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Abstract

Background: Dietary restriction (DR) results in increased longevity, reduced fecundity and
reduced growth in many organisms. Though many studies have examined the effects of DR on
longevity and fecundity, few have investigated the effects on growth.

Results: Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth
under DR. We show that rather than a reduction in cell number, decreased growth in wild type C.
elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show
that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and
more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser
extent than wild type, suggesting that these neurons are required for the regulation of hypodermal
polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein
kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR.

Conclusion: We show C. elegans is capable of actively responding to food levels to regulate adult
ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

Background

Many animals change their life-history, size or shape in
response to the environment; a phenomenon known as
phenotypic plasticity [1,2]. One environmental factor that
exerts great influence over the development and life his-
tory of an organism is that of nutrition, or 'dietary restric-
tion' [3-8]. Studies in a variety of taxa have shown that
restricting the nutrition of juveniles or adults reduces
growth and fecundity, while increasing longevity [9-11].

Over the last decade the underlying cellular mechanisms
that regulate the effect of DR on growth have been

explored more extensively [12]. In metazoans, it appears
that much of an organism's ability to respond to DR is
determined by insulin-like signalling. For example, over-
expression of Insulin-like Growth Factor Binding Protein-
1 (IGFBP-1) is known to cause retardation of bone growth
[13] and is found in DR rats at three times the normal
level [14]. Drosophila and mice lacking components of the
Insulin-like signalling pathway have greatly reduced body
[15-19]. This reduction in size is due to a combination of
reduced cell number and cell size [18,19]. In contrast,
insulin-associated pathways in C. elegans are known to
determine fat storage, diapause, and longevity, but their
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effect on body size is less evident [20-25]. However,
genetic mechanisms of body size determination in C. ele-
gans are known to involve DBL-1 signalling (TGF-f ligand
homologous to Drosophila's Dpp and vertebrate's BMP).
DBL-1 regulates normal growth in C. elegans through the
SMA/MAB pathway [26], along with downstream compo-
nents such as LON-1 [27,28]. It seems to us a reasonable
hypothesis that the DBL-1 signalling may be involved in
the DR response. Moreover, this relationship may extend
to sensory-based regulation of growth. Mutant strains
lacking properly formed and functional sensory ciliated
neurons, such as the che mutants (cilia extension defects),
together with downstream cGMP-dependent protein
kinase EGL-4, exhibit alterations not only in longevity but
also in body size [29-31].

In this study we investigate whether C. elegans undergoes
a programmed regulation of growth in response to DR.
First, we characterized life history responses, of wild type
C. elegans, to DR, determining longevity, fecundity and
body size. Second, we determined the role of the sensory
system in growth regulation in response to DR. Thirdly,
we examined the role of TGF- signalling in DR mediated
growth responses and determine how this relates to the
sensory system.

Results

Dietary restriction in C. elegans reduces body size,
hypodermal ploidy and fecundity but increases longevity
We first set up an experimental system for growing C. ele-
gans under DR (also referred as "low food conditions"; see
Materials and Methods). As we were not interested in the
two adaptive responses of C. elegans larvae to DR, i.e. L1
arrest [32] and dauer formation [33], we exposed L3 ani-
mals grown in high food (see Materials and Methods) to
DR. They produced adults with substantial differences
with respect to their longevity (57% longer with DR; Fig-
ure 1A), fecundity (67% smaller with DR; Figures 1B and
1C) and body size (63% smaller with DR; Figure 1D).

The reduced fecundity and extended longevity are consist-
ent with previous studies on DR using C. elegans grown in
liquid media [5]. They are also consistent with Drosophila's
experiments where DR induces adults of smaller size
[34,4]. However, unlike in Drosophila, where the reduction
in size is due to a combination of reduced cell number
and size, in C. elegans there is no alteration in cell number,
at least in the hypodermis (Figure 1E), which secretes the
cuticle, scales with body size and regulates it through TGF-
B signalling [35]. Our data also show that the reduction in
body size seen on DR is associated with reduced levels of
hypodermal endoreduplication (Figure 1F), which we
recently showed drives growth in adult worms [36].

http://www.biomedcentral.com/1471-213X/8/28

Food consumption regulates body size but not hypodermal
ploidy

How does food level control the endoreduplication and
growth of worms? One possibility is that worms monitor
the amount of food that they actually eat and adjust their
ploidy and growth accordingly. To test this idea we first
studied a mutant,eat-2(ad465), that has a defective phar-
ynx and therefore cannot eat properly [37,38]. In effect,
eat-2 mutants experience constitutive DR. We found that,
when grown at high food levels, eat-2 (ad465) has a small
body size but has wild type ploidy [Tables 1 and 2]. Under
DR conditions, eat-2 (ad465) behaved like wild-type: its
body size was even further reduced and its ploidy
decreased by 24% (Table 2). This suggested to us that
body size is at least partly controlled by the amount of
food that a worm eats, but that hypodermal endoredupli-
cation is not.

Endoreduplication requires the sensation of food by
ciliated neurons

If the amount of food that a worm actually eats does not
control endoreduplication, why do DR worms have low
hypodermal ploidies? One possibility is that worms regu-
late endoreduplication in response to the amount of food
that they sense in their environments. Worms sense their
environment by means of their amphids, two small sen-
sory organs that are exposed to the environment through
pores located near the worm's mouth. Each amphid has
12 neurons from which eight project into the channel that
leads to the pore [39-42]. These eight neurons are ciliated
and have specialised endings containing receptor proteins
that interpret and distinguish between external stimuli
[43].

To test whether sensory signals from the amphids are
involved in the DR response, we measured body size in
various mutants possessing malformed, non-functional,
sensory cilia. Consistent with Fujiwara et al. [30], we
found that che-2(e1033) is smaller than wild type worms
under high food conditions (Table 1). This phenotype is
shared with all the other sensory cilia mutants examined
(Table 1): che-13(e1805), osm-5(p813), che-3(e1124) and
che-11(e1810). We also investigated whether the sensory
mutants become smaller under DR and found that they
had wild type responses (Table 1).

Then, to determine if the small body size of the sensory
cilia mutants was associated with reduced ploidy we
examined the hypodermis of all the sensory mutants. All
of these mutants showed a reduction in ploidy (p < 0.001)
(Table 2). More importantly, when subjected to DR, their
ploidy declined only by approximately 11%, compared to
a 23% reduction of the wild type (Table 2). We found no
significant differences between the hypodermal nuclei
number of che-2(e1033) and wild type worms (data not
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Figure |

The effects of dietary restriction on C. elegans life history traits. (A) Kaplan-Maier survival curves showing the longev-
ity of C. elegans under excess (closed circles), high (open circles) and low food (closed squares) environments (see Material and
Methods). Significance is shown for excess, high, and low food, from Log Rank tests n/censored individuals 175/22, 204/110 and
238/189 respectively. (B) Daily fecundity of C. elegans under excess (closed circles), high (open circles) and low food (closed
squares) environments. (C) Total fecundity of C. elegans under excess, high and low food environments; n = 36, 44 and 35
respectively. (D) Growth curves of C. elegans under excess (closed circles), high (open circles) and low food (squares) environ-
ments, n = 49, 38, and 21| respectively. Images show representative adults from high food (upper panel) and low food (lower
panel) treatments. Scale bar indicates 100 um. (E) Hypodermal (hyp7) cell number of young adult C. elegans under high and low
food environments; n = 10 and 9 respectively. (F) Hypodermal (hyp7) ploidy of C. elegans (120 h) under excess, high and low
food environments; n = 19, 254, and 189 respectively. All error bars show 95% confidence intervals, and asterisk show level of
significance, *** shows P < 0.0001, by ANOVA.
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Table I: Effect of Dietary Restriction on Body Size. All genotypes show significant (p < 0.0001), wild type-like (genotype by
environment interaction term; p > 0.05), reductions in volume under DR.

Body size (mm3)

Genotype High Food Low Food n % reduction
N2 0.0051 (x| x 104) 0.0021 (x| x 104) 147, 121 63
che-2(el033) 0.0022 (+ | x 104) 0.0009 (+ 2 x 104) 106, 43 62
che-3(el 124) 0.0029 (+ 2 x 104) 0.0013 (+ 8 x 10-%) 19, 12 55
che-11(el810) 0.0027 (+ | x 104) 0.0012 (£ | x 104) 41,23 56
che-13(el805) 0.0021 (£ 3 x 104) 0.0009 (+ 5 x 10-3) I, 16 57
osm-5(p813) 0.0033 (+ 2 x 104) 0.0013 (£ 2 x 104) 26, 20 6l
egl-4(n478) 0.0063 (+ 2 x 104) 0.0023 (+ | x 104) 127, 118 60
dbl-1(nk3) 0.0025 (+ | x 104) 0.001 (+ 6 x 10-%) 121, 80 62
sma-2(e502) 0.0020 (+ 4 x 104) 0.0010 (+ 2 x 104) 19, I5 50
sma-3(wk20) 0.0025 (+ 2 x 104) 0.0010 (£ | x 10%) 32,24 60
sma-4(e729) 0.0010 (x| x 104) 0.0006 (+ | x 104) 33,22 40
sma-6(wk7) 0.0019 (£ 3 x 104) 0.0009 (+ 2 x 104) 39,22 53
lon-1(e185) 0.0050 (+ 6 x 104) 0.0017 (+ 3 x 104) 20,9 66
che-2(e1033);dbl-1(nk3) 0.0019 (£ | x 10-4) 0.0007 (+ 4 x 10-%) 48, 35 58
egl4(n478);dbl-1 (nk3) 0.0028 (+ 3 x 104) 9

eat-2(ad465) 0.0020 (+ | x 104) 0.0008 (+ 4 x 10-3) 71,56 59
eat-2(ad465);dbl- 1 (nk3) 0.0011 (£ I x 104 0.0005 (+ | x 104) 85, 45 52

shown). These results suggest that signals from the
amphids partly control endoreduplication in response to

DR.

EGL-4 mediates the response from sensory cilia

Previous studies have shown that EGL-4, a cGMP-depend-
ent protein kinase, functions downstream of sensory cili-

ated neurons in wild type worms [30]. Furthermore,
mutations in egl-4 result in increased body length, altered

sensory perception and egg laying behaviour, without
affecting cilia structure [44]. To determine whether EGL-4
is required for the regulation of body size and endoredu-
plication in response to DR, we first characterized the
growth of a strong loss-of-function mutant, egl-4 (n478),

Table 2: Effect of Dietary Restriction on Hypodermal Ploidy. All genotypes, unless stated (NS, p > 0.05), show highly significant (p <
0.0001) alterations from wild type ploidy responses to DR.

Hypodermal ploidy (xC)

Genotype High Food Low Food n % reduction

N2 10.9 (£ 0.3) 84(+x0.2) 113,94 23
che-2(el1033) 8.6 (£ 0.3) 7.5 (£ 04) 56, 25 13
che-3(el 124) 8.4 (£ 0.5) 7.5(x£0.7) 17,12 Il
che-11(el810) 9.2 (+£0.3) 8.5 (£ 0.5) 32,21 8
che-13(el1805) 8.4 (+ 0.5) 7.5 (£ 0.5) 13,13 I
osm-5(p813) 8.8 (+ 0.4) 7.6 (£ 0.5) 24, 17 14
egl-4(n478) 12.3 (£ 0.3) 11.6 (£ 0.3) 101, 88 5
dbl-1(nk3) 7.5 (£ 0.5) 6.9 (£ 04) 51,32 8
sma-2(e502) 7.6 (£0.7) 7.0 (£ 0.5) 14, 11 8
sma-3(wk20) 82 (+x04) 7.0 (£ 04) 39,23 15
sma-4(e729) 74 (£0.3) 6.4 (£ 0.5) 35,22 14
sma-6(wk7) 83(x0.3) 7.1 (£0.3) 31,18 14

lon-1(e185) 12.2 (£ 0.9) 85 (+ 1.0) 9,8 30 NS
che-2(e1033);dbl-1(nk3) 9.1 (£ 0.5) 7.8 (£ 0.5) 29, 18 14

egl4(n478);dbl-1(nk3) 89 (+0.8) 6

eat-2(ad465) 10.1 (£ 0.7) 7.7 (£ 04) 24, 17 24 NS

eat-2(ad465);dbl-1 (nk3) 85 (+x0.4) 7.0 (£ 04) 43,23 18
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under normal levels of food. We found these worms to be
21% larger than wild type (Table 1) and possess a 13%
higher level of hypodermal endoreduplication (Table 2),
while maintaining wild type cell numbers (data not
shown).

Surprisingly, under DR, egl-4 exhibits a wild type reduc-
tion in volume, but importantly, it fails to show a wild
type reduction in endoreduplication. Hypodermal poly-
ploidization, in egl-4 worms, declines only 5% under DR
compared to a 25% decline in N2 (Table 2). Therefore,
egl-4 defective worms maintain a hyper-endoreduplicated
state at their hypodermis even under DR. Their hyper-
endoreduplicated state, their failure to show wild type
declines in endoreduplication, and the placement of EGL-
4 downstream of CHE-2 [30] (also see Table 1 &2), all
together suggest that EGL-4 acts as a negative regulator of
food dependent endoreduplication.

DBL-1 signalling regulates the DR endoreduplication
response

DBL-1 is known to be a dose-dependent regulator of body
size and endoreduplication in C. elegans. This protein acti-
vates the SMA-6/DAF-4, Ser/Thr kinase receptor, which in
turn is thought to activate the cytoplasmic effectors SMA-
2, SMA-3 and SMA-4 [26]. Here we confirm that loss-of-
function dbl-1(nk3) worms, as well as worms defective for
downstream signalling components such as sma-6, sma-2,
sma-3 and sma-4, all show a 60% reduction in body size
when grown in normal food levels (Table 1), similarly to
previously reported [45-48]. They also show a ~25%
reduction in hypodermal polyploidization (Table 2). To
determine the role of DBL-1 in the DR response of wild
type worms, all these mutants were subjected to DR and
their body size and hypodermal endoreduplication char-
acterized. All mutants showed a marked decrease in size
(40% - 60%), responding to DR in a wild type manner
(63%; Table 1). More interestingly, when the effects of DR
on endoreduplication were examined, mutants deficient
for dbl-1, sma-6, sma-2, sma-3 and sma-4 all show a distinct
non-wild type response: endoreduplication declines by
approximately 12%, compared to the 23% seen in N2
(Table 2). These results suggest that DBL-1 signalling, as
described previously for sensory cilia mutants and egl-4, is
partially responsible for the regulation of endoreduplica-
tion as a response to DR. We note, however, that loss-of-
function lon-1, placed downstream of the dbl-1 pathway
[28], behaves as wild type under DR (Table 2). Therefore,
we suggest that lon-1, despite its role in determining body
size and hypodermal endoreduplication, is not part of the
polyploidization response to nutrients availability (Figure
2).

http://www.biomedcentral.com/1471-213X/8/28
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Model of body size regulation by nutrients availability
in C. elegans (from L3 onwards). Our results suggest that
food availability may regulate body size in at least two ways.
First, by the "caloric pathway", that is, simply considering that
food intake and its absorption by the digestive tract facilitates
nutrition, which in turn may inhibit autophagy. Second, by the
"sensory pathway", which refers to the sensing food through
organs such as the amphids, with their ciliated neurons
expressing genes like che-2, would inhibit EGL-4. Down-
stream, this cGMP-dependent protein kinase downregulates
DBL-1 signalling, which in turn promotes hypodermal
endoreduplication, upregulator of body size [36]. LON-I
inhibition by DBL-1 [28] would not influence ploidy upon
nutrient activation. This model explains why the nutrient-
dependent regulation that the sensory cilia proteins, EGL-4
and DBL-1 are all playing on hypodermal polyploidization has
not been observed for body size; their role on body size, but
not upon endoreduplication, may be obscured by the domi-
nant influence of caloric restriction.

CHE-2 and DBL-1I act in the same pathway to regulate
body size and hypodermal ploidy

In order to test the hypothesis that sensory signals and
DBL-1 signalling act in the same pathway, we generated
double che-2;dbl-1 mutants and analysed their size and
ploidy levels under standard and DR conditions. When
grown in high food conditions, che-2;dbl-1 was similar in
size and ploidy (p > 0.05 for all comparisons), to dbl-1,
che-2, or related genes (e.g. sma-6, che-13; Tables 1 and 2).
The corresponding reduction for both characters under
DR was also similar (Tables 1 and 2). This result suggests
that dbl-1 and the amphid mutants act in the same path-
way when controlling body size and hypodermal endore-
duplication.
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We also asked whether the regulation of body size by food
intake per se was affected by DBL-1 signalling. To test this
we examined eat-2;dbl-1 double mutants. We found that
at high food levels, these worms are smaller than either
eat-2 or dbl-1 (Table 1). This additive effect suggests that
these genes regulate body size through different pathways,
and is consistent with the finding that eat-2 worms have
normal ploidy.

EGL-4 negatively regulates DBL-1

To confirm the effect of EGL-4 on the signalling of DBL-1
seen previously [30,31], epistasis analysis was carried out
between null mutants dbl-1 and egl-4. The nature of these
mutants allowed a relatively simple analysis because egl-4
worms are larger than wild type, whereas dbl-1 worms are
smaller [45,46] (Table 1). The same thing can be said
about hypodermal ploidy (Table 2). Examination of egl-
4;dbl-1 worms revealed that, though slightly smaller, the
double mutant did not significantly differ from dbl-1
worms in either adult volume or hypodermal ploidy (P >
0.05, for body size and ploidy; Tables 1 and 2, respec-
tively), but it did with respect to egl-4 worms (P < 0.0001,
for body size and ploidy).

Discussion

Growth is a fundamental part of biology, yet its regulation
is still poorly understood [12]. The notion that growth
responds passively to nutrient availability has been
replaced with the idea that growth is actively regulated in
response to constant monitoring of nutrient availability in
the external environment. We observed that when C. ele-
gans is exposed to a low food environment there is a
reduction in adult body size, similar to the reductions
seen in other organisms e.g. Drosophila and Daphnia
[4,34,49,50]. However, in contrast to these organisms, the
stunting in C. elegans is not due to a lack of cell prolifera-
tion, which implies that it is due to a reduction in cell size.

In order to investigate how DR controls adult body size in
C. elegans, we studied the growth of wild type and mutant
worms subjected to high and low food regimes. We found
that all of our mutants became smaller by about the same
amount (60%) at low food levels. This absence of interac-
tion between food and genotype on growth might mean
that none of the genes examined are involved in the die-
tary-dependent regulation of growth, but it could also
simply mean that severe DR has additional effects.

For this reason we needed a more subtle way of examining
the effects of DR on worm development. We have previ-
ously shown that hypodermal endoreduplication is
required for growth in adult C. elegans [36]. Strikingly, we
also found that DR inhibits hypodermal endoreduplica-
tion and so adult ploidy. This result gave us a sensitive
assay for the effects of DR on the worm's development.

http://www.biomedcentral.com/1471-213X/8/28

We found that mutations in several genes mimic the DR
response: even at high food levels, mutations that disrupt
sensory or DBL-1 signalling show reduced ploidy and
body size. That suggested to us that these genes might be
involved in the DR endoreuplication response. This infer-
ence was confirmed when we examined these mutants
under DR: in each case, the reduction in ploidy normally
found at low food levels was largely abrogated. An even
more striking lack of response to DR was also found in a
large mutant that disrupts egl-4, a cGMP-dependent pro-
tein kinase previously associated with food sensing and
food dependent behaviour [30].

These results, and our epistasis experiments, suggest a
model in which the amphids monitor nutrient availability
and activate a downstream signalling pathway involving
the growth repressor EGL-4 (Figure 2). This kinase in turn
regulates the DBL-1/SMA/MAB pathway, which positively
regulates hypodermal endoreduplication. As the observed
body size reduction under DR for both the sensory and
DBL-1 signalling pathway mutants was similar to that of
wild type (Table 1), we suggest that the main effects of DR
on body size do not arise from the lack of endoreduplica-
tion, but rather from some other unknown pathway. A
likely candidate could be what we call the "caloric path-
way" in Figure 2. That is, the severe food restriction under
DR could be masking the "sensory pathway" on body size
when this one is impaired (e.g. in dbl-1(nk3); Figure 2).
Reduction in food may prevent DBL-1 like mutants,
whose endoreduplication levels do not drop as much as
wild type under DR, from growing larger. Nevertheless,
the reduced ploidy programmed by the sensing of lower
levels of food (Table 2) must contribute to the stunting,
since previous work shows a cause-and-effect relationship
between endoreduplication and adult growth [36]. Con-
sistent with our model, we showed that eat-2 mutants, one
of the genes active in the feeding mechanism, has small
size but normal ploidy, and that it reduces both characters
in a wild type manner under DR (Tables 1 and 2). Recent
work suggests that eat mutants have small body sizes due
to increased autophagy [38], which is also included in our
model (Figure 2).

Conclusion

How do our results relate to other animal models?
Endoreduplication in Drosophila depends on a mitogen
from the fat body that is regulated in a nutrition-depend-
ent manner [51], which may suggest at least an underlying
common plan beyond their differences (see Introduc-
tion)[52]. However, one of the proteins studied here,
EGL-4, is a key regulator of nutrient responses not only in
worms but, with the generic name of cGMP-dependent
protein kinase, in organisms such as honeybees and fruit-
flies controlling their foraging behaviour [53]. It is some-
what surprising that loss-of-function egl-4 has a change in
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hypodermal endoreduplication in high vs. low food
which is half of what it is observed for the sensory ciliated
or for the dbl-1-related mutants (Table 2). We think that
this difference can be explained because egl-4's role in
nutrient-dependent growth may be central, not shared
with other proteins in parallel positions, whereas the var-
ious sensor genes investigated may be acting in parallel,
either among themselves, or in relation to other genes or
pathways (similarly for DBL-1 and the SMA/MAB path-
way). In agreement with this, egl-4 is considered a highly
pleiotropic gene, a main regulatory hub, not only mediat-
ing body size but longevity, locomotion feeding, and
other processes [54].

Methods

Strains

Apart from the wild type strain N2, the following mutant
strains were used, which were obtained from the
Caenorhabditis elegans Genetics Center. Mutations are
listed by linkage group: LGI: che-3(e1124), che-13(e1805);
LGIIL: sma-6(wk7), eat-2(ad465); LGIL: lon-1(el85), sma-
2(e502), sma-3(wk20), sma-4(e729); LGIV: egl-4(n478);
LGV: che-11(e1810), dbl-1(nk3); LGX: che-2(e1033), osm-
5(p813). We also used double mutants that we produced
through crosses of the previous strains. Double mutants
eat-2(ad465);dbl-1(nk3) were confirmed by PCR and
sequencing using the following primers: 5'-eat-2: 5' TGAT-
CACCCTAGTTGTCTGG; 3'-eat-2: 5' AGTGTAGAGG-
TACTGTATGG; 5'-dbl-1: 5' CATGGACAAACATCGGGGA;
and 3'-dbl-1: 5' CGTGTACACAAATCTGITCG. che-
2(e1033);dbl-1(nk3) was generated by crossing hetero-
zygous dbl-1(nk3) males with che-2(e1033) hermaphro-
dites. Then, their F1 progeny was PCR-screened for the
nk3 allele, and double mutants in F2 were confirmed by
PCR for both nk3 and 1033 alleles, and by DNA sequenc-
ing with oligonucleotides 5'- dbl-1, 3'- dbl-1, 5'-che-2: 5'
AGATGGATGTITACTGCC, and 3'-che-2: 5' GAGAAT-
GACACAATGTGG.

All strains and experiments were maintained at 20°C.

Dietary restriction

We developed a novel method of dietary restriction (DR)
on solid media. Three different food treatments are
described within this study: excess, high, and low food
treatment plates. Excess food plates: 100 pl of 5.19 x 108/
ml E. coli (OP50)-Luria broth was spread around the cen-
tre of 5.5 cm NGM plates and left at room temperature for
24 hours before being killed by exposure to UV light for 1
hour. High food plates were prepared as excess food
plates, but were exposed to UV light for 1 hour immedi-
ately after preparation. Low food plates were prepared as
high food plates, but using a suspension of 3.95 x 107/ml
E. coli (OP50)-Luria broth. For each experiment, the same
E. coli culture was used for each food treatment. Treatment

http://www.biomedcentral.com/1471-213X/8/28

plates were replaced every 24 h during worm growth
experiments to prevent depletion food source.

Body size analysis

Growth curves were determined for each strain, from
worms grown individually on 5 cm Petri dishes. At 24 h
intervals from 36 h to 120 h post hatching, images were
captured using a video camera (JVC KY-F50) attached to a
dissecting microscope (x50), and analyzed with OBJECT-
IMAGE 1.62. Length and area were measured from pic-
tures of individual worms and calibrated from a 1 mm
graticule. Volume was calculated assuming cylindrical
body shape using the formula (pi*length* (area/length)?/
4) [36,46]. All comparisons of body size use Log-trans-
formed data.

Hypodermal ploidy analysis

Upon completing growth (120 h), worms were fixed in
Carnoy's solution for 24 h, stained in a 0.007 mg/ml solu-
tion of 4',6-diamidino-2-phenylindole dihydrochloride
(DAPI) [36,48,55,56] and viewed under a Leitz epifluo-
rescence microscope. Images of hypodermal and ventral
cord nuclei were collected using a CV-M300 video camera,
and analyzed using OBJECT-IMAGE 1.62. C values of
hypodermal nuclei were estimated by dividing their
DAPI-based densitometric quantifications by an average
of those values from ventral cord nuclei (divided by two)
in the same microscopic preparations [36].

Cell number analysis

Young adult worms were anesthetized with 0.1 M sodium
azide [57], and viewed at x1000 under differential inter-
ference contrast optics with a Nikon Eclipse E600 micro-
scope. All nuclei, excluding neuronal and seam cells,
between the posterior pharyngeal bulb and anus were
counted. Images were captured with a CV-M300 camera
and reconstructed by using Adobe PHOTOSHOP 4.0.

Longevity analysis

We analysed Kaplan-Meier survival distributions, which
are based on a discrete stepped survival curve, adding time
specific data as each death occurs. Individuals that died
from internal hatching of eggs (bagging), or crawled off
the plate were censored. Censoring allows the inclusion of
individuals that were lost to the study, and thus contribute
towards knowledge of survivorship, but nothing to the
knowledge of age at death. Log-rank tests were performed
to determine if survival curves were significantly different
from each other.

Egg-laying assays

Individual worms were placed OP50-seeded 5.5 cm NGM
plates before adult moult occurred and transferred to a
fresh plate every 24 h. Total fecundity was measured with
only fertilized eggs and larvae being included in the count.
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Statistical analyses

Data analysis was undertaken using JMP 3.2 (SAS Insti-
tute, Cary NC, USA). Body size and ploidy data were com-
pared across food level and genotype using a standard
two-way ANOVA, including a genotype by environment
interaction term, to determine responses of each genotype
to DR. A food level by genotype interaction term allowed
the comparison of each mutant genotype's response to DR
to that of wild type. Ratios, between high and low food
groups, were not used in this analysis.
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