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Abstract

Background: In the CNS, several P2 receptors for extracellular nucleotides are identified on
neurons and glial cells to participate to neuron-neuron, glia-glia and glia-neuron communication.

Results: In this work, we describe the cellular and subcellular presence of metabotropic P2Y),
receptor in rat cerebellum at two distinct developmental ages, by means of immunofluorescence-
confocal and electron microscopy as well as western blotting and direct membrane separation
techniques. At postnatal day 21, we find that P2Y, receptor in addition to Purkinje neurons, is
abundant on neuronal specializations identified as noradrenergic by anatomical, morphological and
biochemical features. P2Y, receptor immunoreactivity colocalizes with dopamine P-hydroxylase,
tyrosine hydroxylase, neurofilament light chain, synaptophysin and flotillin, but not with glial
fibrillary acidic protein for astrocytes. P2Y receptor is found enriched in membrane microdomains
such as lipid rafts, in cerebellar synaptic vesicles, and is moreover visualized on synaptic varicosities
by electron microscopy analysis. When examined at postnatal day 7, P2Y, receptor
immunoreactivity is instead predominantly expressed only on Bergmann and astroglial cells, as
shown by colocalization with glial fibrillary acidic protein rather then neuronal markers. At this age,
we moreover identify that P2Y receptor-positive Bergmann fibers wrap up doublecortin-positive

granule cells stretching along them, while migrating through the cerebellar layers.

Conclusion: Membrane components including purinergic receptors are already known to mediate
cellular contact and aggregation in platelets. Our results suggesting a potential role for P2Y, protein

in cell junction/communication and development, are totally innovative for the CNS.

Background Because of their heterogeneous faculty of responding to
Extracellular nucleotides partake to excitatory neurotrans-  several diverse nucleotides, interest is growing on discov-
mission and neuromodulation in the CNS and are capa-  ering the exact localization of the various P2 receptor sub-

ble of intervening in a broad array of physiopathological ~ units in selected organs, tissues and cellular phenotypes
functions acting on different P2 purinergic receptors [1-3]. [4,5]. To date, seven different ionotropic P2X (P2X,_;) [6]
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and eight distinct metabotropic P2Y (P2Y, 5 4611,12,13,14)
[7] receptors were cloned from mammalian species. In
contrast to P2X ion channels, P2Y proteins hold the gen-
eral feature of G protein-coupled receptors with seven
hydrophobic transmembrane domains. Since activation
of P2Y subtypes leads to second messenger cascades, their
response is slower than that mediated by P2X subunits [8-
10]. Among P2Y receptors, an elevated expression partic-
ularly of the P2Y, subtype was detected in both human
[11] and rat brain [12]. In human tissue, expression of
P2Y, protein is reported exclusively on neuronal cells in
cerebral and cerebellar cortex, in hippocampus, caudate-
putamen nuclei, globus pallidus, subthalamic nucleus
and midbrain [11]. Moreover, P2Y, protein appears asso-
ciated to neurofibrillary tangles and neuritic plaques in
postmortem brain of Alzheimer's disease patients [13].
On the contrary, P2Y, receptor in rat is detected not only
on grey matter, particularly cerebellar, cortical and hip-
pocampal neurons, but also on white matter of corpus cal-
losum and optic nerve [12].

Many studies have already highlighted a general role for
purinergic signaling in brain development [14] and in
neuron and/or glia function and communication [15-17].
For instance, activation particularly of P2Y, receptor is
suggested to regulate oligodendrocyte progenitor func-
tions [18], whereas reduced levels of P2Y, protein appar-
ently affect proliferation and migration, but not
differentiation of neural progenitor cells during early CNS
development [19]. With the present work, we further
study P2Y, receptor and compare protein distribution in
juvenile versus neonatal rat cerebellum. We show that
during postnatal growth, the phenotypic appearance of
P2Y, protein undergoes a drastic switch from glial to neu-
ronal localization, therefore suggesting this receptor as a
novel marker of cerebellar development.

Results

P2Y, receptor is present on tyrosine hydroxylase- and
dopamine [-hydroxylase-positive neurons in juvenile rat
cerebellum

We describe in this work the topographic cellular and sub-
cellular in vivo distribution of P2Y, receptor protein in the
cerebellum of juvenile rat at postnatal day 21 (P21). We
show by confocal microscopy that P2Y, protein immuno-
reactivity is uniformly distributed throughout specific
zones of cerebellar cortex (Fig. 1). Confirming what was
previously depicted by immunohistochemical observa-
tions [12], our immunofluorescence studies indicate that
P2Y, receptor is limited to Purkinje cell (pc) bodies and
ramifications, to neuropil of molecular layer (ml), and to
axons of white matter irradiating into granule (gl) and
Purkinje (pl) layers (Fig. 1, Fig. 2). In addition, we show
that specific P2Y, receptor staining is absent from NeuN-
positive granule cell bodies, but present on the conspicu-
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ous array of fibers irradiating into the cerebellum and
spreading out their projections to granular, Purkinje and
molecular layers (Fig. 1). In sagital cerebellar sections, we
see by confocal analysis that P2Y, receptor immunoreac-
tivity colocalizes with thick, straight and bundled neuro-
filament light chain (NFL) fluorescence, specific for
neuronal processes (Fig. 2A), with tyrosine hydroxylase
(TH), the rate-limiting enzyme in catecholamine biosyn-
thesis (Fig. 2B), and with dopamine f-hydroxylase
(DBH), specific for noradrenergic neurons (Fig. 3). We
find that, differently from NFL (Fig. 2A), nerve fibers
immunoreactive for both TH (Fig. 2B) or DBH (Fig. 3)
and P2Y, receptor can be much thinner (Fig. 3B, arrows),
sparse, unbundled and winding and, moreover, display
abundant varicosities and beaded appearance (Fig. 2B,
inset ¢; Fig. 3B, arrow head and inset). Although P2Y,
receptor labeling is not uniformly distributed along the
entire fiber, and not all DBH ramifications are P2Y, posi-
tive, P2Y, fibers are densely detected in the white matter of
each cerebellar folium without distinction among lob-
ules, sometimes in contact with perikarya (data not
shown). At higher magnification and by triple immun-
ofluorescence confocal analysis, we observe that a blue
Calbindin-positive Purkinje axon is surrounded by yellow
colocalizing signals of red P2Y, receptor and green DH
(Fig. 3C). In this particular fiber, the P2Y; receptor is
absent from the Purkinje axon, but enriched on noradren-
ergic terminals on the same axon. Moreover, the numer-
ous and large varicosities (1-3 pm diameter) of TH-
positive fibers [20] directly express P2Y, receptor (Fig. 2B,
inset ¢) and are, therefore, likely responsible for the
beaded appearance of P2Y, receptor immunostaining. By
triple immunofluorescence and confocal analysis on his-
tological sections, we further prove that the P2Y,receptor-
positive varicosities (red immunofluorescence) are
enriched in synaptophysin (specific marker of synaptic
structures, green immunofluorescence), and flotillin (a
lipid rafts-associated integral membrane protein, blue
immunofluorescence) [21], therefore providing a com-
pletely overlapping P2Y,-synaptophysin-flotillin immu-
noreactive signal (white immunofluorescence, Fig. 4). The
large oval/cuboid staining (Fig. 4 insets), as well as the
fine punctate staining, further demonstrate the presence
of synaptophysin and P2Y, receptor labeling on synaptic
glomeruli.

On the other hand, P2Y1 receptor does not colocalize
with glial fibrillary acidic protein (GFAP), therefore
excluding its concurrent expression on astrocytes (Fig. 8B,
lower-right inset).

Ultrastructural analysis indicates that P2Y, receptor is
present on both axon terminals and dendrites

To further investigate the subcellular localization of P2Y,
protein, we performed ultrastructural analysis by electron
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Figure |

Map of P2Y, receptor protein in juvenile rat cerebel-
lar cortex. Sagital sections of P2| rat cerebellar cortex
were processed for double immunofluorescence analysis.
Confocal images show that P2Y receptor protein (red
immunofluorescence) is present on Purkinje cell (pc) bodies
and ramifications, on neuropil of molecular layer (ml), on
axons of the white matter irradiating into the granule layer
(gl), but not on NeuN-positive granule neurons (blue immun-
ofluorescence). The inset represents immunofluorescence
analysis performed in the presence of the immunogenic pep-
tide for P2Y, receptor. Scale bars = 50 pm.
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microscopy. We confirm the presence of P2Y; receptor
immunoreactive profiles in all cortical layers of juvenile
rat cerebellar cortex, although more abundantly in gl (Fig.
5A), rather than pl or ml (Fig. 5B). P2Y, receptor immu-
noreactivity is moreover present on both dendrites (Fig.
5A, asterisks) and fine, beaded axons (Fig. 5A, white circle,
Fig. 5B, arrows) that travel along the cerebellar cortical
layers. P2Y, immunoreactive axons are un-myelinated
and consist of P2Y,-positive small axonal enlargements or
varicosities (Fig. 5C, black arrow) connected by narrower
P2Y,-positive inter-varicose segments (Fig. 5C, white
arrow). The varicosities are about 1-2 pm in diameter and
filled with synaptic pleomorphic vesicles and mitochon-
dria (Fig. 5C and 5D). Intervaricose segments do not con-
tain vesicles. The most remarkable feature of the electron
microscopy analysis is the absence of visible synaptic spe-
cializations (Fig. 6A-C). The P2Y, receptor-positive vari-
cosities are in fact adjacent to cerebellar elements like
granule dendrites (Fig. 6A-C) and cell bodies (Fig. 6E),
without formation of conventional synaptic junctions
(see arrow in Fig. 6C). In addition, specific immunolabel-
ling is observed also in proximal dendrites of Purkinje
neurons (Fig. 6F), and very rarely in cell bodies of granule
cells (Fig. 6D). No P2Y, receptor-immunolabelled glial
cells are observed.

P2Y, receptor localizes in lipid rafts and synaptosomes

Since fluorescence microscopy indicated a high degree of
co-localization between P2Y, receptor and the lipid rafts
marker flotillin-2, we purified low buoyant density deter-
gent-resistant membranes (lipid rafts) from P21 rat cere-
bellum, in order to better dissect the localization of P2Y,
protein. Whereas in total cerebellar extracts the P2Y,
receptor is recognized as a major protein band of approx-
imately 120 kDa and a minor band of about 42 kDa
(molecular mass expected from aminoacid sequence anal-
ysis) (Fig. 7A), the specific form recognized in the absence
of the antigenic peptide by the P2Y, receptor antiserum in
the low density fractions of the sucrose gradient (together
with the lipid rafts marker flotillin-2) corresponds not to
the monomeric, but to the oligomeric protein (Fig. 7B).
This is not surprising, since SDS-resistant oligomeric
forms of this receptor are frequently reported, for instance
in vascular smooth muscle and endothelial cells, and sug-
gested to be the functional forms [22]. Consistently, when
the receptor antiserum used to identify P2Y, protein is
pre-incubated with the immunizing peptide, the reactivity
not only to the monomeric, but also to the oligomeric
band is completely abolished (Fig. 7A,B), therefore con-
firming the specificity of the antigen-antiserum interac-
tions. This is further proved by the result that the P2Y;
receptor polyclonal antiserum used in this study is able to
efficiently immunoprecipitate the recombinant Myc-P2Y,
human receptor transiently transfected in SH-SY5Y cells
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A

Figure 2
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Localization of P2Y, receptor on neurons. Confocal images demonstrate that P2Y | receptor immunoreactivity (red Cy3
immunofluorescence) colocalizes with NFL (green Cy2 immunofluorescence) specific for neuronal processes (A) and with TH

(green Cy2 immunofluorescence) (B). The insets "a" and "b" in B, represent immunofluorescence analysis performed in the

absence of the primary antibodies and only with the anti-rabbit or anti-mouse secondary antibodies, respectively. The inset "c

in B, shows large (1-3 pm diameter) varicosities present on TH-positive fibers expressing P2Y, receptor (yellow immunofluo-
rescence). Abbreviations: ml, molecular layer; pc, Purkinje cells; gl, granule layer. Scale bars are: 20 um in A and B; 100 um in

the insets "a, b" in B; 5 um in the inset "c" in B.

and detected by the anti-myc 9E10 antibody (data not
shown).

Since fluorescence microscopy also demonstrated a high
degree of co-localization between P2Y, receptor and syn-
aptophysin (Fig. 4), fractions were also prepared directly
from cerebellar synaptosomes, in order to confirm the
synaptic localization of lipid rafts-resident P2Y, receptor.
Our results again demonstrate that only the P2Y, receptor
oligomer is present in synaptosomal lipid rafts-enriched
fractions (Fig 7C), together with the lipid rafts markers
flotillin-2 and GM1ganglioside (fractions 4-7). Neither
monomer nor oligomer receptor is instead detected in the
high density synaptosomal fractions (fractions 10-12)
containing transferrin receptor, a protein known to be
excluded from lipid rafts microdomains.

The phenotypic expression of P2Y, receptor switches
during cerebellar development

We next investigated the expression of P2Y, receptor at
postnatal day 7 (P7), when the maturation of synapses is
just taking place between granule neuron dendrites and
fiber terminals [23], and the internal granular layer (igl)
rapidly expands beneath the monocellular sheet of pc.
With the only exception of calbindin-positive pc (Fig. 8A),
we find that P2Y, receptor localization is completely dif-
ferent from that observed at P21 (Fig. 8A, inset). At P7,
P2Y, receptor immunoreactivity is indeed absent from
noradrenergic fibers of white matter, but predominantly
shown: a) on fibers irradiating the thin ml (above the pl)
and the external granule (or germinal) layers (egl) (Fig.
8B); b) on cell bodies aligned at the interface between the
pc and ml (Fig. 8B, upper-left inset); c) on isolated cells
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Figure 3

Localization of P2Y | receptor on DBH neurons. Confocal images demonstrate that P2Y, receptor immunoreactivity (red
Cy3 immunofluorescence) colocalizes with DBH, specific marker of noradrenergic neurons (green Cy2 immunofluorescence).
In panel B, a higher magnification of sparse and unbundled noradrenergic fibers of different thickness (arrows) and beaded
nature (arrow head and inset) is shown. Panel C represents a triple immunofluorescence performed with anti-P2Y, receptor
(red Cy3 immunofluorescence), anti-DBH (green Cy2 immunofluorescence), and anti-Calbindin-D-28K (blue immunofluores-
cence) antibodies. Scale bars are: 20 um in A and B, and 5 um in C and in the inset in B.
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Figure 4

Beaded appearance of P2Y, receptor immunostaining. Sagital sections of P21 rat cerebellar cortex were processed for
triple immunofluorescence analysis and visualized by confocal microscopy. Rabbit anti-P2Y (red Cy3 immunofluorescence) was
used in combination with mouse anti-synaptophysin, a marker for synaptic structures (green Cy2 immunofluorescence), and
mouse anti-flotillin, a lipid rafts-associated integral membrane protein (blue immunofluorescence). In gl, the overlapping immu-
noreactive signals of P2Y,, synaptophysin and flotillin (arrows) can be distinguished by white immunofluorescence (arrows).
Scale bars: 10 um and 20 um in the insets.

located in the igl (Fig. 8B). P2Y, receptor immunostaining  span into the gl at this age of development. By means of
is thus totally absent from NFL-positive (Fig. 8C) and TH-  distinctive morphology of cerebellar astrocytes and posi-
or DBH-positive fibers (data not shown), which already  tive colocalization between P2Y, receptor and GFAP (Fig.
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Figure 5

Electron microscopy analysis of P2Y | receptor on both axon terminals and dendrites. In A, P2Y, receptor immu-
nolabelling is shown on varicosities of fibers (white circle) and dendrites of granule cells (white asterisks). In B, P2Y receptor
immunolabelled varicosities (black arrows) are shown apposed to neuronal elements such as dendrites and cell bodies. In C,
P2Y, receptor immunolabelled varicosity (black arrow) contains mitochondria and pleomorphic vesicles, whereas the intervar-
icose segment (white arrow) is deprived of vesicles. In D, the varicosity is shown to be filled with pleomorphic vesicles, without
forming a clear synaptic contact. Scale bars =2 pum in A; 2,5 pm in B; | pm in C and D.

8B), at P7 we do identify P2Y, receptor on both Bergmann  (data not shown), but is the opposite of what was shown
cell bodies/fibers and astroglial cells scattered among  at P21, when P2Y, receptor is totally absent from GFAP-
granule neurons. This is confirmed for postnatal day one  positive structures (Fig. 8B, lower-right inset) and present
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Figure 6

Electron microscopy analysis of P2Y | receptor on synaptic terminals forming varicosities. In A, labelled varicosi-
ties are apposed to neuronal elements of cerebellar cortical layers, mostly dendrites in granule cell layer. In a few cases, the
immunoreactivity is so strong to cover the vesicles of the terminal. In B, the features of the varicosities are unchanged also in
Purkinje cell layer. In C, the absence of synaptic junctions is clearly visible (see arrow). In D, the granule cell shows specific
labelling in the cytoplasm (n = nucleus of granule cell). In E, a few granule cells (GC) are labeled, being on the contrary apposed

to immunolabeled terminals. In F, also Purkinje neurons are immunolabeled, especially proximal dendrites (D). Scale bar in A-C
=1 um;inD =12 um;in Eand F=0,8 um.
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Figure 7

P2Y, receptor localizes in lipid rafts. Cerebella were removed from P21 rats and cell protein extracted in lysis buffer for
30 min on ice. Supernatants obtained after a centrifugation for 10 min at 15000 X g were loaded on SDS-PAGE (100 pg/lane),
transferred to nitrocellulose and probed with anti-P2Y receptor antiserum, in the absence (-) or presence (+) of the immuno-
genic peptide (A). Lipid rafts-enriched fractions were then prepared from total cerebellar tissue (B) or from purified cerebellar
synaptosomes (C), both obtained from P21 rats. P2Y| receptor is recovered in rafts fractions 3 (B), in the absence of the
immunogenic peptide, or 4-7 (C), together with the selective lipid rafts markers flotillin-2 (B, C) or GMI (C), but not the
transferrin receptor (C), a protein known to be excluded from lipid microdomains.
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only on neuronal fibers (Figs. 2, 3, 4). Conversely, the
enrichment of P2Y, receptor in lipid rafts, but not synap-
tosomal fractions, is confirmed also at P7 (data not
shown), therefore appearing as a conserved feature of this
receptor.

It's well known that, during development, Bergmann fib-
ers are associated with migrating granule cells, from which
is derived the concept of glia-guided neuronal migration
[24], and that DCX is a distinctive marker of granule cells
only during the period of radial descent into the deep cer-
ebellar layers, when it directs neuronal movement
through the organization and stability of microtubules
[25]. Therefore, we used DCX immunoreactivity to
observe the potential relationship between Bergmann glia
(P2Y,-positive only at neonatal ages P1-P7) and granule
neurons. We find that at P7, the DCX-positive signal
appears as a diffuse labeling on both the entire igl and the
thin ml enriched in radially migrating granule cells, but is
excluded by the pre-migratory P2Y;-expressing egl (Fig.
9A). Given the high density, amoeboid shape and lack of
defined neuronal contour of migrating granule cells at this
neonatal age, the DCX-positive staining appears contigu-
ous to P2Y,-GFAP fibers (Fig. 9A inset), providing an
almost overlapping signal when observed at low magnifi-
cation (Fig. 9A, yellow fluorescence). Nevertheless, at
higher resolution it is possible to distinguish that DCX-
positive granule cells are wrapped up and stretched along
P2Y,-GFAP-positive Bergmann fibers (Fig. 9A inset). On
the opposite, when at P21 the egl almost disappears after
complete proliferation and migration of granule neurons
[23], the DCX immunostaining is confined to a very nar-
row zone below the pc (Figs. 9B, inset) and P2Y, receptor
is no longer detected on Bergmann glia (Fig. 8B lower-
right inset and Fig. 9B).

Discussion

The main goal of our study was to characterize the cellular
and subcellular distribution and features of the purinergic
metabotropic P2Y, receptor in the cerebellum, and to gain
insights on its potential function during development of
the cerebellar circuitry. To this purpose, we analyzed P2Y,
receptor expression at P21, when the major structural
changes already took place in the developing cerebellum,
and compared it with expression at P7, when migration of
granule neurons from the molecular to the granular layer
is still occurring [23,26,27], and when the neuronal bod-
ies in the locus coeruleus of origin for the dorsal bundle
of noradrenergic neurons innervating the cerebellum are
spreading out their projections to the granular, Purkinje
and molecular layers [28]. In juvenile rat cerebellum we
find that, in addition to Purkinje cell bodies and ramifica-
tions [12], P2Y, receptor is abundant on neuronal special-
izations identified as noradrenergic by anatomical (the
fibers travel in linear, sparse and different thickness pro-
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files through the gl, and branch into radially and longitu-
dinally oriented chains), ultrastructural (abundance of
synaptic varicosities and winding, beaded appearance)
and biochemical features (immunoreactivity with
noradrenergic-specific DBH absent from Purkinje neurons
in rat) [29]. Moreover, we observe that P2Y, receptor is
preferentially localized on synaptic varicosities of the
noradrenergic fibers and synaptic glomeruli, which can be
recognized by the presence of synaptophysin. The
ultrastructural analysis confirms the localization of P2Y,
receptor on varicosities of axon terminals, moreover
showing features indicative of a particular modality of
transmitter release. As generally reported for noradrener-
gic fibers [30], the absence of conventional synaptic junc-
tions led us to suppose that in the cerebellum also
extracellular nucleotides might exert their modulatory
action through paracrine release or simple diffusion in the
extracellular space. This modality has the advantage to
extend the potential effects of extracellular nucleotides,
and neurotransmitters in general, to structures equipped
with adequate receptors (extra-synaptic receptors) [31],
but distant from the source of release (volume transmis-
sion) [32]. The enrichment in these P2Y;-positive varicos-
ities of both synaptophysin and the lipid rafts marker
flotillin-2 (together with the biochemical observation that
P2Y, receptor is indeed a lipid rafts-resident protein in
total cerebellar tissue and cerebellar synaptosomes) fur-
thermore suggests that the role of P2Y, receptor is likely
mediated by lipid microdomains. In this regard, it is
already well-known that lipid rafts display a key part in
the targeting and functional organization of proteins at
both synapses and spines [33].

Since a further specification of the central noradrenergic
system consists in the frequency of co-transmission phe-
nomena, the presence in the cerebellum of P2Y, receptor
on noradrenergic neurons in addition to Purkinje cells
might signify that extracellular nucleotides such as the
natural agonists ATP and ADP could contribute in this
brain region to the physiological role of noradrenaline
[34]. In this regard, ATP is already well known to be co-
released with noradrenaline in various PNS and CNS neu-
rons [35,36]. Thus, if co-release and synergism occur at
cerebellar synapses as well, nucleotide-dependent
increase of cerebellar noradrenergic signaling could be
achieved. Homologous recombination techniques have
shown that complete removal of either the enzymes
responsible for noradrenaline metabolism or the vesicular
monoamine transporter has deleterious consequences for
foetal survival [37]. Moreover, blockade of postsynaptic
noradrenergic receptors decreases the rate of learning in
several cerebellar-dependent motor tasks [38]. The possi-
bility of integrating and complementing noradrenergic
with purinergic mechanisms to increase the strength of
synaptic connections through activation of both
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P2Y,
Calbindin

Figure 8

Map of P2Y, receptor protein in neonatal versus juvenile rat cerebellar cortex. Double immunofluorescence visual-
ized by confocal analysis was performed in neonatal rat (P7) cerebellar cortex and compared to that at P21 (inset in panel A).
At P7, P2Y, receptor immunoreactivity (red Cy3 immunofluorescence) is present on calbindin-positive pc (green Cy2 immun-
ofluorescence), on fibers irradiating from the thin ml toward the egl (A, B), on cell bodies at the interface between the pl and
ml (black arrow in the left inset of panel B), and on isolated cells situated in the igl (white arrows in panel B). Double immun-
ofluorescence (yellow) shows complete colocalization between P2Y, (red Cy3 immunofluorescence) and GFAP (green Cy2
immunofluorescence) signals (white arrows in B; black and white arrows in the upper-left inset of panel B), differently from
what observed at P21 (lower-right inset of panel B). In C, P2Y (red Cy3 immunofluorescence) and NFL (green Cy2 immun-
ofluorescence) immunostaining are shown. Abbreviations: egl, external granule layer; gl, granule layer; igl, internal granule layer;
ml, molecular layer; pc, Purkinje cells. Scale bar = 20 um in A, B and C; 50 um in the inset in A; 10 um in the upper-left inset in
B; 40 um in the lower-right inset in B.
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Figure 9

P2Y, receptor and migrating granule neurons. Confocal images of DCX (green Cy2 immunofluorescence) and P2Y (red
Cy3 immunofluorescence, white arrows in the inset of panel A) are shown from cerebellar cortex of neonatal rat at P7 (A) and
P21 (B). Abbreviations: egl, external granule layer; gl, granule layer; igl, internal granule layer; ml, molecular layer; pc, Purkinje
cells. Scale bar = 50 um in A and B; 10 um, in the inset in A and B.
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noradrenergic and P2Y, receptors might therefore consti-
tute also a novel powerful approach against neuronal
degeneration and/or malfunctioning in the cerebellum.

The presence of P2Y, receptor in postnatal rat cerebellum
was then analyzed before the formation of noradrenergic
synaptic connections takes place. Surprisingly, we have
shown here that P2Y, undergoes a drastic switch during
development, with a phenotypic expression resembling
that of Bergmann glia at P7, rather then noradrenergic
neurons at P21. In this regard, it is well established that a
number of neuronal and glial receptor systems and/or dif-
fusible factors act to induce and maintain Bergmann glia
process extension at an early stage of postnatal develop-
ment [39-41], when Bergmann cells specialize in support-
ing the migration of granule neurons and migration of
granule cells seems to be largely dependent on their inter-
action with glial processes [42,43]. In particular, the
ErbB4 tyrosine kinase receptor present on Bergmann glia
appears to have a distinct role in this process [44], inter-
acting with neoregulin expressed on migrating granule
cells [45,46]. On the other hand, in vitro studies on the
migration of granule neurons demonstrated that the glyc-
oprotein astrotactin provides a neuronal receptor system
for migration along glial processes [47]. Thus, P2Y, recep-
tor expression only on Bergmann glia at an early stage of
development might sustain a role for purinergic receptors
in signaling events needed for interaction and migration
of neurons. This is strongly supported by the result that
ADP, preferential ligand for P2Y,receptor, induces Ca2+
mobilization in Bergman glia [48]. The factors produced
by granule neurons to induce the glial scaffold might thus
comprise the purinergic ligands ATP and ADP directly tar-
geting P2Y, receptors. To support this hypothesis, we have
both shown here that P2Y, receptor is localized at the
interface between Bergmann glia and DCX-positive
migrating granule cells, and previously demonstrated
that, at least in vitro, granule neurons can release ATP,
which is easily degraded to ADP in the extracellular envi-
ronment [49]. It is finally well known that, once migra-
tion across the glia scaffold is completed and cells change
their repertoire of adhesive molecules and switch into a
static asset: a) the Bergmann glia loses the apposition with
granule neurons; b) the granule cells are locked in posi-
tion by the formation of new specific axon-target interac-
tions [46]. In parallel, we have demonstrated here that in
juvenile rat cerebellum: a) the Bergmann glia lose P2Y;
receptors; b) P2Y,; receptors appear on Purkinje and
noradrenergic neurons forming new specific axon-target
interactions.

Conclusion

Since membrane components of the cell surface are
largely known to mediate the close apposition between
two cells during all phases of development, our results
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suggest a novel role for P2Y, receptor in the CNS, specifi-
cally in cell junction/communication. This already occurs
on platelets, where P2Y, receptor is well known to medi-
ate cell contact and aggregation [50-52]. Considering the
glia-neuron switch of P2Y, receptor a novel biological
mechanism of development, aim of further studies will be
to investigate the potential impact of this receptor on
Bergman glia-guided migration of granule neurons; on
alteration/reorganization of noradrenergic fibers in the
cerebellar cortex in response to the degeneration of their
major target, granule and Purkinje neurons; and finally to
investigate if the presence of purinergic ligands in the
environment surrounding noradrenergic fibers can influ-
ence their anatomical integrity and development.

Methods

Histological procedures

Wistar rats (Harlan, Udine, Italy) of different ages were
deeply anesthetized by i.p. injections of sodium pentobar-
bital (60 mg/kg), and transcardially perfused with saline
(0.9% NacCl) followed by 4% paraformaldehyde, in phos-
phate buffer (PB, 0.1 M pH 7.4). Each brain was immedi-
ately removed, post-fixed in the same fixative for 2 hs, and
then transferred to 30% sucrose in PB at 4 °C, until it sank.
The experimental protocol used in this study was
approved by the Italian Ministry of Health and was in
agreement with the guidelines of the European Commu-
nities Council Directive of November 24, 1986 (86/609/
EEC) for the care and use of laboratory animals. All efforts
were made to minimize the number of animals used and
their suffering.

Double immunofluorescence

Sagital sections (40 pum thick) were cut on a freezing
microtome and were processed for double immunofluo-
rescence studies. Non-specific binding sites were blocked
with 10% normal donkey serum in 0.3% Triton X-100, in
phosphate buffered saline (PBS) for 30 min at room tem-
perature. The sections were incubated in a mixture of pri-
mary antisera for 24 hs in 0.3% Triton X-100 in PBS.
Rabbit anti-P2Y, (1:500, Alomone, Jerusalem-Israel) was
used in combination with either mouse anti-Calbindin-
D-28K (1:200, Sigma, Mi-Italy), mouse anti-Tyrosine
Hydroxylase (TH, 1:500, Sigma), mouse anti-Dopamine
B-Hydroxylase (DBH, 1:500, Chemicon International,
Inc. Temecula, CA-USA), mouse anti-Glial Fibrillary
Acidic Protein (GFAP) (1:400, Sigma), mouse anti-Synap-
tophysin (1:100, Sigma), goat anti-Doublecortin (DCX,
1:200, Santa Cruz, Mi-Italy), or goat anti-NFL (Neurofila-
ment-L protein, 1:100, Santa Cruz). The secondary anti-
bodies used for double labeling were Cy3-conjugated
donkey anti-rabbit IgG (1:100, Jackson Immunoresearch,
West Baltimore Pike, PA, USA, red immunofluorescence),
Cy2-conjugated donkey anti-mouse IgG (1:100, Jackson
Immunoresearch, green immunofluorescence) or Cy2-
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conjugated donkey anti-goat IgG (1:100, Jackson Immu-
noresearch, green immunofluorescence). The sections
were washed in PBS three times for five min each, and
then incubated for 3 hs in a solution containing a mixture
of the secondary antibodies in 1% normal donkey serum
in PBS. After rinsing, the sections were mounted on slide
glasses, allowed to air dry and coverslipped with gel/
mount™ anti-fading medium (Biomeda, Foster City, CA-
USA).

Triple immunofluorescence

After double immunofluorescence, the sections were
mounted on slide glasses, and allowed to air dry. A rectan-
gle was then drawn around the sections with a PAP pen.
To allow the use of a second mouse antibody in the same
immunolabeling protocol, the unlabeled monoclonal
anti-NeuN (Neuronal Nuclei, mouse IgG, isotype or anti-
Calbindin-D-28K (mouse IgG, isotype)) or Flotillin-2
(mouse IgG, isotype) were labeled with Zenon technol-
ogy (Molecular Probes, Oregon, USA). Briefly, mouse
anti-NeuN (1:100, Chemicon International), mouse anti-
Flotillin-2 (1:100, BD Biosciences, San José, CA) and
mouse anti-Calbindin-D-28K (1:200, Sigma) were sepa-
rately incubated with Zenon Alexa Fluor 647 mouse IgG,
labeling reagent (molar ratio 6:1), which contains a fluor-
ophore-labeled (Ex/Em 650/668) anti-mouse Fab frag-
ments. The labeled Fab fragments bind to the Fc portion
of the monoclonal antibodies and excess Fab fragments
are neutralized by the addition of a nonspecific 1gG
(Zenon blocking reagent-mouse IgG). The addition of
non-specific IgG prevents cross-labeling of the Fab frag-
ment, in experiments where multiple primary antibodies
of the same type are present. After rehydration in PBS, the
sections were incubated with the staining solution in PBS
containing 0.5% Triton X-100 (PBT) in a humidified
chamber for 2 hs at room temperature. The sections were
washed twice in PBT and for 5 min in PBS at room tem-
perature. Sections were then fixed in 4% paraformalde-
hyde in PB for 15 min at room temperature, to avoid the
dissociation of the Zenon Fab fragment from the primary
antibody, washed three times with PBS, allowed to air dry
and coverslipped with gel/mount anti-fading medium.

Confocal microscopy

Double or triple label immunofluorescence was analyzed
by means of a confocal laser scanning microscope (CLSM)
(LSM 510, Zeiss, Arese Mi-Italy) equipped with argon
laser emitting at 488 nm, helium/neon laser emitting at
543 nm, and helium/neon laser emitting at 633 nm. Spe-
cificity of the antibodies was positively proved by per-
forming confocal analysis in the absence of the primary
antibodies, but in the presence of either anti-rabbit or
anti-mouse secondary antibodies. Specificity was further
confirmed for the P2Y, antiserum by performing immu-
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noreactions in the simultaneus presence of the P2Y, neu-
tralizing immunogenic peptide.

Electron microscopy sample preparation

Rats (n = 4) were anaesthetised with chloral hydrate (400
mg/kg i.p.), perfused through the ascending aorta with a
solution of NaCl 0.9% for 5 min, then followed by 3%
paraformaldehyde with 0.4% glutaraldehyde in PB for 30
min. Cerebella were dissected and sagittal sections were
cut at 40 um, and washed several times in PBS. Sections
were treated with sodium borohydrate (Sigma) 0.1% in
PBS. Immunoreactivity for P2Y, receptor was detected by
means of the avidin-biotin peroxidase method. Briefly,
sections from the cerebellum were pre-blocked in a solu-
tion containing 10% goat serum in PB for 30 min at room
temperature. Then, sections were incubated in a solution
containing primary antibody against P2Y, receptor (rabbit
anti-P2Y,diluted 1:200) in PB for 24 hs at 4°C. After sev-
eral washes in PBS, sections were incubated with bioti-
nylated secondary antibody (goat anti-rabbit diluted
1:100 Vectastain Elite, Vector Laboratories, Peterborough,
UK) in PB for 3 hs at room temperature. They were then
incubated in avidin-biotin peroxidase complex (diluted
1:100 in PB; Vectastain Elite, Vector Labs.) for 1 h. After
washing, immunolabeling was revealed by incubation of
the sections in 0.05% 3,3'-diaminobenzidine solution
(DAB-Sigma) diluted in Tris-HCI buffer, in the presence of
0.01% H,0,. The reaction was stopped by several washes
in Tris-HCI buffer followed by PBS. Sections were post-
fixed in osmium tetroxide (1% in PB) for 10 min, dehy-
drated in ascending series of dilution of ethanol (with the
presence of 1% uranyl acetate in 70% ethanol) followed
by propylene oxide (Aldrich, M], Italy) and then embed-
ded overnight in resin (Durcupan ACM-Fluka, Gilling-
ham, Dorset, UK), mounted on glass slides and then cured
at 60°C for 48 hs. The areas of interest were examined in
the light microscope, cut from the sections and 60 nm
ultra-thin sections were obtained with an ultramicrotome
(Reichert-Jung Ultracut E, Leica, Nussloch, Germany), and
collected on 400-mesh copper grids, counterstained with
lead citrate and examined using a Zeiss EM900 electron
microscope. Controls were performed omitting the pri-
mary antibody from the procedure.

Electron microscopy data analysis

The ultrastructural analysis was performed exclusively on
the most superficial portions of the tissue in contact with
the embedding plastic, in order to minimize artificial dif-
ferences in labeling attributed to potential differences in
the penetration reagents. Regions used for this analysis
were chosen on the basis of P2Y, receptor immunoreactiv-
ity and the morphological integrity of the tissue. The
labelled profiles were examined in thirty-two ultra-thin
sections from three separate rats, in four sections each
taken from the vermis, the cerebellar hemispheres and the
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cerebellar nuclei. Electron micrographs of immunoreac-
tive structures were taken at magnifications of 7000-
30000 X, then printed and used as the sampling region of
each block. The classification of neuronal elements was
made according to the description of Peters et al., [53].
Neuronal somata were identified by the nucleus, Golgi
apparatus, and rough endoplasmic reticulum; un-myeli-
nated axons were distinguished from dendrites by their
larger diameter and/or the abundance of uniformly dis-
tributed microtubules and synaptic inputs from axon ter-
minals. Neuronal profiles were classified as un-
myelinated axons if they were 0.1-0.25 pm in cross sec-
tional diameter and contained microtubules and/or small
vescicles. Axon terminals were defined as elements 0.25
pm or larger in diameter containing numerous small syn-
aptic vescicles. Synapses formed by axon terminals were
defined as asymmetric, when their post-synaptic density
was thicker that the pre-synaptic one, and as symmetric,
when both membranes showed equal electron density.
Two structures were considered adjacent, when the two
plasma membranes were parallel and not separated by
glial processes, but no membrane specialization was visi-
ble.

Preparation of low density membrane fractions
Detergent-insoluble glycolipid fractions were prepared
following an established method [54], with minor modi-
fications [55]. Briefly, cerebella were removed from 21
days old Wistar rats, cut with a M Ilwain tissue chopper
(400 pum) in two orthogonal directions and resuspended
in 10 volumes (w/v) of ice-cold lysis buffer (10 mM Tris-
HCI pH 7.5, 150 mM NaCl, 1% Triton X-100, 2 mM
EDTA, 1 mM PMSF, 20 uM Leupeptin) by vortexing. After
30 min, the lysate was centrifuged at 2000 x g for 10 min,
to remove nuclei and large debris. The resulting superna-
tant (500 pl, 2-2.5 mg) was mixed with an equal volume
of 85% sucrose in TBS (10 mM Tris-HCI pH 7.5, 150 mM
NaCl), and placed at the bottom of the centrifuge tube. A
volume of 700 pl of 35% sucrose in TBS and 400 pl of 5%
sucrose were layered on the top of the lysate. The gradient
was centrifuged for 14 hs at 200.000 x g in a TLS 55 rotor
(Beckman Instruments, Porterville, CA). Four fractions of
150 pl and five fractions of 300 pl were collected from the
top of the tube. The entire procedure was performed at
4°C. Equal volumes, containing a range of approximately
0.5-100 pg of total protein depending on the fraction,
were loaded on SDS-PAGE electrophoresis.

Synaptosome Triton X-100 solubilization and sucrose
floatation gradients

Synaptosomes were obtained from rat cerebella by means
of differential centrifugation, as previously described [56].
Briefly, post-nuclear supernatants were centrifuged at
9200 x g for 15 min to yield a pellet corresponding to par-
tially purified synaptosomes. These pellets (6 mg of pro-
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teins) were resuspended in 0.75 ml of buffer A (150 mM
NaCl, 2 mM EGTA, 50 mM Tris-HCI, pH 7.5, protease
inhibitors) containing 1% (w/v) Triton X-100. After 30
min on ice, each sample was adjusted to 1.2 M sucrose,
placed in a centrifuge tube and overlaid with a linear gra-
dient ranging from 30 to 5% sucrose (all prepared in
buffer A). The gradients were centrifuged at 190000 x g for
19 hs using a rotor SW 41 Ti (Beckman Instruments). Fif-
teen fractions (0.8 ml each), and the pellets resuspended
in 0.8 ml of buffer A were collected and analysed by
means of SDS-PAGE and western blotting. The sucrose
concentration in each fraction was determined by refrac-
tometry.

Western blot analysis

Equal amount of sucrose gradient samples was separated
by electrophoresis on 10%-12% SDS-PAGE and trans-
ferred to nitrocellulose membranes Hybond-C extra
(Amersham Biosciences, Cologno Monzese, Italy). The fil-
ters were pre-wetted in 5% non-fat milk in TBS-T (10 mM
Tris pH 8, 150 mM NaCl, 0.1%Tween 20), hybridized
overnight with rabbit anti-P2Y, (1:400) and with mouse
anti-Flotillin-2 (1:1000), followed by horseradish peroxi-
dase-coupled secondary antibody, and analysed by ECL
chemiluminescence (Amersham Biosciences), using
Kodak Image Station (KDS IS440CF).

Anti-P2Y, specificity

The polyclonal P2Y, antiserum used in this study was
raised against a P2Y, receptor highly purified peptide
(identity confirmed by mass spectroghraphy and ami-
noacid analysis), corresponding to a specific epitope not
present in any other known protein: residues 242-258 of
rat and human P2Y, (31 intracellular loop). The specifi-
city of the P2Y, receptor signal was assessed by incubating
western blots either in the absence of the primary antise-
rum, or in the presence of the primary antiserum together
with the neutralizing P2Y, immunogenic peptide (ug pro-
tein ratio 1:1 between peptide and antiserum). Further-
more, the P2Y, receptor polyclonal antiserum was proved
to efficiently immunoprecipitate the recombinant Myc-
P2Y, human receptor transiently transfected in SH-SY5Y
cells.
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