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Abstract
Background: Interfollicular skin develops normally only when the activity of the progenitor cells
in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they
differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments
have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe
the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an
important growth-inducer of stem cell compartments in skin and many other tissues.

Results: Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular
progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth
and promotes terminal differentiation.

Conclusion: These results are consistent with the phenotypes reported for transgenic mice
engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our
culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are
expressed in skin, it is likely that this pathway normally regulates the balance of growth and
differentiation, and suggests it could be important to pathogenesis.

Background
The homeostatic architecture of the skin is maintained by
a tightly regulated balance between proliferation and dif-
ferentiation, which occurs continuously as the skin self-
renews. In adult skin, growth potential is focused into a
minor subpopulation of stem and progenitor cells, some
located in hair follicles and others in sebaceous glands
[1,2]. These have been shown to be particularly important
to wound healing [3] and also to the regenerative cycle of

the hair follicle [4]. The growth potential of interfollicular
keratinocytes resides in the progenitor population within
the basal layer [5]. These cells are distributed into devel-
opmental fields, which divide laterally to become rapidly
expanding transit amplifying cells, and differentiate after
detachment from the basal lamina, migrating up into the
stratified suprabasal layers of the skin [6,7].
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Recently, some of the soluble factors that control progen-
itor cell proliferation and differentiation have been iden-
tified. Ectopic activation of the Wnt signaling pathway, in
particular, has been shown to promote progenitor dys-
function in skin, as it does for other lineages [1,8,9]. Thus,
transgenic mice engineered to have gain of function of
Wnt signaling in basal keratinocytes, showed de novo hair
follicle morphogenesis, follicular hyperplasia and tumors
[9]. The canonical Wnt signaling pathway (mediated by β-
catenin) is indeed highly oncogenic for a number of
mammalian lineages, and there is gathering evidence that
the underlying mechanism is the misregulation of stem
cell compartments. While the role of Wnt signaling in fol-
licular keratinocytes has been well established, its func-
tion in interfollicular keratinocyte regulation is unknown.

Wnt ligand expression (Wnt 4, 5a, 10b and 11) has been
observed in interfollicular skin [3] (and MS and BLA-H,
unpublished), together with a number of the other com-
ponents of the Wnt signaling pathway, implying that this
pathway may be involved in normal morphogenesis.
Here, we tested the effect of mis-expression of the canon-
ical Wnt ligand, Wnt1, on development of an organotypic
culture model of interfollicular skin.

Our interfollicular organotypic culture model is based on
a cell line that arose spontaneously from human foreskin
keratinocytes (Normal Immortalized Keratinocytes;
NIKs). These cells replicate all aspects of differentiation in
vivo, and are used therapeutically for grafting to human
patients. They differentiate normally in culture as well,
and resemble the pattern typical of primary keratinocyte
cultures. NIKs are non-tumorigenic and have a stable,
near-diploid karyotype [10]. They grow in monolayer cul-
ture as undifferentiated, highly proliferative cells, but
when transferred to organotypic culture on collagen gels
containing human fibroblasts, they stratify, closely resem-
bling their epidermal counterpart in vivo. Every molecular
marker so far tested shows normal expression.

Our results were surprising. Unlike the proliferative
response of follicular stem cells to ectopic Wnt signaling
in vivo, interfollicular progenitor cells were induced to
exit from the proliferative compartment and undergo ter-
minal differentiation, suggesting that the response to Wnt
signaling is highly dependent upon the keratinocyte cell
context.

Results
Cultured human keratinocytes transduced with Wnt1 show 
reduced proliferation and an increase in cell size
Monolayer cultures of NIKS keratinocytes were trans-
duced with either a Wnt1-IRES-lacZ retrovirus or a control
virus, IRES-lacZ. Approximately 85% of NIKS cells were
infected (determined by β-galactosidase staining). Both

Wnt1-IRES-LacZ and IRES-LacZ transduced NIKS cell lines
were expanded for eight passages. Prior to each experi-
ment, the percentage of lacZ-expressing cells was re-
assessed and found to be approximately constant. We
measured the effect of Wnt1 expression on the prolifera-
tive capacity of keratinocyte monolayers, and found that
it was reduced by 50% (Fig. 1A). In monolayer culture,
keratinocytes undergo an attenuated differentiation pro-
gram, generating a heterogeneous culture population that
contains small, actively dividing cells, together with a pro-
portion of large, terminally differentiated cells. In cultures
of keratinocytes transduced with Wnt1-IRES-LacZ, there
were many more large cells (Fig. 1B). We quantified the
area of transduced cells, and observed that there was a 20
fold increase in very large cells (>1000 µm2; Fig. 1C).

Specific induction of TCF-βcatenin-dependent transacti-
vation in response to ectopic Wnt signaling was measured
using the canonical TOP-FLASH reporter. (The fold induc-
tion of reporter expression is expressed as a ratio with
respect to the control scrambled reporter, FOP-FLASH).
To evaluate the induction of TOP-FLASH expression in
NIKs cells, cultures were treated with soluble Wnt3A (a
canonical Wnt ligand that shares all the properties of
insoluble Wnt1 characterized so far; [11]). These cultures
showed a 2× increase in Wnt reporter expression. This was
reduced by co-expression of the canonical Wnt pathway
inhibitor, dkk1 (Fig. 1D). Transactivation of TOP-FLASH
was increased in cell strains constitutively expressing Wnt-
1 from the viral expression vector (W) compared to con-
trol virus (LZ) (Fig. 1E).

Thus Wnt1 expression results in decreased cell prolifera-
tion and increased cell size, and suggests that Wnt signal-
ing affects the balance between proliferation and
differentiation. To test this proposal more rigorously, we
transferred the cells to organotypic culture.

Interfollicular epidermis generated from Wnt1-IRES-LacZ 
keratinocyte populations shows precocious thickening of 
the stratum corneum and depletion of nucleated cells from 
the basal layer
Wnt1-IRES-LacZ and control IRES-LacZ NIKs cells were
seeded at equal cell density onto dermal equivalents. NIKs
cultures proliferate to form a continuous sheet of cells,
and at confluence, cells begin to stratify as they undergo
differentiation. After 12 days, control cultures had organ-
ized into a stratified epidermis, and cornification pro-
ceeded for several weeks thereafter). Epidermal tissue
generated from Wnt 1-IRES-LacZ keratinocyte popula-
tions exhibited a thickened stratum corneum (hyperkera-
tosis) relative to control IRES-LacZ keratinocytes at all
time points (Fig. 2). To test whether the hyperkeratotic
layers were expressing differentiated molecular markers,
we confirmed that the suprabasal layers of differentiating
Page 2 of 8
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:9 http://www.biomedcentral.com/1471-213X/7/9
cultures of Wnt1-lacZ-NIKs cells were filaggrin-positive
(Fig. 2; fillagrin is a late stage marker of interfollicular dif-
ferentiation expressed specifically in the granular layer
and stratum corneum [12]).

The basal layer of the Wnt 1-IRES-LacZ epidermis became
progressively more orthokeratotic or enucleated over the
course of 30 days. Cells in Wnt-1 expressing organotypic
culture showed an elongated, flat morphology compared
to normal cells (Fig. 2; cells are outlined by staining for E-
cadherin).

We determined the proportion of dividing basal cells in
Wnt1-expressing cultures by immunostaining for the M
phase cell cycle marker Ki67. Over the course of 30 days,
control cultures show a decrease in Ki67-positive nuclei
(by approximately 30%; Fig. 3). In Wnt1-expressing cul-
tures, the mitotic index was reduced by 50% on day 16,
and this was reduced to almost zero after 30 days (Fig.
3A). Thus, after 1 month in culture, there was very little
growth activity in cultures expressing Wnt1.

Wnt1 expressing-cells are progressively excluded from the 
dividing basal layer
We assessed the distribution of lacZ-expressing cells in
organotypic cultures from control IRES-lacZ and Wnt1-
IRES-lacZ cultures. Whereas the control cultures main-
tained a constant majority of lacZ-positive cells during the
culture period (Fig. 4), the Wnt1-expressing cultures
showed a 75% reduction of lacZ-positive cells in the basal
layer over the course of 30 days (Fig. 4). This loss of lacZ
expression spread upwards into the suprabasal layers as
the culture matured, suggesting that Wnt1-expressing
basal cells were eliminated from the tissue over time.

Wnt-induced growth inhibition and stratification is 
reversed by Dkk1, a canonical Wnt signaling inhibitor
The canonical, β-catenin-TCF Wnt transactivation path-
way is specifically inhibited by the extracellular, soluble
inhibitor, Dkk1 [13-17]. We added Dkk1 to keratinocyte
cultures in order to test whether the canonical Wnt path-
way was responsible for the observed growth inhibition
and precocious differentiation. Morphologically, the
hyperkeratosis was rescued in large part by the addition of
soluble, recombinant Dkk1 to the cultures (Fig. 5B), and
this was confirmed by counting the proportion of Ki67-
positive basal nuclei (Fig. 5A). Thus, we implicate the
canonical activity of Wnt1 as an important regulator of
the choice of basal cells to proliferate or differentiate.

Discussion and conclusion
Canonical Wnt ligands are expressed in normal human
interfollicular skin [3] (and MS and BLA-H, unpublished),
suggesting that this pathway may be used normally to reg-
ulate the maturation of the keratinocyte lineage during

Wnt1 expression slows growth and increases cell size in monolayer cultures of NIKs cellsFigure 1
Wnt1 expression slows growth and increases cell size in 
monolayer cultures of NIKs cells. The growth of NIKs cells 
transduced either with a control retrovirus (lacZ) or a Wnt1 
expression vector (Wnt1-IRES-lacZ) was compared (A: total 
cell counts). When cultures were stained for lacZ expression 
(B), the number of large and very large cells expressing Wnt1 
was greatly increased (C). Canonical Wnt signaling was 
measured as fold induction of a consensus TCF-βcatenin 
reporter (TOP-FLASH) with respect to FOP-FLASH (a 
scrambled consensus reporter, all normalized for transfec-
tion efficiency as previously described). The TOP/FOP ratio 
was increased in NIKs cells by 2× when cells were incubated 
with soluble (crude) Wnt3A for 22 hours, and reduced if the 
cells were transfected with the canonical Wnt inhibitor, 
dkk1, prior to Wnt3A incubation (D). Cell strains stably 
transduced with retroviral constructs (LZ, lacZ control; W, 
Wnt1-lacZ test vector) were transfected with either FOP-
FLASH or TOP-FLASH reporters (E). The Wnt1-expressing 
culture showed a significant increase in Wnt-dependent 
transactivation (n = 3), though less than the naïve cultures 
treated with soluble Wnt3A (probably because of negative 
feedback).
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growth and differentiation. It is known that gain- or loss-
of function of this pathway has profound effects on
growth and differentiation for stem and progenitor cells
in hair follicles and sebaceous glands in transgenic mice.
Thus, in [K14-∆Nβ catenin] transgenic mice (expressing a
non-degradable β-catenin Wnt signaling effector in basal
keratinocytes) there was an increase in folliculogenesis,
and ectopic proliferation of cells in stem cell compart-
ments, leading eventually to tumor development [9,18].
Expression of ∆N-Lef1 induced cysts and sebaceous
tumors [19]. Subtle manipulations in vivo have revealed
that Wnt signaling reduces the threshold for activation of
follicular stem cell division [20]. These authors propose
that the stem cell niche has a powerful inhibitory func-
tion, maintaining stem cell quiescence, and Wnt signaling
overcomes this signal to initiate tissue growth.

Epidermal stem cells (though usually separate pools) are
able to differentiate along any of the epidermal lineages
(follicular, sebocyte and interfollicular), given the correct
microenvironment [1,21]. Misregulation of one stem cell
compartment tends to generate complex phenotypes in
the other lineages. Since there is no unambiguous way to
dissociate the activity of the follicular and interfollicular
compartments in transgenic mice [22], we have used an
organotypic culture model of interfollicular skin to isolate
the effects of Wnt signaling upon the interfollicular kerat-
inocytes.

We have shown that the ectopic expression of the canoni-
cal Wnt signaling pathway shifts the balance of division
and differentiation for interfollicular progenitor cells
away from cell division towards precocious differentia-
tion. If our culture model were accurate, we would predict
that inhibition of Wnt signaling in basal cells of trans-
genic mice should increase growth and reduce differentia-
tion. Indeed, hyperproliferation of interfollicular skin was
observed in mice expressing the dominant negative trans-
activation inhibitor, ∆N-Lef1 [19]. Similarly, transgenic
mice expressing Tcf3 (described as a transactivation
repressor) showed decreased expression of filaggrin and
loricrin within the interfollicular epidermis [18]. We pro-
pose therefore that this culture model can be used to accu-
rately model of interfollicular development.

The outcomes of Wnt signaling are known to be highly
context-dependent. Here we show that although Wnt sig-
naling has previously been shown to promote prolifera-
tion of follicular stem cells, it induces the differentiation
of interfollicular progenitors. Wnt signaling is a classic
morphogenic pathway known to regulate cell fate choices
and differentiation during developmental processes [23],
for example those associated with imaginal disc forma-
tion. Thus, in ommatidial development, Wnt signaling is
used early during specification, and later to promote dif-

Wnt1 expression accelerates differentiation of organotypic culturesFigure 2
Wnt1 expression accelerates differentiation of organo-
typic cultures. NIK cells were transferred to culture condi-
tions that promote epidermal stratification and development. 
Samples were taken at the timepoints indicated (12, 16 and 
30 days), embedded, sectioned and stained with H&E (A) to 
reveal their z-axis morphology. The arrows indicate the pat-
tern of growth typical of these cultures, relying on progeni-
tor cells to feed the basal transit amplifying population that 
differentiate upwards into the stratified layers. Similar sam-
ples were processed for filaggrin-staining (B), and cell out-
lines were visualized with an antibody to E-cadherin.
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ferentiation and apoptosis of peripheral retinal cells [24].
Within mammalian lineages, Wnt signaling has been
shown to be key to opposite cellular growth/differentia-
tion choices [25]. Wnt signaling promotes hematopoietic
stem cell proliferation, and is used again later in the line-
age to promote T cell differentiation [26]. Similarly, Wnt
signaling promotes intestinal crypt stem cell division and
accumulation, and later in the lineage induces maturation
of Paneth cells [27-29]. Gain of function of Wnt signaling
in neural crest cells generates sensory neurons at the
expense of all other lineages, re-specifying cell fate and
promoting differentiation [30].

Organotypic keratinocyte culture establishes a balance
between basal cell renewal and differentiation resulting in
the continued accumulation of fully differentiated squa-
mes in the stratum corneum over time. Upon transplanta-
tion of fully stratified organotypic cultures to athymic
mice, the balance between basal cell renewal and differen-
tiation becomes further normalized, supporting long term
renewal of the interfollicular epidermis [31]. These early

The mitotic activity of the Wnt1-expressing basal layers is reducedFigure 3
The mitotic activity of the Wnt1-expressing basal layers 
is reduced. Samples described in the legend to Fig. 2 were 
immunostained for Ki67 (A), and the number of Ki67-posi-
tive cells per basal cell nucleus quantified (B).

Wnt-expressing keratinocytes are progressively excluded from the basal replicative layerFigure 4
Wnt-expressing keratinocytes are progressively excluded 
from the basal replicative layer. Samples described in the 
legend to Fig. 2 were stained for lacZ expression to illustrate 
the distribution of Wnt1- (or control) expressing cells. Panel 
B) shows the proportion of cells that expressed lacZ for each 
cell strain at plating. The exclusion of lacZ-positive basal cells 
was quantified over time (C).
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studies coupled with our findings suggest that basal pro-
genitor compartment is maintained in organotypic kerat-
inocyte cultures. Applying the paradigm derived from
other differentiating lineages, we suggest that ectopic Wnt
signaling accelerates the exit of cells from the basal pro-
genitor compartment, rapidly reducing stem cell activity.
We conclude that this organotypic culture model could be
used to screen for molecular candidates that regulate the
interfollicular stem/progenitors cell niche, a niche that
maintains the renewal potential of skin.

Methods
Culture of human keratinocytes
The spontaneously immortalized human keratinocyte cell
line NIKS was grown either in monolayer culture on 3T3-
fibroblasts, or in organotypic culture in keratinocyte
growth media on a simulated dermal raft [10] with the
following modification: The dermal component was pro-
vided by Stratatech Corp. (Madison, WI) (formed by mix-
ing normal human neonatal fibroblasts with type 1
collagen on hyaluronic acid (HA) membranes in Millicell
cell culture plate inserts (10 mm diameter). Cells were
plated at 3.5 × 105 cells in 150 µls of Stratalife™ media 1
(Stratatech Corp) per dermis, and the outer well was
flooded with media 1. Two days post-plating, cultures
were fed with Stratalife™ media 2, and day 4 post-plating
were re-fed with Stratalife™ media 3, and media changed
every other day thereafter.

Ectopic Wnt expression
The construction of retroviral expression vectors express-
ing Wnt1 and Dkk1 were described in Liu et al (2003)
[32]. To make virus, 293 cells were transfected with 3 plas-
mids simultaneously, pcMMP Wnt1-IRES-lacZ, pMMP-
VSV-G, and pMMP gag-pol (4 × 106 cells transfected with
10 µgs, 5 µgs and 5 µgs plasmids respectively, and 10 µls
of Lipofectamine 2000). Virus was harvested 48 and 72
hours post-transfection, filtered, concentrated by ultra-
centrifugation and stored at -80°C. Viral titer was deter-
mined by measuring the MOI after infection of 293 cells
(cells were infected in 4 mg/ml polybrene for 1 hour/
4°C). NIKs were transduced with Wnt1-lacZ, or lacZ
viruses, at MOI 2.5. Where indicated, recombinant
human Dkk1 (R&D, Minneapolis, MN) was added to
organotypic culture media at a final concentration of 0.1
µg/ml, or cultures were transfected with a viral pcMMP
Dkk1IRES-lacZ expression construct (0.1 µgs).

Assays of transactivation of the Wnt reporter, TOP-FLASH
(together with the scrambled control construct, FOP-
FLASH) were as described in Liu et al (2003) [32]. Briefly,
samples were measured in triplicate, and readings nor-
malized for transfection efficiency using the co-trans-
fected Renilla luciferase standard. Results were expressed
as fold induction of TOP-FLASH expressed as a ratio with

The canonical Wnt signaling inhibitor, Dkk1, rescues Wnt-induced hyperkeratosisFigure 5
The canonical Wnt signaling inhibitor, Dkk1, rescues 
Wnt-induced hyperkeratosis. NIK cultures were incubated 
with or without soluble dkk1 for 30 days, and the mitotic 
index of the basal layer of the organotypic cultures was 
assayed (A). The same cultures were stained with H&E, and 
cut on the z-axis to evaluate their differentiation (B).
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respect to FOP-FLASH. Production of Wnt3A conditioned
medium was described by Liu et al (2003) [32].

Immunohistochemistry and image analysis
Organotypic cultures were fixed for 120 mins in 1% para-
formaldehyde; half of each tissue was cryopreserved
(equilibrated in 20% sucrose in PBS, 4°C overnight, and
embedded in OCT (Tissue Tek), and the other half post-
fixed in 10% buffered formalin, followed by paraffin-
embedding. For detection of β-galactosidase (lacZ) activ-
ity in organotypic cultures, 5 µm frozen sections were
fixed in acetone (5 min, -20°C), air dried, post-fixed in
2% formaldehyde/0.2% glutaraldehyde (5 min, 4°C) and
incubated with X-gal staining solution (4 mM potassium
ferricyanide, 4 mM potassium ferrocyanide, 2 mM magne-
sium chloride, 1 mg/ml X-Gal at 37°C for upto 72 hr). For
immunofluorescent analysis, 5 µm sections of paraffin-
embedded organotypic cultures were stained with anti-
bodies against filaggrin (NeoMarkers, Fremont, CA), E-
cadherin (Transduction Labs, KY) and Ki67 (Novo Castra,
Newcastle, UK; all primary antibodies used at 2 – 5 µg/
ml). (For filaggrin staining, sections were microwaved in
10 mM sodium citrate pH 6.0 to promote antigen expo-
sure). Sections were blocked with 10% goat serum
(Sigma, St. Louis, MO) in PBS, and incubated in primary
antibodies for 30–60 minutes at room temperature,
washed, incubated with secondary antibodies (Alexa 488-
conjugated goat anti-mouse IgG (Molecular Probes,
Eugene, OR) or biotinylated Universal antibody,
VectaStain Elite kit (Vector Laboratories, Burlingame, CA,
used as recommended). The immunohistochemical stain
for Ki67 was developed using the Vectastain Elite ABC rea-
gent (Vector Laboratories, Burlingame, CA). Immunoflu-
orescent stains were counterstained with 5 µg/ml Hoechst
33258, and immunohistochemical stains with Harris
Hematoxylin for 50 sec. To assess the average area of indi-
vidual cells in monolayer culture, NIH Image software
[33] was used to assess images captured using an inverted
microscope.
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