spleen gave a lower matching (data not shown).

The gene expression networks described were associated
to top functions such as gene expression, protein synthe-
sis, cancer, immunological disease, genetic disorder, der-
matological disease and reproductive system disease,
highlighting the complexity of the different transcrip-

tional profile between developmentally incompetent
MIINSN and competent MIISN oocytes.

IPA was then interrogated to obtain a list of biochemical
pathways that are representative of the functions in which
the genes are involved. The genes up-regulated in MIINSN

oocytes were assigned to more than 80 pathways; 11 of
these were considered statistically significant (see Addi-
tional file 3) and the top six, together with the gene
expression networks they belong to, are shown in Table 2.
These six pathways included a total of 15 different genes,
the majority of which belonged to network 1 (4 genes),
network 2 (4 genes) and network 4 (7 genes), and were
associated with oxidative phosphorylation, mitochon-
drial dysfunction, galactose metabolism, purine metabo-
lism, protein ubiquitination and GABA receptor
signalling. Some of these genes are expressed within dif-
ferent pathways.

Genes down-regulated in MIINSN oocytes
IPA analysis of the focus genes down-regulated in MIINSN

oocytes generated 7 networks (Additional file 5 and Addi-
tional file 6) with a score ≥ 2 (the first three networks with
a score of 10 or higher are represented in Additional file
7). The top functions associated with these gene expres-
sion networks include cell cycle, cell death, embryonic
development and cancer. When IPA was interrogated to

Microarray-based analysis of the transcription profiles of MIINSN and MIISN oocytesFigure 3
Microarray-based analysis of the transcription profiles of MIINSN and MIISN oocytes. (A) Twelve major biological 
processes that characterise the group of regulated and annotated genes. (B) The number of down-regulated and up-regulated 
genes in each of the twelve biological processes.
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generate the biochemical pathways that were most repre-
sentative of the functions attributed to the genes involved
in the 7 networks, it created ten major pathways repre-
sented by 7 genes, 5 of which are associated with network
1 (2 genes) and network 2 (3 genes) (Additional file 8). Of
these 5 genes, Atm and Mdm2 (a kinase and a transcrip-

tion regulator, respectively) are involved in the G2/M
DNA damage checkpoint regulation. The protein encoded
by the Prdx6 gene is a member of the thiol-specific antioxi-
dant protein family, involved in the regulation of phos-
pholipids turnover as well as in the protection against
oxidative injury.

Table 1: Networks generated from IPA for focus genes that are up-regulated in MIINSN oocytes when compared to MIISN oocytes.*

Network Genes in 
network

Score Focus 
genes

Top 
functions

1 Akt, Anxa2, Bhlhb2, Calpain, Crkl, Glb1, Hoxa7, Insulin, Integrin, 
Lasp1, Ldl, Mcl1, Mdh2, Mfn2, Nadh2 Dehydrogenase, Nadh2 
Dehydrogenase (Ubiquinone), Ndufa1, Ndufa3, Ndufv1, Pdgf Bb, 
Pi3k, Pik3c3, Pkc(S), Pp2a, Ptpn1, Rac, Rpl27a, Rps6, Rps18, 
Slc3a2, Smg5, Strn3, Tmsb10, Tsc2, Tspan3

42 23 Cancer, Immunological Disease, Tumor 
Morphology

2 Bat3, Bcas3, Calmodulin, Crkrs, Egfr, Helz, Histone H3, Hsp70, 
Ing1, Invs, Iqgap1(Includes Eg:8826), Map3k12, Msse, Nbpf15, 
Nelf, Nr2e1, P38 Mapk, Polr2l (Includes Eg:5441), Prkg1, 
Ranbp1, Rap1, Rbm16, Rna Polymerase Ii, Setd2, Slc9a8, Smn1, 
Spag7, Spt1, Tarbp1, Terf2ip, Tgf Beta, Ubc, Uqcrb, Uqcrc1, 
Wdr36

26 16 Post-Translational Modification, Cancer, Genetic 
Disorder

3 Abpa (Includes Eg:11354), Amino Acids, Arrb2, Cebpa, Clta, Cltb, 
Ddx21, Eef1a2, Farp2, Fntb, Glipr1, Grasp, Grin3b, Grina, H1fx, 
Ifitm2, Insr, Mark3, Myo6, Nmda Receptor, Nusap1, Paip2, 
Pfkfb3, Pim1, Prkx, Sag, Snrk, Src, Stk38, Stk17a, Tfam, Tk2, 
Tp53, Tp53rk, Vegf

22 14 Amino Acid Metabolism, Post-Translational 
Modification, Small Molecule Biochemistry

4 Afg3l2, Arl2, Atf7ip, Atox1, Atp13a2, Atp13a5, Atp5a1, 
Atp6v0a1, Atp6v0b, Atp6v0e2, Atp6v1c2, Atp6v1d, Atp6v1e2, 
Atp6v1g2, Atp6v1h, Atpase, Ddx19b, Ddx3y (Includes Eg:26900), 
Dqx1, Eif3a, Eif3f, Eif3j, Eif4e, Gtp, H+-Transporting Two-Sector 
Atpase, Lsm10 (Includes Eg:84967), Mlh1, Psmc4, Psmc5, 
Psmd7, Ralbp1, Rfc4, Rsf1, Spast, Tcirg1

22 14 Molecular Transport, Protein Synthesis, Gene 
Expression

5 Acaa2, Acaa1b, Acsl4, Alad, Bcat1, Cidec, Cpt2, Ddx11, Dleu1, 
Dleu2, Dnmt3l, E2f1, Emp1, Erbb2, Exosc9, Fng, Glg1, Gtf3c2, 
Hdac1 (Includes Eg:3065), Hn1, Lxn, Mfap1, Mfng, Myc, 
Notch1, Psat1, Rfng, Rps16, Rps20, Snrpn, Sycp3, Tbp, Tle4, 
Tmem126a, Uxt

20 13 Cancer, Dermatological Diseases and Conditions, 
Cell Cycle

6 Aars, Arsb, Arsd, Arse, Arsf, Arsg, Arsi, Arsj, Cct5, Cxcl12, Cxcr6 
(Includes Eg:10663), Eif4h, Gns, Golga3, Hsd17b10, Kdelr2, 
Loxl2, Nsdhl, Pls3, Pth, Rab33b, Rbm14, Rdh11, Sec61a1, 
Sec61g, Slc34a1, Slc34a2, Srebf1, Ssr2, Stch, Sulf2, Sumf1, 
Syvn1, Tgfb1, Xbp1

20 13 Tissue Development, Tissue Morphology, Cellular 
Function and Maintenance

7 Abtb1, Actin Alpha-Ca2+-Myosin-Tropomyosin-Troponinc-
Troponin I-Troponin T, Adcy9, Beta-Estradiol, Ca2+, Clec3b, Cnn3, 
Fn1, Ifi30, Igf1, Kcnn2, Mek1/2, Myh2, Nmur2, Nudt1, Pcna, 
Pdlim2, Pfkl, Pkia, Pla2g12a, Pla2g2d, Plg, Poldip2, Psma2, 
Psmb2, Psmd6, Psmd14, Pten, S100a2, Saps2, Serpinb12, 
Slc6a9, Spint1, Trpv2, Tsta3

18 12 Cancer, Cellular Growth and Proliferation, 
Reproductive System Disease

8 Alp, Aprt, Atp1a3, Atp5l, Bmp2, Chgb, Cox7a1, Creb1, Esd, Fgf7, 
Fos, Foxm1, Gfra1, Hcg 25371, Hgs, Hr, Klf3, Me1, Myo5b, 
Nfe2l2, Nkx6-2, Nudt7, Pgd, Phyh, Psmc3ip, Punc, Rxrb, 
Smarcd2, Tcea3, Thrb, Thyroid Hormone, Trim3, Trip4, Trip11, 
Ttf1

16 11 Gene Expression, Connective Tissue Development 
and Function, Cellular Development

9 Anapc5, Aptx, Cdca5, Cdca7l, Cdkn2a, Ctbp2, Ddx55, Deaf1, 
Epb42, Gypa, Icos, Ipo13, Ldb1, Lmo2, Lmo4, Mdm4, Nfkbib, 
Nhlh1, Nr3c1, P1, P4-Di(Adenosine-5') Tetraphosphate, Pdcd2, 
Pex3, Pex19, Plagl1, Rpl5, Sae1, Skp1, Smad2/3-Smad4, Sod2, 
Tcf3, Tfap2b, Tfap2c, Tgif1, Ube2i, Zp2

14 10 Gene Expression, Cell Cycle, Skeletal and Muscular 
System Development and Function

10 C4bpa, Foxj2 2 1 Cell-To-Cell Signaling and Interaction, 
Hematological System Development and Function, 
Tissue Development

*: in bold are Oct-4-regulated genes (see below).
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To identify the inter-relationship among up- and down-
regulated genes, we next carried out an IPA analysis of all
the regulated genes.

Genes regulated in MIINSN oocytes
The IPA of all the regulated genes, documented 25 gene
expression networks with a score ≥ 2, of these 12 showed
a score ≥ 12 (Additional file 9 and Additional file 10).
Since most of the regulated genes are up-regulated
(79.7%), as expected, the top functions represented by
these networks are those already identified with the sepa-
rated analysis of the up- and down-regulated genes (e.g.,
cell cycle, cellular compromise, cell death, cancer, cellular
growth and proliferation found in networks 1–3), but it
also revealed new categories (e.g., post-translational mod-
ification, connective tissue development, found in net-
works 2 and 3). In network 1, NF-kB is one of the
principal nodes, together with insulin, calmodulin and
protein phosphatase 2A (PP2A). Correct expression of
NF-kB is required for the development of the mouse pre-
implantation embryo, as inhibition of its expression
blocks development at the 2-cell stage [46]. PPA2 is one of

the four major Ser/Thr phosphatases implicated in the
negative control of cell growth and division.

Further analysis of the most representative biochemical
pathways identified nine top pathways, 6 of which are
shown in Additional file 11. The most representative path-
ways were those assigned to protein ubiquitination, oxi-
dative phosphorylation, ubiquinone biosynthesis, G2/M
DNA damage checkpoint regulation, fructose and man-
nose metabolism, valine, leucine and isoleucine degrada-
tion, attributed mainly to network 1 (8 genes), network 3
(6 genes) and network 6 (5 genes).

Genes expressed solely in MIINSN or MIISN oocytes
The comparison of the expression profiles of MIINSN with
that of MIISN oocytes, resulted in the identification of a
small number of focus genes transcribed exclusively by
MIINSN oocytes (29 genes, 8 annotated) (Additional file 1,
see the 'Only in MII-NSN' data sheet) or MIISN oocytes (7
genes, 3 annotated) (Additional file 1, see the 'Only in
MII-SN' data sheet). Three of the MIINSN oocyte-specific
genes have an assigned GO function as negative regulators

Table 2: Top six pathways generated from IPA for focus genes that are up-regulated in MIINSN oocytes and assigned to their respective 
gene networks.

Pathway Gene 
Symbol

Description Network Location Type

Oxidative Phosphorylation Ndufa1 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5 
kDa

1 Cytoplasm enzyme

Ndufa3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9 kDa 1 Cytoplasm enzyme
Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51 kDa 1 Cytoplasm enzyme

Mitochondrial Dysfunction Ndufa3 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9 kDa 1 Cytoplasm enzyme
Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51 kDa 1 Cytoplasm enzyme

Galactose Metabolism Glb1 galactosidase, beta 1 1 Cytoplasm enzyme
Oxidative Phosphorylation Uqcrb ubiquinol-cytochrome c reductase binding protein 2 Cytoplasm enzyme

Uqcrc1 ubiquinol-cytochrome c reductase core protein I 2 Cytoplasm enzyme
Protein Ubiquitination Ubc ubiquitin C 2 Cytoplasm other
GABA Receptor Signalling Ubc ubiquitin C 2 Cytoplasm other
Mitochondrial Dysfunction Uqcrb ubiquinol-cytochrome c reductase binding protein 2 Cytoplasm enzyme

Uqcrc1 ubiquinol-cytochrome c reductase core protein I 2 Cytoplasm enzyme
Purine Metabolism Polr2l polymerase (RNA) II (DNA directed) polypeptide L, 7.6 kDa 2 Nucleus enzyme
Oxidative Phosphorylation Atp5a1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha 

subunit 1, cardiac muscle
4 Cytoplasm transporter

Oxidative Phosphorylation Atp6v0a1 ATPase, H+ transporting, lysosomal V0 subunit a1 4 Cytoplasm transporter
Atp6v0b ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit b 4 Cytoplasm transporter

Protein Ubiquitination Psmc4 proteasome (prosome, macropain) 26S subunit, ATPase, 4 4 Nucleus peptidase
Psmc5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 4 Nucleus transcription 

regulator
Psmd7 proteasome (prosome, macropain) 26S subunit, non-ATPase, 7 4 Cytoplasm other

Purine Metabolism Atf7ip activating transcription factor 7 interacting protein 4 Nucleus transcription 
regulator

Atp5a1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha 
subunit 1, cardiac muscle

4 Cytoplasm transporter

Atp6v0b ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit b 4 Cytoplasm transporter
Psmc4 proteasome (prosome, macropain) 26S subunit, ATPase, 4 4 Nucleus peptidase
Psmc5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 4 Nucleus transcription 

regulator
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of cell proliferation (Ogfr and Mll1) or apoptosis (Spata4),
whereas two annotated MIISN oocyte-specific genes are
involved in processes of positive regulation of the cell
cycle (Crebbp and Fank1). Out of 29 focus genes expressed
only in MIINSN oocytes, 10 were assigned to a single gene
expression network (Additional file 12, genes in bold;
Additional file 13), with top functions that included hair
and skin development and function, organ morphology
and cellular development. The number of MIISN-specific
genes was so low that it was not considered for further
analysis.

RT-PCR analysis of the relative number of transcripts of
two MIINSN oocyte-specific genes (Jam2 and Ogfr) and two
MIISN oocyte-specific genes (Crebbp and Fnip1) confirmed
the microarrays data and the presence of a different
number of transcripts in the two types of oocytes; how-
ever, whilst Jam2 and Ogfr were shown to be expressed
only in MIINSN oocytes (Additional file 14); Crebbp and
Fnip1 were not exclusive to MIISN oocytes, but instead
showed respectively a 1.4-fold and 1.9-fold, higher
number of transcripts in these gametes (Additional file
14). The presence of transcripts of Crebbp and Fnip1 genes
in MIINSN oocytes is due to the overt single-cell sensitive of
nested-PCR that amplified the low number of transcripts
that were not detected by the less sensitive microarray
analysis. When the number of the second PCR cycles was
reduced to 22 (Crebbp) and 20 (Fnip1), expression was not
detected in the MIINSN oocyte samples.

In summary, the results of the microarray analysis as a
whole, indicate that developmentally incompetent
MIINSN oocytes have activated, among others, gene expres-
sion networks implicated in the regulation of biochemical
pathways representative of the adverse biological status of
these oocytes. These pathways include, oxidative phos-
phorylation, mitochondrial dysfunction and apoptosis.

To identify Oct-4 target genes among the list of regulated
genes, we compared our list with the published mouse
and human Chip datasets of Oct-4-regulated genes
[32,43].

Eighteen Oct-4-regulated genes are associated with 
adverse gene expression networks in developmentally 
incompetent MIINSN oocytes
This analysis identified a total of 25 target genes. When
comparing MIINSN with MIISN oocytes, all these genes,
with the exception of Odz2 and Zfp36l1 (down-regulated
1.6 and 2.3-fold, respectively), were up-regulated in
MIINSN oocytes with fold changes ranging from 1.7
(Iqgap1) to 62.4 (Pgm2) (Figure 4A). Eighteen of these
genes were part of gene expression networks 1 to 8 gener-
ated from the IPA of up-regulated genes in MIINSN oocytes
(Table 1, genes highlighted in green), and thus involved

in the activation of the same biochemical pathways
described above. When IPA was specifically interrogated
with the list of these 25 genes, including Oct-4, it gener-
ated 6 networks (Table 3) with a score ≥ 2, of these, the
first two contained 12 and 7 (including Oct-4 itself) focus
genes respectively, and had top functions centred around
biological themes such as gene expression, cell death, can-
cer and reproductive system disease. Oct-4 was part of net-
work 2 (Figure 4B), which included the TNF (tumor
necrosis factor) pathway, a multifunctional proinflamma-
tory cytokine that acts on several different signalling path-
ways to regulate apoptosis (directly activating the caspase
cascade or through a mitochondria-mediated apoptosis
[for a review see [47]]), NF-kB activation of inflammation,
and activation of stress-activated protein kinases (SAPKs).

Interestingly, Zfp36l1 (Zinc finger protein 36), one of the
two Oct-4-regulated genes that was down-regulated in
MIINSN oocytes, is a member of the Tis11 family of early
response genes, of which Zfp36l2, another maternal-effect
gene crucial for early embryonic development, is also a
member [48]. Perhaps, Zfp36l1 is a novel maternal-effect
gene whose expression is regulated by Oct-4 and whose
down-regulation may affect the developmental compe-
tence of MIINSN oocytes.

The microarray analysis revealed a 1.8-fold down-regula-
tion of Oct-4 expression in MIINSN oocytes. However, this
data was not included in the list of regulated genes (Addi-
tional file 1) because its p value was equal to 0.051, thus
just slightly above the set cut-off limit of p < 0.05. To
understand how the expression of the Oct-4 gene was
related with the adverse gene expression networks that we
found activated in MIINSN oocytes, we next included the
expression data for Oct-4 obtained by microarray analysis
(despite its p value was 0.051) into the list of up-regulated
or down-regulated genes and performed an IPA analysis.
With the group of down-regulated genes, Oct-4 was
included in network 1 (which has top functions as gene
expression, cancer and cell cycle; see Additional file 5);
with the up-regulated genes, Oct-4 was integrated into net-
work 2, which has top functions as post-translational
modification, cancer, genetic disorder and activates
adverse pathways such as oxidative phosphorylation and
mitochondrial dysfunction, see Table 1 and Table 2). In
both cases the gene fell into the two top networks high-
lighting the central role it plays.

In summary, down-regulation of Oct-4 expression in
MIINSN oocytes induces the up-regulation of a group of 18
Oct-4-regulated genes that are part of the top gene expres-
sion networks involved in the activation of adverse path-
ways, i.e., oxidative phosphorylation, mitochondrial
dysfunction and apoptosis.
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Discussion
The maternal contribution of transcripts and proteins sup-
plied to the zygote is crucial for the successful progression
of preimplantation development. An aberrant oocyte
inheritance leads to developmental arrest, mostly at the
time of ZGA. To gain a better understanding of the genes,
gene expression networks and biochemical pathways that

may be activated/inactivated to compromise the develop-
mental competence of MII oocytes, we compared two
types of mouse MII oocytes, one which is developmen-
tally competent and reaches full term development (MIISN

oocyte), the other that ceases development at the 2-cell
stage (MIINSN oocyte).

Table 3: Networks generated from IPA for Oct-4-regulated genes.*

Network Molecules 
in Network

Score Focus 
Molecules

Top 
Functions

1 Bat1, Cd58, Cpd, Ddx11, Ddx21, Dleu1, Dleu2, Dub2, Duox2, 
E2f1, Exosc9, Hivep3, Hn1, Il2, Jun, Mfap1, Mist, Myc, Nr2e1, 
Parp1, Prl2c2, Psat1, Psmc5, Psmd6, Psmd7, Ranbp1, Rbm14, 
Rps16, Rps18, Sec61g, Terf2ip, Tle4, Tmem126a, Trip4, Vhl

28 12 Gene Expression, Cell Death, Hematological 
Disease

2 Aatk, Bpi, Cdh1, Cldn11, Ctsc, Dhrs3, Dlx1, Eef1d, Foxd3, Gfra1, 
Hoxa7, Iqgap1(Includes Eg:8826), Kif3c, Mc1r, Mt1l, Nif3l1, 
Nkx2-3, Nrtn, Ogn, Optn, Pik3c3, Pla2g7, Pou5f1, Psmb2, 
Psmb9, Ptpru, Retinoic Acid, Rna Polymerase Ii, Serpinb8, Slc12a6, 
Tmem49, Tmsb10, Tnf, Zfp42, Zfp36l1

15 7 Cancer, Reproductive System Disease, Cell 
Death

3 Cd79a, Mro 3 1 Lipid Metabolism, Small Molecule 
Biochemistry, Viral Function

4 Cggbp1, Fmr1 3 1 Connective Tissue Development and Function, 
Developmental Disorder, Genetic Disorder

5 Pgm, Pgm2, Pmm 3 1 Carbohydrate Metabolism, Small Molecule 
Biochemistry

6 Arsa, Arsb, Arsd, Arse, Arsf, Arsg, Arsi, Arsj, Gns, Ids, Sgsh, Sts, Sulf1, 
Sulf2, Sumf1

2 1 Genetic Disorder, Metabolic Disease, Skeletal 
and Muscular System Development and 
Function

*: In bold are the Oct-4-regulated focus genes. Underlined is the Oct-4 (Pou5f1) gene.

Down-regulation of Oct-4 expression in MIINSN oocytes induces the up-regulation of a group of Oct-4-regulated genes associ-ated with gene expression networks involved in the activation of adverse pathwaysFigure 4
Down-regulation of Oct-4 expression in MIINSN oocytes induces the up-regulation of a group of Oct-4-regu-
lated genes associated with gene expression networks involved in the activation of adverse pathways. (A) 
Twenty-five Oct-4-regulated genes present in the list of regulated genes determined with our microarray analysis. Twenty-
three of them are up-regulated (green square), two are down-regulated (red square). Within each square the name of the gene 
and the n-fold up- or down-regulation are reported. (B) The two top gene expression networks generated when IPA was 
interrogated with the list of these 25 Oct-4-regulated genes. Grey symbols are focus genes (use the zoom in tool to enlarge 
the networks).
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Our study began with the analysis of the profile of expres-
sion of five maternal-effect genes. We showed that of
these, only the expression of Stella was mis-regulated and
its protein absent in MIINSN oocytes. The maternal inherit-
ance of Stella is needed for correct preimplantation devel-
opment [22]. When oocytes from Stella-/- females are
inseminated with wild-type sperm, while fertilisation pro-
ceeds normally, development is severely altered resulting
in a progressive decline in the number of blastocysts, with
the majority of embryos that do not develop beyond the
2-cell stage. Stella encodes for a basic protein with a SAP-
like domain and a splicing factor-like motif thought to
have a role in chromosomal organisation or RNA metab-
olism. Stella binds both RNA and DNA in vitro, supporting
its involvement in linking chromatin with RNA-related
processes, as it is the case for other SAP-domain proteins
[49]. A recent study has shown that Stella protects against
inappropriate DNA demethylation in the maternal
genome and at certain imprinted loci during epigenetic
reprogramming after fertilisation [50]. Down-regulation
of Stella, is likely to be partly causal of the developmental
arrest at the 2-cell stage of MIINSN oocytes. Lack of Stella
protein in MIINSN oocytes is a consequence of the down-
regulation of Oct-4, which is known to regulate Stella
expression in ES and EC cells. This implies a pivotal role
for maternal Oct-4 in the establishment of the develop-
mental legacy of female gametes. The down-regulation of
Oct-4/Stella in NSN GV oocytes compromises their devel-
opmental competence.

In favour of the hypothesis- "factors present in MIISN

oocytes, but absent in MIINSN oocytes, govern their devel-
opmental competence", Inoue and collaborators [18]
have micromanipulated fully grown SN and NSN antral
oocytes to demonstrate that the developmental compe-
tence of SN oocytes is dependent on unknown cytoplas-
mic factor(s) that are released from the germinal vesicle at
the time of MII formation and that these ooplasmic fac-
tors are not contained in the GV of NSN oocytes. Both
Stella and Oct-4 proteins localise within the germinal ves-
icle of the SN antral oocytes; following meiosis resump-
tion and germinal vesicle break-down, Oct-4 is
circumscribed mainly around the MII-plate area, while
Stella is released within the ooplasm. The association of
Oct-4 (and Stella) with the nucleolus in antral SN oocytes
may have a functional significance. It was previously
shown that Oct-4 is closely associated with RNA polymer-
ase II in the nucleolus of oocytes (nucleolus-like bodies,
NLBs) [51]; since NLBs are the only coilin-containing
structures at the end of pre-ovulatory stages of oogenesis,
they may represent sites for the storage of the transcrip-
tional machinery needed after fertilisation and of which
Oct-4 may be a key component [51]. This association of
Oct-4 with the NLBs may secure a transfer of the mater-

nally inherited protein through the NLB to the zygote
[51,52], where Oct-4 perhaps continues to be necessary as
a regulator of the molecular events leading to ZGA.

Our microarray analysis indicate that the role of Oct-4 as
a regulator of gene expression in MII oocytes extends
beyond the regulation of Stella expression and has an
inhibitory effect on the expression of Oct-4-regulated
genes in developmentally competent MIISN oocytes.
Down-regulation of Oct-4 in MIINSN oocytes correlates
with the up-regulation of 23 Oct-4-regulated genes
involved in the activation of gene expression networks
and biochemical pathways that most represent the nega-
tive legacy of MIINSN oocytes. These pathways include oxi-
dative phosphorylation, mitochondrial dysfunction and
cell death. Following fertilisation, these negative features
might be passed on to the zygote and constitute a detri-
mental maternal legacy that affects further development.

Oxidative phosphorylation and mitochondrial dysfunc-
tion are biochemical pathways principal to the first two
top gene expression networks described for the group of
up-regulated genes (these represent the majority of the
regulated genes, 79.7%), which emphasises the central
role that these genes and mitochondria play in the bio-
chemistry of the developmentally incompetent MIINSN

oocytes. In addition to producing most of the cell's ATP,
recent studies have demonstrated that mitochondria have
a central role in cellular processes such as the regulation of
intracellular redox potential and control of apoptosis in
oocytes and preimplantation embryos [for a review see
[53]]. Accumulation of reactive oxygen species (ROS)
induces apoptosis in mouse zygotes, and mitochondria
are involved in the early phase of oxidative stress-induced
apoptosis [54], that leads to developmental arrest and
alterations of the ZGA [55,56]. Also, changes in the levels
of ROS regulate a number of transcription factors critical
in early development, these include PEBP2, AP-1, p53 and
NF-kB [57-59]. The two-fold role for mitochondria, to
maintain life or to commit to cell death, may represent a
quality control system in the female gamete and in the
early embryo that will determine whether the embryo pro-
ceeds further into development or is quickly eliminated
[53].

If down-regulation of Oct-4 activates these negative path-
ways, what does upstream of Oct-4 regulate its expression?
We have previously shown an effect of PMSG (a gonado-
tropin which mimics an FSH action) on Oct-4 gene
expression during folliculogenesis, demonstrating a hor-
monal regulation of oocyte-specific gene expression [39].
PMSG, which was used in this study to prime females
before oocytes isolation, may enter the gamete with the
involvement of a FSH-R signaling pathway that, through
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the modulation of c-kit on the surface of oocytes [60],
conveys the gonadotropin signal into the nucleus and
then act upon the transcription of several genes. One can-
didate could be GCNF (germ cell nuclear factor), a mem-
ber of the nuclear receptor family, critical in controlling
basal activities or hormonal responsiveness of numerous
target genes and known to repress Oct-4 expression [37].
GCNF may be a target of PMSG action that leads to the
down-regulation of Oct-4 expression in MIINSN oocytes.
This hypothesis needs to be tested, however, it is interest-
ing that in our microarray analysis, GCNF was 1.6-fold
up-regulated in MIINSN, although, because of its p value >
0.05, it was excluded from the list of regulated genes.

Conclusion
In summary, our study of developmentally competent
and incompetent mouse MII oocytes has identified a
small number of genes, gene expression networks and
biochemical pathways whose activation is critical for the
correct progression of the early stages of preimplantation
development and regulate the 2-cell block in MIINSN

oocytes. Our data constitute a framework for further
exploration of the genes and related transcriptional net-
works dedicated to establishing and preservating the
developmental competence of mammalian oocytes.
Based on our results, we have drawn a working hypothesis
that assigns a role to some of the molecular players that
have been described in this and other studies. The use of
a model study in which the MII oocyte ceases develop-
ment consistently at the 2-cell stage has allowed to illus-
trate a role for the maternal Oct-4 that has never been
described before. Oct-4 emerges as a key regulator of the
molecular processes that govern the establishment of the
maternal legacy of MII oocytes required for the transition
from a gametic to an embryonic control of development.
A sound knowledge of the orchestrating molecules and
the biochemical pathways entailed during the very early
stages of development will allow a better understanding
of the molecular mechanism(s) that determine the block
of development at the time of ZGA, which in humans is
the cause of a loss of a high percentage of embryos
obtained by in vitro fertilisation. A thorough functional
analysis of these genes in preimplantation embryos
derived from MIINSN and MIISN oocytes is our next chal-
lenge.

Methods
Oocytes isolation and maturation
Four to six week-old B6C3F1 female mice (Charles River,
Como, Italy) were injected with 3.5 I.U. PMSG (Pregnant
Mare Serum Gonadotropin, Folligon, Intervet Srl, Italy)
and sacrificed 48 hr later. Ovaries were isolated and antral
oocytes with a diameter > 70 nm were collected in M2

medium by puncturing the ovarian surface with a sterile
needle, they were transferred into subsequent washes of
M2 medium, until they appeared, under an inverted
microscope, completely free of cumulus cells. Then, they
were classified into NSN and SN oocytes and matured to
the MII stage (for details, see Additional file 3 and [61]).
The majority of SN (85%) and NSN (65%) antral oocytes
matured to the MII stage. Approximately 50 MIINSN or
MIISN oocytes were transferred in single 0.2 ml eppendorf
tubes containing 50 μl Trizol Reagent (Invitrogen), for
microarray analysis. For RT-PCR (Retro Transcription-
Polymerase Chain Reaction) analysis, individual MII
oocytes were transferred in 0.5 μl medium to 0.2 ml
eppendorf tubes containing 1.5 μl lysis buffer [17].

RNA isolation and RT-PCR amplification
Relative amounts of transcripts of the five maternal-effect
genes (Zar1, Stella, Smarca4, Npm2, and Prei3) and of the
MIINSN-specific (Jam2 and Ogfr) and MIISN-specific
(Crebbp and Fnip1) genes were determined by using a
semi-quantitative RT-PCR assay (for a detailed description
of the assay, see Additional file 3 and ref. 39). For each
experiment, at least 5 single MIINSN or MIISN oocytes were
analysed. Statistical analysis was done using the SigmaStat
3.0 software and comparing samples with the t-test. Dif-
ferences were considered significant when p < 0.05.

Immunocytochemistry
Oocytes were fixed with freshly prepared 4% paraformal-
dehyde for 30 min and then permeabilised with 0.5% Tri-
ton X-100 for 15 min at 4°C. To suppress non-specific
binding of antibodies, the gametes were incubated with
0.5% blocking reagent (Roche, Boston, MA) in TNT buffer
(0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl, 0.05% Tween-20)
for 20 min at 4°C. Immunostaining was performed with
rabbit anti-Oct-4 polyclonal antibody (Stanta Cruz Bio-
technology; sc 9081, 1:500 dilution) or mouse anti-Stella
monoclonal antibody (Millipore; MAB 4388, 1:1000 dilu-
tion). Oocytes were incubated with primary antibodies for
1 h at 37°C. The primary antibodies were detected using
appropriated secondary antibodies diluted in TNT for 1 h
at 37°C: Alexa Fluor488-goat anti-rabbit IgG (Molecular
Probes; 1:6000 dilution) for Oct-4 detection and Alexa
Fluor488-goat anti-mouse IgG (1:10000 dilution) for
Stella detection. After immunostaining, oocytes were
washed in three changes of TNT for 15 min at 4°C, and
then counterstained with DAPI (0.2 μg/ml in PBS for 5
min) and mounted in Vectashield (Vector).

Illumina bead chip hybridisations
Two independent pools of MIINSN or MIINSN oocytes con-
sisting of approximately 50 oocytes per pool were used as
the basis of our study. Messenger RNA was isolated using
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Oligo-dT-linked magnetic beads as described in Adjaye et
al. [62,63]. In order to generate enough RNA for the sub-
sequent microarray analysis, a two-round linear amplifi-
cation protocol was adopted to generate biotin-labelled
cRNA employing a linear amplification kit (Ambion, Aus-
tin, TX, United States). 1.5 μg of cRNA was used for the
hybridisation reaction. Washing, Cy3-streptavidin stain-
ing, and scanning were performed on the Illumina Bead-
Station 500 (Illumina, San Diego, CA, United States)
platform using reagents and following protocols supplied
by the manufacturer. cRNA samples were hybridised onto
Illumina mouse-6 BeadChips.

Bioinformatic analysis
All basic expression data analysis was carried out using the
manufacturer's software BeadStudio 1.0. Raw data were
background-subtracted and normalised using the "rank
invariant" algorithm. Normalised data were then filtered
for significant expression on the basis of negative control
beads. Selection for differentially expressed genes was per-
formed on the basis of arbitrary thresholds for fold
changes plus statistical significance according to the Illu-
mina t-test error model.

Gene annotation was first performed with the BeadStudio
software, combined with DAVID annotation tool [45].
File management, automated annotation and other statis-
tical analyses not reported in the paper were performed
with Matlab® Bioinformatics Toolbox. The networks and
pathways were generated with Ingenuity Pathways Analy-
sis (Ingenuity® Systems, http://www.ingenuity.com; for
details see Additional file 3).
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Top twelve gene expression networks generated by IPA with the list of 
genes regulated in MIINSN oocytes. Green symbols, genes up-regulated; red 
symbols, genes down-regulated (the intensity of the colour indicates the 
level of regulation) (use the zoom in tool to enlarge the networks).
Click here for file
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Additional file 11
Pathways generated by IPA for focus genes that are regulated in MIINSN 

oocytes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-97-S11.doc]

Additional file 12
Networks generated by IPA for focus genes that are expressed exclusively 
MIINSN and not in MIISN oocytes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-97-S12.doc]

Additional file 13
Gene expression network 1 generated by IPA with the list of genes 
expressed solely in MIINSN oocytes. Grey symbols are focus genes (use the 
zoom in tool to enlarge the networks).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 14
The gel electrophoresis shows the product of amplification of two genes 
expressed solely in MIINSN oocytes (Ogfr and Jam2) and two genes 
expressed more abundantly in MIISN oocytes (Crebbp and Fnip1). 
Gapdh, endogenous control whose transcripts are present equally in the 
two types of oocytes; 1–3, three different single MIINN oocytes; 4–6, three 
different single MIINSN oocytes. ∅1, RT blank; ∅2, first PCR blank; ∅3, 
second PCR blank; M, low mass ladder marker.
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