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Abstract

Background: Signals from the extracellular environment control many aspects of cell behaviour including
proliferation, survival, differentiation, adhesion and migration. It is increasingly evident that these signals
can be modulated by a group of matricellular proteins called the CCN family. CCN proteins have multiple
domains through which they regulate the activities of a variety of signalling molecules including TGFf,
BMPs and integrins, thereby influencing a wide range of processes in development and disease. Whilst the
developmental roles of CCNI and CCN2 have been elucidated, very little is known about the function of
CCN3 (NOV). To investigate this, we have generated mice carrying a targeted mutation in the Nov gene
(Novee3) which reveal for the first time its diverse functions in embryos and adults.

Results: By replacing Nov exon 3 with a TKneomycin cassette, we have generated Nové3-/- mice which
produce no full length NOV protein and express at a barely detectable level a mutant NOV protein that
lacks the VWC domain. In Nov?e3-/- embryos, and to a lesser extent in Novde3+/- embryos, development
of the appendicular and axial skeleton was affected with enlarged vertebrae, elongated long bones and
digits, delayed ossification, increased bone mineralization and severe joint malformations. Primary embryo
fibroblasts from NovdeB-/- mutant embryos showed enhanced chondrogenesis and osteogenesis. Cardiac
development was also influenced leading to enlargement and abnormal modelling of the endocardial
cushions, associated with septal defects and delayed fusion. In adults, cardiomyopathy was apparent, with
hypertrophy and calcification of the septum and left ventricle dilation. Muscle atrophy was seen by 5
months of age, associated with transdifferentiation to fat. Premature tissue degeneration was also seen in
the lens, with cataracts present from 6 months.

Conclusion: We have generated the first mice with a mutation in the Nov gene (Nove3). Our data
demonstrate that NOV is a regulator of skeletal and cardiac development, and implicates NOV in various
disease processes including cardiomyopathy, muscle atrophy and cataract formation. Novdel3 mutants
represent a valuable resource for studying NOV's role in the modulation and co-ordination of multiple
signalling pathways that underpin organogenesis and tissue homeostasis.
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Background

The behaviour of cells in development, tissue regenera-
tion and disease is dependent upon multiple signals from
the extracellular environment. These signals are mediated
through a variety of signalling proteins that regulate cell
proliferation, survival, differentiation, adhesion and
migration. There is increasing evidence that a family of
matricellular proteins, the CCN family, is a central player
in regulating several of these signalling molecules
(reviewed in [1]). By modulating their activities, CCN
family members profoundly influence the behaviour of
cells in development, wound healing, tissue homeostasis
and in a range of diseases, including fibrosis and cancer.

There are six members of the CCN family: CCN1 (Cyr61),
CCN2 (connective tissue growth factor, CTGF), CCN3
(Nov), CCN4 (WISP1), CCN5 (WISP2/rCOP-1) and
CCNG6 (WISP3) [2,3]. Their diverse effects are mediated by
four cysteine-rich conserved domains which are shared by
all members of the family, with the exception of WISP2
which lacks the C-terminal domain [2]. Through these
domains, CCN proteins interact with a variety of extra-cel-
lular signalling molecules, thereby regulating and poten-
tially co-ordinating their activities. The first domain
shares homology with insulin-like growth factor binding
proteins (IGFBPs) and with Twisted gastrulation (Tsg)
which modulates BMP signalling [4-6]. The second
domain contains a Von Willebrand's factor type C repeat
(VWC) and shares similarities with Short gastrulation
(Sog)/Chordin; this domain in CTGF has been shown to
enhance TGF binding to its receptor and inhibit BMP4
signalling [7]. The third domain contains a thrombospon-
din type 1 (TSP-1) repeat and in CTGF binds to the low-
density lipoprotein (LDL) receptor-related protein 1
(LRP1) in a heparin-dependent manner [8,9]. The fourth
carboxy- terminal (CT) domain is similar to the C termi-
nus of Slit, which is involved in axon guidance and cell
migration [10]. The CT domain mediates interactions
with heparan sulphate proteoglycans [11,12] and con-
tains a cysteine knot, a structure found in several growth
factors, including TGFp, platelet derived growth factor
(PDGF) and nerve growth factors (NGFs) [2,13]. The CT
domain of CTGF has been shown to interact with the Wnt
co-receptor LDL receptor-related protein 6 (LRP6),
thereby inhibiting Wnt signalling [14]; a similar domain
is also present in another novel modulator of Wnt signal-
ling, WISE [15] and modulation of Wnt signalling
through this domain has also been demonstrated for
Cyr61 [16]. Finally, many of the effects of different CCN
family members involve signalling through a variety of
integrins which interact specifically with different
domains in the CCN proteins [17].

CCN proteins have a diverse range of activities in develop-
ment and disease, and different family members mediate
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cell adhesion and migration, affect cell proliferation and
survival, and influence angiogenesis, chondrogenesis and
wound healing [18-23]. The involvement of two CCN
proteins in regulating different aspects of development
has been revealed by generating mutant knockout mice.
Targeted disruption of CTGF identified a role in coordi-
nating chondrogenesis and angiogenesis [24], while
knock out mice lacking CYR61 show that it is required for
placental development and vascular integrity [25]. Muta-
tions in a third CCN gene, WISP3, cause progressive pseu-
dorheumatoid dysplasia in man [26].

Nov was originally isolated from a chick nephroblastoma
induced by infection of new born chicks with the MAV-1
avian retrovirus [27]. Nephroblastomas (Wilms' Tumours
in humans) arise from the blastemal cells of the kidney
and are characterised by abnormal proliferation and aber-
rant differentiation of this stem cell population. Whilst
Nov is over-expressed in all nephroblastomas and Wilms'
tumours studied [28,29] a direct causative link with Nov
and tumour formation has only recently been demon-
strated, with the isolation of a second independent provi-
ral insertion in another virally-induced chick
nephroblastoma [30]. The observation that Nov expres-
sion is deregulated in a variety of other tumour types,
including musculoskeletal tumours [31] suggests that
NOV may have a more general involvement in tumouri-
genesis.

The expression pattern of Nov during mammalian embry-
ogenesis is consistent with a developmental role in a vari-
ety of tissues, including the cardiovascular system,
skeleton, muscle and structures of the nervous system
derived from the neural crest and placodes [32,33]. To
investigate the function of NOV, we have generated mice
carrying a targeted mutation in the Nov gene. Here we
show that mutation of Nov leads to abnormal skeletal and
cardiac development, to joint abnormalities, cardiomyop-
athy, and premature tissue degeneration causing muscle
atrophy and cataracts in adult mice.

Results

Generation of mice carrying a targeted mutation in Nov
Novdel3 mutant mice were generated by replacement of
exon 3 with a Tkneomycin selection cassette (Figure
1A,B), resulting in the targeted allele encoding a protein
that lacks the VWC domain. Both the wild type and tar-
geted Nov alleles were expressed in primary embryonic
fibroblasts (PEFs) derived respectively from wild type and
Novdel3-/- E13.5 embryos (see Additional file 1). However,
Western blotting showed that NOV protein was undetect-
able in whole cell lysates of Novd!3-/- PEFs, whereas it was
expressed highly in PEFs from wild type littermates (Fig-
ure 1C). We were also unable to detect any full length
NOV protein in conditioned medium from Novde3-/- cells,
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Gene targeting at the Nov locus. A. Schematic diagram showing wild type and targeted Nov alleles, the targeting construct,
and the positions of the 5' and 3' external probes used to confirm targeting by Southern blotting. The TkneopolyA cassette
replaces exon 3 in the targeted allele while the HSV TK cassette allows negative selection with Gancyclovir. B. Southern analy-
sis of DNA from wild type, heterozygous and homozygous embryos using 5' and 3' external probes to confirm targeting. Diges-
tion with BamHI gave a 16 kb wild type band with the 5'external probe and 14 kb targeted allele with the 5' probe, while
digestion with EcoRI gave a 14 kb wild type band and 8.5 kb targeted band with the 3' probe. C. Western blotting of whole cell
lysates and conditioned media from Novde’3 homozygous and wild type E13.5 PEFs, using an anti-NOV antibody (59.3). Although
NOV protein is readily detectable in wild type PEF whole cell lysates, no NOV protein can be detected in Nov@!3 homozygous
PEFs. Conditioned medium from wild type PEFs contains high levels of secreted NOV, whereas that from Novee3-/- PEFs con-
tains trace amounts of mutant NOV protein lacking the VWD domain.

but we could detect trace amounts of the mutant protein

lacking the VWC domain. This was present at an extremely ~ 12Ple 1: Genotypes of Offspring from Matings of F1 and F2

low level compared to that of the full length NOV protein Novie? heterozygotes
in conditioned medium from wild-type PEFs, suggesting Number NowdeB -/~ Wild type Novdel3+/-
that deletion of the VWC domain might lead to reduced of litters
protein stability (Figure 1C).
Embryos E12.5-E19.5 I5 22 28 50

. . . Ratio: wild type 0.8 1.0 1.8
Analysis of genotype ratios of offspring of F1 and F2 het- % Loss 20 0 10
erozygous matings indicated that there was loss of 35% of Live born >P10 7 5 T 14
heterozygotes and 55% of homozygotes prior to post Ratio: wild type 0.45 1.0 13
natal day10, with loss of 10% heterozygous and 20% % Loss 55 0 35

homozygous embryos isolated at E13.5-E19.5 (Table 1).
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Surviving Nowde3+/- and Novde3-/- littermates were in
apparent good health, and as adults were both viable and
fertile. Successive generations showed reduced levels of
neonatal loss, possibly reflecting selection for a less severe
phenotype.

Skeletal development is affected in Novdel3 homozygotes
and heterozygotes

Analysis of skeletons isolated from embryos at late gesta-
tion (E18.5 and E19.5) indicated abnormalities in Novel3-
/- embryos (n = 6/6) and, with lesser severity, in Novde3+/
- embryos (n = 8/8), compared to wild type embryos (n =
0/3). Mutant skeletons were larger than those of wild type
littermates and showed evidence of overgrowth of skeletal
elements with enlarged vertebrae, elongated long bones
and digits (Figure 2). Heterozygous and homozygous
mutants had barrel-chested rib cages which might have
contributed to the neonatal deaths observed (Figure 2A).
Joint defects were also apparent, including fusion of the
tarsal bones in the foot (Figure 2B), flattening of the
patella (Figure 2C), malformation of the wrist (Figure
2D), dislocation of the hip (Figure 2E) and abnormal
articulation of the joints resulting in laxity of the limbs.
Abnormalities in segmentation of the caudal vertebrae
were also observed in some animals, causing kinking of
the tail (Figure 2F).

These skeletal abnormalities were also manifest in adult
homozygotes, and to a lesser extent in adult heterozy-
gotes, on staining skeletal preparations with Alcian blue
and Alazarin red. In the mutants, but not in wild types, we
observed overgrowth of the appendicular and axial skele-
ton, with increased length of the long bones (Figure 2G)
and enlarged vertebrae (Figure 2H) (Nov#B-/- n = 6/6;
Nowe3+/-n = 4/6; wild type n = 0/5). Joint abnormalities
were also seen with knee deformities being particularly
prominent, characterised by expansion of the meniscus
(Figure 2I) and abnormalities of the articular surfaces
(Figure 2LJ) (Novdel3-/- n = 6/6; Novi3 +/- n = 4/6; wild
type n = 0/5). Compared to wild type littermates, the
skulls of heterozygotes and homozygotes were slightly
larger and flatter (data not shown).

Abnormal chondrocyte differentiation

The expression pattern of Nov is consistent with a role in
skeletal development. We have shown that it is expressed
in the mesenchyme surrounding cartilage condensations,
and in the tendons and myotendenous junctions at E16.5
in the mouse (Figure 3A,B; [32]), while others have
reported expression in pre-hypertrophic and hypertrophic
cartilage [34]. To investigate the origin of the skeletal
abnormalities, skeletal preparations were made from
embryos at E16.5. Alcian blue staining indicated that the
cartilage elements were already enlarged in the Novdel3-/-
(n =2/2) and Nov#3+/- embryos (n = 4/4), while Alizarin
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red staining of bone indicated a delay in ossification of
the digits and vertebrae in the mutants (n = 5/6) com-
pared to their wild type littermates (n = 0/3) (Figure
3C-G@G). The tightly ordered sequential ossification of the
vertebrae seen in wild type embryos was disrupted in the
mutants, indicating a defect in the normal differentiation
of cartilage to bone (Figure 3E-G). However, once ossifi-
cation did occur the intensity of Alizarin red staining was
greater in the homozygotes (n = 2/2) and heterozygotes (n
= 4/4) than in wild type embryos (n = 0/3), suggesting
increased bone mineralization (Figure 3C,D). This was
also observed in mutant embryos at E18.5 (data not
shown) and E19.5 (Figure 2A-F).

Histological analysis of Novde3-/- E16.5 embryos revealed
abnormalities in chondrogenesis (n = 4/4) which were
not apparent in wild type littermates (n = 0/4). Haematox-
ylin and Eosin stained sections from Novd3-/- embryos
showed morphological differences in the pre-hyper-
trophic and hypertrophic cartilage and their surrounding
matrix (Figure 3]J,K,.L,M). The chondrocytes adjacent to
the perichondrium near the junction with the periosteum
were enlarged compared with chondrocytes from wild
type embryos (Figure 3],K), with increased thickness of
the perichondrium and periosteum compared to wild
type littermates (Figure 3H-M). Alcian blue staining con-
firmed increased size of the cartilage elements in the
Novdel3 -/- embryos and indicated blurring of their bound-
aries, showing that the demarcation between mesen-
chyme and chondrocytes seen in the wild type embryos
was absent in the mutants, and suggesting an expansion of
the chondrocyte domain (Figure 3L,M). On staining with
an antibody against the proliferation marker PCNA the
sharp junction of proliferating columnar chondrocytes
with non proliferating pre-hypertrophic chondrocytes
seen in wild type sections was absent in the homozygous
mutants, suggesting that the ordered transition from the
columnar to pre-hypertrophic state was disrupted (Figure
3N,0). Von Kossa staining for mineralized bone also con-
firmed a shortening of the bone collar in the pre-hyper-
trophic/hypertrophic region (n = 4/4) compared with the
wild type control (n = 0/4), consistent with a reduction in
the size of this zone, while the bone collar itself was
thicker and stained more intensely, indicating a greater
quantity of mineralized bone matrix (Figure 3P,Q).

Enhanced chondrogenesis and osteogenesis of Novdel3-/-
fibroblasts

We hypothesised that the enlarged cartilage elements and
increased bone mineralization seen in Novd3-/- embryos
might reflect increased chondrogenesis and osteogenesis.
We therefore determined whether primary embryo fibrob-
lasts (PEFs) from Novde3-/- embryos showed enhanced
participation in chondrogenesis and/or osteogenesis.
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Figure 2

Skeletal staining of wild type and Novde3-/- E19.5 embryos and adults with Alcian blue (cartilage) and Alizarin
red (bone). A-F: Novee3-/- E|9.5 embryos. A. Staining of rib cages showing barrel chest in NovdeB -/- with overgrowth of ribs.
B. Hind foot showing fusion of the tarsal cartilage elements (white arrow) and elongation of the digits in Novde3 -/-. Note
increased intensity of Alizarin red staining and thickening of the tibia in Novde3-/- compared to wild type. C. Knee abnormalities
in NovdeB3-/- compared with wild type, including flattening of the patella. D. Malformation of the wrist elements in Novde3 -/-
compared to wild type. E. Dislocation of hip (arrow) in Nov?e3-/- compared to wild type. F. Kinking of tail with compression of
the vertebral body (arrow) in Novde3 -/- embryo. G-J: Adult skeletons. Overgrowth of the appendicular skeleton in Novde3 /-,
and to a lesser extent in Novde3 +/-, compared to wild type (+/+) littermate. H. Overgrowth of the axial skeleton in Novdel3-/-
compared to wild type, with increased length of individual vertebral bodies. I. Frontal view of right (upper panel) and left (lower
panel) knee joints from Novdel3-/- and wild type (+/+) littermates showing abnormal patella (P) and grossly enlarged medial
meniscus (arrow head) in mutant compared with wild type. ). Lateral view of knee showing flattening of patella in Novde3-/-. F:
femur; T: tibia and P: patella.
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Figure 3

Nov expression and phenotypes of E16.5 skeletons. A and B. RNA in situ hybridization showing Nov expression in the
hind foot at EI6.5. A. Strong expression in the myotendenous junctions (arrow) and in the mesenchyme of the joints adjacent
to the cartilage elements, but no expression in condensing cartilage. B. High expression in the mesenchyme overlying the carti-
lage elements (arrow) and in the digital tendons (arrow head). C-G. Skeletal staining with Alizarin red and Alcian blue of E16.5
Novde3+/-, Novde3-/- and wild type (+/+) embryos. C. Wild type forefoot showing ossification of digits (arrow). D. No ossifica-
tion in Novdel3-/- digits (arrow), but intense staining with Alizarin red of the radius and ulna indicating increased bone minerali-
zation. E-G Vertebrae and rib cages of wild type (E), Novde3-/- (F) and Novdel3+/- (G) showing delay in ossification of the
vertebrae in the mutant embryos. No ossification is present in the Novde3-/- embryo, and whilst ossification is taking place in
the Novde3+/- embryo (G), it is not occurring in the ordered, sequential manner observed in the wild type. Thoracic vertebrae
numbered I-13. H-Q. Histological sections of EI16.5 wild type and NovdeB3-/- embryos. H, J, L, N, P: wild type; I, K, M, O, Q:
Novdel3-/- littermate. H, I: Haematoxylin and Eosin stained sections showing expanded perichondrium and periosteum in Novdel3-
/- and a thicker bone collar (arrow head) compared to the wild type. o: ossified bone; h: hypertrophic cartilage; ph: pre-hyper-
trophic cartilage; c: columnar chondroctyes. ], K: Haematoxylin and Eosin stained sections at higher magnification at the junc-
tion of pre-hypertrophic/hypertrophic chondrocytes, adjacent to the border of the perichondrium/periosteum, showing
abnormal morphology of chondrocytes and matrix in the mutant (K). L, M: Alcian blue staining of cartilage, showing expansion
of the cartilage element and blurring of its borders in the Novee3-/- embryo (M) compared to wild type (L). N, O: PCNA stain-
ing showing a sharp demarcation (black dashed line) between proliferating chondrocytes and pre-hypertrophic chondroctes in
the wild type (N), but not in the Nov@53-/- mutant (black dashed line) (O). P, Q: Von Kossa staining for mineralised bone show-
ing a shorter and thicker bone collar (indicated by the black bar) in the pre-hypertrophic/hypertrophoic zone of the Novde3-/-
mutant (Q) compared to wild type (P). Scale bars in A B =20 um; H,LN,O,P,Q = 10 um; ]-M =5 pum.
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Three independent wild type PEF cell lines and three
Nowe3 homozygote cell lines were isolated from individ-
ual E13.5 embryos and explanted as micromasses. After
culturing for 5 and 9 days, the micromasses were stained
with Alcian blue as a marker of chondrogenesis and alka-
line phosphatase for osteogenesis. After 5 days, the
Nowdel3-/- micromasses stained more intensely with Alcian
blue than did the controls (Figure 4A,E) and by 9 days had
increased significantly in diameter compared to wild type
micromasses (Figure 4B,F). Osteogenic differentiation
was also observed in the Nov3-/- micromasses: weak
alkaline phosphatase activity was detected in the Novei3-/
- micromasses at day 5, with strong staining at day 9, in
contrast to control cultures which were negative at both
time points. Hence, both chondrogenesis and osteogene-
sis were enhanced in the Nov43-/- micromasses.

We next investigated whether the osteogenesis seen in the
NowdeB3-/- micromass cultures was a result of an increased
tendency of Novde3-/- mesenchymal cells to differentiate
down this pathway. Three independent Novde3-/- cell lines
and three control wild type cell lines were plated at pas-
sage 2 and cultured for 10 days in DMEM with 10% FCS,
after which they were stained for the osteoblast marker
alkaline phosphatase. In contrast to the control cultures
which retained a fibroblast phenotype and were negative
for the osteoblast marker (Figure 41,J), the Nov43 -/- cul-
tures showed extensive staining (Figure 4K,L). RTPCR per-
formed on two independent wild type and homozygous
cultures showed high expression of the osteoblast markers
alkaline phosphatase and collagen I in the Novd3-/- cul-
tures, but not in the wild type cell lines, with one of the
mutant cell lines exhibiting increased expression of the
later osteogenic marker osteocalcin (Figure 4M).

Abnormal development, cardiomyopathy and calcification
of Novdel3 mutant hearts

During mouse heart development, Nov is expressed highly
in the endothelial and smooth muscle cells of the aortic
outflow tract from E12.5 and in a subset of cells near the
origins of the great vessels (Figure 5A,B; [32]). Defects in
heart development were observed in E13.5 Nowdel3-/-
embryos. Haematoxylin and eosin stained transverse
serial sections showed abnormal growth and modelling of
the endocardial cushions (n = 4/4); these were enlarged
and exhibited a broader base extending laterally com-
pared to wild type littermates (n = 0/3) (Figure 5C-F;
Additional file 2). Abnormalities in development of the
septum were also seen, namely thickening of the septum
and a delay in fusion with the endocardial cushions (Fig-
ure 5D,F). No heart defects were observed in wild type lit-
termates (n = 0/3). Serial transverse sectioning of adult
hearts showed that Novd3-/- mice (n = 3/3), and to a
lesser extent Nowdel3+/- mice (n = 3/3), exhibited defects at
the caudal end of the septum near the origins of the great
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vessels, including hypertrophy of the septum towards the
right ventricle and accumulation of blood in the sub-
endothelial space between the right ventricle and septum;
these defects were not observed in wild type littermates (n
= 0/3) (Figure 5G-K). Hypertrophic cardiomyopathy of
the right and left ventricles and ventricular dilation sug-
gestive of cardiac failure were noted in both homozygous
and heterozygous Nov mutants, but not wild types (Figure
5G-K). Staining with Von Kossa indicated that areas of
calcification were also present, most markedly on the sep-
tal wall of the right ventricle (Figure 5K-M). Deposition of
calcium was within morphologically normal myocardial
tissue and there was no evidence of fibrous scarring, but
occasionally a giant cell response to the calcium deposit
was noticed. Venous dilation and congestion was
observed in the kidney, liver and other organs, but the
major arteries appeared normal.

Tissue degeneration in adult Novde3 homozygotes and
heterozygotes

The sites of Nov expression during mouse muscle develop-
ment are in the lateral dermomyotome, in the subcutane-
ous muscle and in a subset of hypaxial muscles, notably
the hip, shoulder, body wall, inter-costal and inter-verte-
bral muscles, but not muscles of the limb (Figure 6A;
[32]). We noted that the body walls of Novdel3
homozygous adults (n=11/11), and to a lesser extent het-
erozygotes (n = 19/20), were abnormally thin and more
transparent than those from wild type littermates (n = 0/
15) (Figure 6B,C). Other muscles that normally express
Nov were severely affected in both adult homozygotes and
to a lesser extent heterozygotes. From five months of age,
these muscles exhibited areas of degeneration character-
ised by atrophy and trans-differentiation to immature adi-
pose cells. In the subcutaneous muscles the extent of
muscle atrophy could be clearly observed in the mutants,
with a very thin line of residual muscle cells demarcating
the normal junction of the subcutaneous fat and muscle
layers; no atrophy was seen in their wild type littermates
(Figure 6D-I). The cells in the immature adipose tissue
had a characteristic bubbly cytoplasmic morphology and
small size, in contrast to the large regular mature adipose
cells present in the normal subcutaneous adipose tissue
(Figure 6J,K). The process of muscle atrophy was clearly
observed in the intercostal muscles with trans-differentia-
tion to fat occurring within the muscle tissue (Figure 6L).

Early onset tissue degeneration was also seen in the lens
with cataracts present in the eyes of both Novde3-/- (n =
10/23) and Nov¥B+/- (n = 9/28) mice between six and
thirteen months of age but not in wild type mice of similar
age (n = 0/14) (Fig 7A,B). Haematoxylin and Eosin
stained sections of wild type and homozygous adult eyes
showed vacuolation of the degenerating lenses in the
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Figure 4

Enhanced chondrogenesis and osteogenesis in Novde3-/- PEFs. A-H: Staining of micromass cultures of PEFs derived
from wild type (A-D) and Nov@e3-/- (E-H) embryos. Alcian blue staining after 5 days (A, E) and 9 days (B, F) in culture showing
enhanced cartilage differentiation in Novde3-/- cells, with the dashed line in B and F marking the extent of the micromass. Alka-
line phosphatase staining after 5 days (C, G) and 9 days (D, H) in culture showing enhanced osteoblast differentiation in Novde3-
/- cells. I-L: Morphology of monolayer PEF cultures derived from wild type (I, J) and Novde3-/- (K,L) embryos with (I, K) and
without (J, L) phase contrast. Alkaline phosphatase staining after 10 days in culture (1, ], K, L) showing osteoblast differentiation
in the Nov?e3-/- PEFs but not in the wild type PEFs. Scale bar in I-N = [0 pm. M: Semi quantitative RT-PCR of mRNA from wild
type (+/+) and NovdeB3-/- PEFs using primers for alkaline phosphatase, collagen | and osteocalcin. Two fold serial dilutions of
cDNA were used and normalised to gapdh.

Page 8 of 17

(page number not for citation purposes)



BMC Developmental Biology 2008, 8:18 http://www.biomedcentral.com/1471-213X/8/18

G +/+ — - — | IEE g

J+r o R S s

Figure 5

Nov expression and histology of embryonic and adult hearts. A, B: RNA in situ hybridization showing Nov expression in
the endothelial and smooth muscle cells of the aortic outflow tract, pulmonary trunk and in a subset of cells near the origins of
the great vessels at E16.5. C-F: Haematoxylin and Eosin stained sections of wild type (C,D) and Novde3-/- (E,F) E13.5 embryonic
hearts showing abnormal expansion of the endocardial cushions (EC) and delay in fusion of the septum (S) in the mutant mouse
(arrow). G-M: Haematoxylin and Eosin stained sections of wild type (G, J) and Novde53-/- (H, |, K) adult hearts, showing accumu-
lation of blood in the sub-endothelial space between the right ventricle and septum (H) and hypertrophy of the septum near
the origins of the great vessels, (H, |, K). Areas of calcification on the septal wall of the right ventricle (K, L), stain with Von
Kossa (M). There is no associated fibrosis. Scale bars in A,D,F =20 um; B,L = [0 um; C,E = 50 um; G,H,I = | mm; J,K = 50 pum;
M=5pum.
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77

—  +/+

Nov expression and phenotype of subcutaneous and hypaxial muscles. A: RNA in situ hybridization showing Nov
expression in subcutaneous (arrow head), body wall (filled arrow) and intervertebral muscles (arrow) in E16.5 embryos. B, C:
photographs of wild type (B) and Novde3-/- (C) body walls, showing thinning and transparency in the mutant. D-I: Haematoxylin
and Eosin stained sections of adult skin from wild type (D, G), Novdel3+/- (E, H) and NovdeB3-/- (F, I) mice showing atrophy of sub-
cutaneous muscles in Nove3+/- and Nov@e-/- mice, with arrow heads marking the residual muscle layer. Histology of the sub-
cutaneous adipose tissue in wild type (J) and Novdel3-/- (K) showing large mature fat cells in the wild type in contrast to the
mixture of large (mature) and small (immature) fat cells in the mutant. L, M: Haematoxylin and Eosin stained section of adult
intercostal muscles in wild type (L) and Novde3-/- (M) mice showing muscle atrophy and transdifferentiation to fat in the mutant.

Scale bars in A =20 um; D-F = 50 pm; G-M = 10 pm.

mutant with loss of the surface epithelium and fragmen-
tation of the abnormal lens tissue (Figure 7C-F).

Discussion

We have generated by gene targeting Nov3-/- mice that
reveal diverse roles of NOV in the developing embryo and
in tissue maintenance in adult mice. These mice produce
no full length NOV protein, but express at a barely detect-
able level a mutant NOV protein that lacks the VWC
domain. The low level of the mutant protein was in con-
trast to the expression level of its mRNA, which in PEFs
was comparable to that of the wild type transcript, sug-

gesting that deletion of the VWC domain might lead to
reduced NOV protein stability.

Interestingly, we have detected by RT-PCR an equivalent
Nov transcript also lacking the VWC domain in several tis-
sues in the developing wild type mouse embryo at E16.5
(DT, CB unpublished observations). Sequence analysis of
the RT-PCR product confirms that this is a naturally occur-
ring splice variant lacking exon 3 and hence the VWC
domain. We note that a splice variant of WISP1 similarly
lacking the VWC domain has also been reported [35]. In
CTGF, the VWC domain has been shown to enhance TGF
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Figure 7

Phenotype of adult lens. A, B: Photograph of eyes of wild
type (A) and Novde3-/- (B) adult mice of six months of age,
showing cataracts in both eyes in the mutant. The small
white colouration in the wild type eye is an artefact due to
reflected light. C-F: Haematoxylin and Eosin stained sections
of wild type (C,E) and Novde3-/- (D,F) adult eyes showing
degeneration of the mutant lens, with vacuolation and loss of
surface epithelium. Scale bars in E,F =5 um; C,D = I5 um.

binding to its receptor and inhibit BMP4 signalling [7]. It
is therefore possible that variant NOV and WISP1 proteins
lacking this domain may therefore be functionally distinct
from full length NOV and WISP1.

On the basis of the analysis of Nov4e3-/- mice, we cannot
conclude whether the phenotypes observed are due to the
loss of full length NOV function, or to possible novel
functions of the very low level of NOVde!3 produced. The
diverse range of phenotypes of Novd3 homozygotes was
also seen, albeit to a less severe extent, in Nov“3 heterozy-
gotes. This would be consistent either with haploinsuffi-
ciency of the single remaining intact Nov gene, or
alternatively that a low level of NOVdel3 mutant protein
has a dominant effect. Indeed, preliminary experiments
suggest that forced expression of Novde3 in 10T1/2 fibrob-
lasts affects their differentiation, suggesting that it can
indeed have biological activity, although differences in
the expression level, in cell types and developmental con-
text involved mean that we cannot conclude whether this
protein contributes to the Novde3-/- in vivo phenotype.
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Resolution of this point will require generation of mice
that are homozygous for a true null mutation in the Nov
gene, and to date we have been unsuccessful in achieving
this, for reasons unknown. Hence, in the absence of the
NOV null mutant, it is not possible to determine whether
the phenotypes are due to loss or reduction in the level of
full length NOV, the NOV4d¢l3 mutant protein or a combi-
nation of both.

The phenotypes seen in the Nov#!3 mutant mice show
both significant similarities and differences with knock-
outs of other CCN genes, discussed in more detail in later
sections. Phenotypes were observed in both Nov3 heter-
ozygotes and homozygotes, affected a variety of different
tissues and resulted in embryonic or neonatal lethality of
a subset of offspring. In these respects, the Nov mutant dif-
fers from the reported Cyr61 and Ctgf knockout mice,
both of which are null mutants with lethality of all
homozygotes in utero (Cyr61) or shortly after birth (Ctgf),
although we cannot conclude whether the NOVdeI3 pro-
tein is sufficient to rescue an otherwise embryonic
lethality. While Nov is expressed in the smooth muscle
and endothelial cells of the major vessels, no severe
abnormalities were observed in these tissues, in contrast
to the Cyr61 knockout homozygotes which die in mid-
gestation with placental defects and loss of vascular integ-
rity [25]. However, Novde3-/- embryos did exhibit abnor-
malities in the endocardial cushions and delay in septal
fusion which has also been found in Cyr 61-/- embryos
[36]. As in the Ctgf knockout homozygotes, many Novel3-
/- offspring had abnormalities in skeletal development,
but with significant differences in phenotypes, as dis-
cussed below. Joint abnormalities were also observed in
the Novd3 mutants both before and after birth; this has
not been reported for the Ctgf knockout. Mutations in
another CCN family member, WISP3, cause progressive
pseudorheumatoid dysplasia in man [26], although the
mouse knockout in Wisp3 had no overt phenotype, sug-
gesting that its loss in the mouse can be compensated for
by another gene.

Abnormal skeletogenesis and joint formation in Novdel3
mutant mice

Novdel3+ /- and Nov?e3-/- mice exhibited multiple defects in
skeletogenesis and joint formation. Overgrowth of the
appendicular and axial skeleton was observed, with
enlargement of vertebrae, long bones and digits, and
fusion of tarsal bones in the foot. The cartilage elements
were expanded in the Novd3-/- embryos compared to wild
type littermates, seen both in whole skeletal preparations
at E16.5, E18.5 (data not shown) and E19.5 and in sec-
tioned embryos at E16.5. Enhanced chondrogenesis was
also seen in micromass cultures in vitro, with stronger
staining with Alcian blue after 5 days in culture and
increased diameters of the micromasses at 9 days. It will
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be of interest to determine whether this reflects increased
proliferation and/or migration of chondrocytes and/or
enhanced differentiation of mesenchymal cells down the
chondrogenic pathway. Terminal chondrogenic differen-
tiation in Nov3-/- embryos was also affected; the mor-
phology of the pre-hypertrophic cells and surrounding
matrix was abnormal and ossification of hypertrophic car-
tilage was delayed, with a shortening of the pre-hyper-
trophic/hypertrophic zone and disruption of the sharp
transition between proliferative columnar cells and quies-
cent pre-hypertrophic cells present in wild type embryos.
Yu et al. [34], have reported that NOV is expressed in pre-
hypertrophic and early hypertrophic chondrocytes, and
that down-regulation of NOV expression by administra-
tion of parathyroid hormone-related protein (PTHrP),
coincides with a delay in terminal differentiation. Lafont
et al. [37], showed that administration of exogenous NOV
up-regulated TGFP2 and Collagen X, a marker of hyper-
trophic chondrocytes, suggesting that NOV acts as a pro-
moter of late chondrocyte differentiation. A detailed
molecular analysis of chondrogenic differentiation in the
Nowdel3-/- embryos will shed further light on the role of
NOV in this pathway.

Although there was a delay in ossification of hypertrophic
chondrocytes, an overall increase in the thickness of the
bone collar and in the intensity of staining of the bone
matrix with Von Kossa was observed in the Noudel3-/-
embryos. The increased mineralization observed in the
mutants may reflect enhanced differentiation down the
osteogenic pathway, as the differentiation of mesenchy-
mal cells to osteoblasts was promoted in PEFs and in
micromasses derived from Novde3-/- embryos. Our results
are consistent with recent data from Rydziel and co-work-
ers showing that over-expression of Nov inhibits osteob-
lastogenesis and causes osteopenia in transgenic mice
expressing Nov from the osteocalcin promoter [38]. These
authors show convincingly that the inhibition of osteo-
genic differentiation is achieved through NOV directly
binding and inhibiting the activity of BMP2, a key regula-
tor of skeletogenesis. They also showed that NOV has
Wnt3/B-catenin antagonistic activity, but this was not via
a direct interaction with Wnt3 or its co-receptor LRP-6.
The increased bone mineralization we observed in the
Novdel3-/- and Novdel3+/- mice is also consistent with the
decrease in mineral apposition rate seen in the Nov trans-
genic mice described by Rydziel et al. which they ascribe
to impaired osteoblastic function. Minamizato et al. [39]
also reported that over-expression of Nov blocked osteo-
genic differentiation by interacting with and inhibiting
BMP2, and also by activating Notch signalling; this con-
flicts with the results of Rydziel et al. who found that NOV
inhibited Notch signalling in osteoblastic cells.

http://www.biomedcentral.com/1471-213X/8/18

Our results differ significantly from those seen in CTGF
knockout mice which die shortly after birth with severely
malformed rib cages. As in the Novde3 mutants, delayed
ossification was also observed, but in this case the pre-
hypertrophic/hypertrophic zone was enlarged and the
Ctgf -/- mice exhibited thinner bone collars. In contrast, in
the Novdel3 mutants, the size of the prehypertrophic/hyper-
trophic zone was reduced, and the bone collars were
increased in thickness. In the Cigf-/- mice, the delay in
ossification reflects a requirement for CTGF in the coordi-
nation of ossification and angiogenesis. We have not stud-
ied angiogenesis in the Novdel3-/- mice, but it is known that
NOV can act as an angiogenic factor [40], and this might
therefore also contribute to the delay in ossification seen
in the Nov mutants. The differences seen in the skeletal
phenotypes of the Ctgf and Nov mutants may reflect the
different roles played by these proteins in osteoblast dif-
ferentiation. In a cell culture system in which mesenchy-
mal stem cells were induced to differentiate down the
osteogenic pathway on induction with Wnt3A, Ctgf,
together with Cyr61 and Wisp2 were significantly upregu-
lated, whereas Nov was not [41]. In this system, Cyr61 was
a direct target of Wnt/p catenin signalling and RNA inter-
ference-mediated knockdown of Cyr61 reduced Wnt3A
induced osteogenic differentiation. This contrasts mark-
edly with the effects of NOV on inhibiting the osteogenic
differentiation of ST-2 stromal cells and MC3T3 osteob-
lastic cells [38], which is mediated by direct inhibition of
BMP2 and indirect inhibition of Wnt/f catenin signalling.
The increased bone collar thickness in the Novd -/-
embryos would be consistent with an increase in Wnt3
signalling, as activating mutations in the Wnt receptor
LRP5 cause high bone density in man [42,43] while loss
of function mutations in this gene cause the reduced bone
density seen in the autosomal recessive disorder oste-
oporosis-pseudoglioma syndrome [44]. It will be of inter-
est to determine whether Wnt3/f catenin signalling is
increased in the skeletal system of Nov3 mutants. Further
investigation into the mechanisms underlying the modifi-
cations in bone formation and remodelling in
NovdBBmutant mice is currently underway.

Unlike Ctgf, Nov is very highly expressed in the myotende-
nous junctions during skeletal development, and abnor-
malities in joint formation were seen in both Novd3+/-
and Novdel3-/- mice. In adult mutant mice, knee deformi-
ties were particularly prominent, characterised by expan-
sion of the meniscus and abnormalities of the articular
surfaces. Mutations in WISP3 (CCNG6) are associated with
joint abnormalities in man, causing progressive pseudor-
heumatoid dysplasia, characterised by juvenile-onset car-
tilage degeneration [26], although Wisp3 knockout mice
have no overt phenotype [45]. Our results suggest a possi-
ble involvement for NOV in diseases of the joints and fur-
ther support the idea that multiple members of the CCN
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family are required for normal formation and homeosta-
sis of the skeleton.

Nov dffects heart development and causes
cardiomyopathy in adult mice

Our results show for the first time a requirement for NOV
in heart development. Nov is expressed highly in the
smooth muscle and endothelial cells of the major vessels,
including the aorta and pulmonary trunk, and in a subset
of cells near the base of the great vessels [32,33]. Although
the major vessels appeared overtly normal in the Novde!3-/
- embryos, abnormalities in the growth and modelling of
the endocardial cushions were seen and a delay in fusion
of the ventricular septum was noted. Nov3-/- and Novdel3
+/- adults developed cardiomyopathy characterised by
hypertrophy of the septal wall and calcification. Similar
defects are also seen in knockout mice lacking the gap
junction protein Connexin 43 (Cx43) [46]. Homozygous
Cx43 knockout mice die shortly after birth with malfor-
mation of the conotruncal heart segment leading to ven-
tricular outflow obstruction; these mice also exhibit
hypertrophy of the septum and calcification. Interestingly,
NOV has been shown to interact directly with Cx43 [47]
and Cx43 null homozygotes also exhibit delayed ossifica-
tion and osteoblast dysfunction. Skeletal and cardiovascu-
lar defects are also a feature of knockout mice with
disrupted BMP signalling [48]. BMP4 is expressed in the
outflow tract (OFT) myocardium and in the endocardial
cushions from E12-E14 in the mouse while BMP2 is
expressed in the atrioventricular canal and valves [49]. By
generating knockout mice with a mutated BMP type 11
receptor with reduced signalling capability, Delot et al.
[50], have shown that BMP signalling is required for
growth of the OFT cushions, OFT septation and formation
of the semilunar valves. The demonstration that NOV
binds directly to BMPs and inhibits their activity in osteo-
genesis [38] raises the possibility that abnormalities in
endocardial cushion development and ventricular septa-
tion of Novd3 mutants may be mediated through altera-
tions in BMP signalling.

A requirement for another CCN family member, CYR61,
in development of the endocardial cushions has recently
been reported [36]. Cyr61-/- embryos exhibit severe atrio-
ventricular septal defects (AVSD) as a result of abnormal
valvuloseptal morphogenesis. Interestingly, delayed for-
mation of the ventricular septum is also seen in Cyr61 +/-
embryos, and approximately 20% of Cyr61 +/- adults have
persistent ostium primum atrial septal defects (ASD).
Thus, haploinsufficency for Cyr61 causes cardiac defects,
indicating that its level of expression is critical for normal
heart development. We also see cardiac defects in adult
Nowdel3 heterozygotes, as well as abnormalities in other tis-
sues, which would be consistent with haploinsufficency
for Nov, although it is also possible that these phenotypes
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could be due to a dominant effect of the NOVdel3 mutant
protein.

Muscle atrophy and transdifferentiation of myocytes to
adipocytes in Novdel3 homozygotes and heterozygotes
Nov is expressed highly in specific muscles during mouse
development, notably the subcutaneous muscles, and a
subset of hypaxial muscles: body wall, intercostal,
intervertebral, hip and shoulder muscles [32]. All of these
muscles developed in Novd3-/- and NovB+/- embryos,
but underwent premature degeneration by five months of
age in the adult. Muscle atrophy was associated with
transdifferentiation to fat, with the characteristic mor-
phology of immature adipocytes. Thus, NOV is required
for muscle maintenance and viability. It will be of interest
to determine whether the satellite cells, which are the
stem cell population involved in muscle regeneration, are
normal in these mice, as we saw little evidence of muscle
regeneration taking place in the atrophied areas.

There is increasing evidence that NOV is a key regulator of
myogenesis. In vitro, Nov over-expression in C2C12 cells
results in inhibition of terminal muscle differentiation;
there is some controversy about whether this is achieved
via direct activation of Notch signalling, as reported by
Sakamoto et al. [51], or not [52]. We have found that
over-expression of Nov pushes 10T1/2 mesenchymal cells
down the myogenic pathway, promoting the proliferation
and survival of cells expressing myogenin, but blocking
terminal differentiation, thus resulting in expansion of the
myogenic population (EH, DT, EA, CB personal observa-
tions). The muscle cells present in Wilms' tumours exhib-
iting heterotypic differentiation express a high level of Nov
[29], consistent with the hypothesis that inappropriate
expression of Nov may contribute to the abnormal differ-
entiation of mesodermal cells to muscle in some Wilms'
tumours. Elevated Nov expression is found in muscu-
loskeletal tumours, including alveolar rhabdomyosarco-
mas [31]. These tumours are thought to originate from a
multipotential mesenchymal cell type and are correlated
with translocations between chromosomes 1 or 2 and
chromosome 13, resulting in the generation of Pax3- or
Pax7- forkhead (Pax3-7/FKHR) chimaeric genes [53,54].

There is evidence to suggest that the balance between
myogenic and adipogenic potential in myoblasts is regu-
lated by Wnt signalling, with Wnt10b deficiency associ-
ated with increased potential for adipogenic
differentiation in myoblasts [55]. These authors have pro-
posed that down regulation of Wnt10b signalling may
contribute to the impaired muscle regenerative capacity
and increased muscle adiposity characteristic of aged mus-
cle. Given that different CCN family members either are
induced by Wnts or can themselves modulate Wnt signal-
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ling, it would be of interest to determine whether Wnt10b
signalling is affected in Novdel3-/- and Novdel3+/- mice.

Premature cataract formation in Novdel? homozygotes
and heterozygotes

Premature lens degeneration was seen in both Novdel3-/-
and Nov3+/- mice, with early onset cataract formation
from six months of age. This was characterised by vacuola-
tion of the lens and loss of the surface epithelium. Cata-
ract formation is very rarely seen in wild type 129/Sv mice
of less than twelve months of age, and we found no evi-
dence of this in wild type littermates. Its early onset is also
a feature of mice lacking the gap junction protein Con-
nexin 46 (Cx46) [56]. In view of the direct interaction of
NOV with Cx43 [47], it would be of interest to determine
whether NOV interacts with Cx46 and is required for nor-
mal gap junction communication in the lens.

Nov and maintenance of tissue viability

The cardiomyopathy, muscle atrophy, cataracts and joint
abnormalities seen in the Nowde3-/- and Nov3+/- mice
suggest that NOV may have a general role to play in main-
tenance of tissue viability in adults. This would be consist-
ent with other features of early aging that we have noted
in our mice, including hair loss and abnormally low levels
of body fat in older animals (EH, CB unpublished obser-
vations). NOV has also been implicated in wound healing
[40], and has recently been shown to be a key regulator of
human haematopoetic stem/progenitor cells [57]. The
Nowiel3 heterozygous and homozygous mice described
here will provide a valuable resource to test the potential
involvement of NOV in a variety of processes including
stem cell behaviour, tissue regeneration and wound heal-
ing.

Conclusion

There is increasing evidence that CCN family members are
important modulators of matricellular signalling in devel-
opment and disease. In this paper we report the genera-
tion of the first mouse mutant in the Nov gene; these mice
reveal diverse functions for NOV in the embryo and adult
and demonstrate for the first time the importance of this
protein in organogenesis and in tissue homeostasis and
viability in adult mice. We showed that mutation of Nov
causes overgrowth of the axial and appendicular skeleton,
delayed ossification, and severe joint abnormalities.
Fibroblasts derived from Novdel3 homozygotes are potenti-
ated to differentiate down the osteogenic pathway, show-
ing the importance of NOV in regulating cell fate
decisions and differentiation. We showed that normal
NOV function is essential for heart development and that
its mutation causes cardiomyopathy in adult mice. This is
also the first demonstration that NOV is essential for tis-
sue homeostasis, with premature degeneration of specific
muscles and lenses in Novi3 homozygotes and heterozy-
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gotes; these mice may thus provide valuable insights into
the processes of tissue viability and aging. A key question
in development is how multiple signalling pathways are
co-ordinated to orchestrate the complex processes of org-
anogenesis in the embryo and tissue homeostasis in the
adult. The Novde3 mutants described here represent a val-
uable resource for dissecting these processes at the molec-
ular and cellular level, as well as providing a mouse model
for studying diseases affecting the heart, skeleton, muscles
and lens.

Methods

Generation of constructs, targeted ES cell lines and mice
The targeting construct contained 3.0 kb of 5' homology
from the Xbal site 1.5 kb upstream of the Nov start codon
to the first Pstl site in intron 2. The 3' homology is 3.1 kb
from the Hindlll site in intron 3 to the BamHI site at the
3'end of intron 4. A TkneopolyA cassette was inserted
between the two Nov arms and a HSVIK negative selection
cassette was inserted downstream of the 3' homology.
CCB 129Sv ES cells were electroporated and selected with
0.3 mg/ml G418 and 1 mM Gancyclovir. Colonies were
screened by PCR and positive targets confirmed by South-
ern analysis using external probes (Figure 1A). Germline
chimaeras were obtained by injecting karyotypically nor-
mal targeted cells into C57Bl/6 blastocysts and the tar-
geted line was maintained on a 129Sv background.

Derivation and culture of primary cells

Primary embryo fibroblasts (PEFs) were isolated from
E13.5 embryos obtained from heterozygous matings and
genotyped by PCR using yolk sac DNA. For routine cellu-
lar maintenance, PEFs were maintained in Dulbecco's
modified Eagle's medium (Invitrogen) containing 10%
fetal calf serum. To study chondrogenic/osteogenic differ-
entiation, cells were either plated in high density micro-
mass cultures using the technique of Ahrens et al. [58], or
as monolayer cultures in 6-well plates seeded at a density
of 105 cells/well. Cultures were maintained in Ham's F12
medium (Invitrogen) containing 10% fetal calf serum.
PEF cultures were fixed with 4% (w/v) paraformaldehyde
and stained overnight with 1% Alcian Blue 8-GX (pH 1.0)
to detect cartilage matrix sulfated glucosaminoglycans
[59] or assayed for alkaline phosphatase enzymatic activ-
ity by incubation with Sigma Fast BCIP/NBT alkaline
phosphatase substrate at 37°C for 10 minutes.

Reverse transcription RT-PCR and In situ hybridisation
Total RNA was extracted from cultured PEFs using the
RNeasy kit (Qiagen) according to manufacturer's instruc-
tions. RNA was treated with RNAse free DNAse I and
reverse-transcribed using Superscript 11 (Invitrogen).
cDNAs were amplified by PCR using the following prim-
ers:
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Gapdh s GCATGGACTGTGGTCATGAG and as CCATCAC-
CATCTTCCAGGAG,; Nov specific primers: Nov exonl s
GATGCCTCTGCCTAGGCITC and Nov exond as
CACACTGGCGATTCCTGTTG, Alkaline phosphatase s CCT-
GCAGGATCGGAACG and as GACCTGAGCGTTGGTGT-
TATATGT; Collagen I s
AGCACCACGGCAGCAGGAGGTTT and as CAGGGTT-
GCCAGGAGGTCCAACA; Osteocalcin s CCAAGCAGGAG-
GGCAATA and as AGGGCAGCACAGGTCCTAA. RNA in
situ hybridization was performed on E16.5 embryo cryo-
stat sections as previously described [32].

Protein isolation and immunoblot analysis

For whole cell protein lysates, cells were lysed with RIPA
buffer and protein concentrations determined using the
Bradford assay (Sigma). For Western analysis, 10 pug of
each protein sample was subjected to SDS-PAGE (12%)
and electrotransferred onto Hybond-P nitrocellulose
membranes (GE Healthcare). Blots were probed with a
rabbit polyclonal anti-NOV antibody 59.3 (1:1000)
raised against a c-terminal NOV peptide (CPQN-
NEAFLQDLELKTS) which recognizes both full-length
NOV (40 kDa) and mutant NOVd¢I3 proteins (30 kDa) or
anti-a-tubulin antibody (clone B-5-1-2, 1:3000, Sigma).
Proteins were visualized with anti-mouse or anti-rabbit
IgG horseradish-peroxidase-linked antibodies (1:25,000;
Santa Cruz Biotechnologies) using the ECL detection sys-
tem (GE Bioscience). To confirm equal protein loading of
conditioned media samples, parallel gels were run and
stained with Coomassie Brilliant Blue.

Skeletal preparation and histology

Alcian blue and Alizarin red staining of cleared skeletal
preparations was performed according to Hogan et al.
[60]. For histology, specimens were fixed in 4% (w/v)
paraformaldehyde and embedded in paraffin. Deparaffin-
ized sections (5 pm) were stained with Haematoxylin and
Eosin, Alcian blue and Nuclear Fast Red or Von Kossa.
Immunostaining for PCNA was carried out on deparaffin-
ized sections after antigen retrevial with 0.1 M sodium cit-
rate using a monoclonal anti-PCNA antibody (1:500, sc-
56, Santa Cruz Biotechnologies) and staining detected
with the Vectastain Elite Mouse I1gG ABC Kit (Vector Lab-
oratories) according to the manufacturers' instructions.
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