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Abstract

Background: Formation of branching tubes is a fundamental step in the development of glandular
organs. To identify extracellular cues that orchestrate epithelial tubulogenesis, we employed an in
vitro assay in which EpH4-J3BIA mammary epithelial cells form spheroidal cysts when grown in
collagen gels under serum-free conditions, but form branching tubules in the presence of fetal calf
serum (FCS).

Results: Initial experiments showed that the tubulogenesis-inducing activity of FCS was markedly
increased by heating (70°C) or transient acidification to pH3. We therefore hypothesized that the
tubulogenic agent was transforming growth factor-beta (TGF-beta), a cytokine that is present in
serum in latent form and can be activated by heat or acid treatment. We found indeed that the
tubulogenic activity of acidified FCS is abrogated by addition of either SB-431542, a selective
inhibitor of the TGF-beta type | receptor, or a neutralizing antibody to TGF-beta-|. On the other
hand, addition of low concentrations (20—100 pg/ml) of exogenous TGF-beta-| recapitulated the
effect of acidified FCS in inducing morphogenesis of hollow tubes. In contrast, higher
concentrations of TGF-beta-1 induced the formation of thin cellular cords devoid of a detectable
lumen. To gain insight into the mechanisms underlying TGF-beta-|-induced tube formation, we
assessed the potential role of matrix metalloproteinases (MMPs). By western blot and gelatin
zymography, we observed a dose-dependent increase in MMP-9 upon TGF-beta-| treatment. Tube
formation was suppressed by a synthetic broad-spectrum metalloproteinase inhibitor, by
recombinant tissue inhibitor of metalloproteinases-2 (TIMP-2) and by a selective inhibitor of MMP-
9, indicating that this morphogenetic process requires the activity of MMP-9.

Conclusion: Altogether, our results provide evidence that, at low concentrations, TGF-beta-|
promotes MMP-dependent branching tubulogenesis by mammary epithelial cells in vitro, and
suggest that it plays a similar role during mammary gland development in vivo.

Background ing pancreas, mammary gland, lung, and kidney [1,2].
Formation of branched tubes from an initially  Although the cellular and molecular mechanisms of tub-
unbranched epithelial bud is a fundamental morphoge-  ulogenesis are still incompletely understood, a number of
netic process in the development of many organs, includ-  polypeptide growth factors have been shown to stimulate
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the formation and branching of epithelial tubes [3]. The
most thoroughly characterized of these tubulogenic
cytokines are hepatocyte growth factor/scatter factor
(HGF/SF) [4-6], glial cell-derived neurotropic factor [7,8],
and several members of the fibroblast growth factor fam-
ily [9,10].

Elucidation of the mechanisms responsible for epithelial
tubulogenesis is made difficult by the multiplicity and
complexity of cell interactions occurring in vivo. To over-
come this drawback, several groups including our own
have designed three-dimensional cell culture systems that
accurately recapitulate key events of tubulogenesis,
thereby facilitating its molecular analysis [11]. The recent
development of an experimental model in which EpH4-
J3B1A mammary epithelial cells form spheroidal cysts
when grown in collagen gels in chemically defined
medium [12] has provided an additional tractable assay
for deciphering the constellation of signals that govern
branching tubulogenesis.

Transforming growth factor-f (TGF-f) is the prototypic
member of a superfamily of structurally related cytokines
involved in the regulation of a broad spectrum of biolog-
ical processes, including cell proliferation, differentiation,
apoptosis, production of extracellular matrix, and tissue
repair. Three TGF-f isoforms (referred to as TGF-1, TGF-
B2 and TGF-B3) have been described in mammals. TGF-3s
are secreted as inactive complexes, in which the C-termi-
nal mature homodimer is non-covalently bound to a
dimer of its N-terminal precursor polypeptide, also
known as latency associated peptide (LAP). The LAP, in
turn, is disulfide-bonded to an unrelated protein, which is
referred to as latent TGF-B binding protein (LTBP). TGF-
activation, i.e. the release of TGF-B from LAP, may be
mediated by different mechanisms and represents a criti-
cal step in the regulation of TGF-f bioactivity [13]. TGF-Bs
achieve their pleiotropic activities through the activation
of heteromeric complexes of transmembrane serine/thre-
onine kinase receptors designated as TGF-f3 type I (TBRI)
and type II (TBRII) receptors. Ligand binding to TPRII
induces the recruitment and transphosphorylation of
TBRI. Activated TBRI phosphorylates receptor-associated
Smads (Smad2 and Smad3), which then bind Smad4 and
translocate to the nucleus, where they regulate transcrip-
tion of target genes. In addition to Smads, other signaling
pathways, including mitogen-activated protein kinases
(MAPK), can also be activated by TGF-fs [14-18].

Herein, we report that low concentrations (20-100 pg/
ml) of TGF-B1 rapidly induce tube formation in cultured
mammary epithelial cells, and that this biological
response requires MMP activity.

http://www.biomedcentral.com/1471-213X/7/7

Results

A heat- and acid-resistant factor in bovine serum
stimulates branching tubulogenesis of EpH4-|3B1A
mammary epithelial cells

This study was prompted by the finding that addition of
FCS to serum-free collagen gel cultures of J3B1A cells [12],
a clonal derivative of the murine EpH4 mammary epithe-
lial cell line [19-21], stimulates the formation of branch-
ing tubes. When grown in collagen gels in chemically-
defined medium supplemented with all-trans-retinoic
acid, J3B1A cells formed spheroidal cysts enclosing a pat-
ent lumen [12]. Addition of 10% FCS to preformed cysts
induced the radial outgrowth of tube-like structures from
the cyst wall. FCS-induced tube formation was more pro-
nounced in gels that had been released and allowed to
float in the medium (R. Montesano, unpublished data),
possibly owing to the greater compliance of unrestrained
collagen matrices [22,23]. Floating gels were therefore
used for the remainder of this study.

The ability of FCS to stimulate formation of branching
tubes in collagen gel cultures of J3B1A cells suggested the
existence of a putative tubulogenic factor (or factors) in
serum. Preliminary experiments aimed at characterizing
the physico-chemical properties of the serum factor(s)
showed that the tubulogenesis-inducing activity of FCS
was not only resistant to heat, but was in fact enhanced by
heating (70°C, 10 min; data not shown). The tubulogenic
activity was also markedly increased by transient acidifica-
tion of FCS to pH 3. Thus, addition of as little as 1% acid-
ified FCS to J3B1A cells grown in collagen gels in defined
medium elicited a vigorous tubulogenic response within
only 24-48 hours (Fig. 1A,B).

The tubulogenic component in FCS is TGF-4I

Based on the foregoing findings, we considered the possi-
bility that the tubulogenic factor was TGF-f, a cytokine
that is present in serum in latent form and can be activated
by heat or acid treatment [24-26]. To test this hypothesis,
we first assessed whether pre-treatment with SB-431542, a
selective inhibitor of the TGF-B type I receptor [27,28],
would prevent the tubulogenic effect of acidified FCS. We
found that branching tubulogenesis was suppressed by
SB-431542 in a dose-dependent manner (Fig. 1C,G). To
further validate the hypothesis that the tubulogenic agent
in FCS is TGF-, and to determine the potential TGF-f iso-
form responsible for induction of branching tubulogene-
sis, acid-treated FCS was pre-incubated with isoform-
specific neutralizing antibody to either TGF-$1 or TGF-2
before being added to J3B1A cells in collagen gels. Anti-
TGF-B1 antibodies abrogated the tubulogenic effect of
acidified FCS in a dose-dependent manner, a significant
inhibition (p < 0.025) being observed with concentra-
tions of antibody as low as 50 ng/ml (Fig. 1D,H). In con-
trast, neither a function-blocking anti-TGF-2 antibody
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Figure |

TGF-B is the acid-activated serum factor that induces branching tubulogenesis. J3BI A cells were grown in collagen gels in
defined medium for 6 days to allow the formation of cystic structures. The cultures were then left untreated or were incu-
bated with 1% acidified FCS (pH 3) for an additional 48 hours. (A) Under control conditions, |]3BI A cells form spheroidal cysts
enclosing a wide lumen. (B) Addition of acidified FCS induces the radial outgrowth of tube-like structures from the cyst wall.
(C) Co-addition of 5 uM SB-43 1542, a selective inhibitor of the TGF-f3 type | receptor, abolishes the tubule-inducing activity of
acidified FCS. (D) Pre-incubation of acid-treated FCS with a neutralizing antibody specific for TGF-f | abrogates the tubulo-
genic effect of acidified FCS, whereas pre-incubation with a neutralizing antibody to TGF-2 (E) or with a control antibody that
does not react with TGF-3s (F) have no inhibitory effect. Antibodies in D-F were added at a final concentration of 5 pg/ml.
Bars, 200 um. (G) Branching tubulogenesis is suppressed by SB-431542 in a dose-dependent manner. The cultures were
treated with the inhibitor two hours before addition of 1% acidified FCS. Data were expressed as mean number of outgrowths
per colony * s.e.m. from three separate experiments and statistical significance was determined using the Student's unpaired t-
test. ¥ p < 0.0025 versus values of acidified FCS alone. (H) Dose-response analysis of the effect of increasing concentrations of
anti-TGF-B 1 antibody. Acidified FCS (1%) was pre-incubated for 60 minutes with the indicated concentrations of the antibody
before being added to the cultures. * p < 0.025 versus values of acidified FCS alone. ** p < 0.0005 versus values of acidified FCS
alone.
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(Fig. 1E), nor a control antibody that does not react with
TGEF-Bs (Fig. 1F) inhibited the tubulogenic activity of acid-
ified FCS. These results clearly identified TGF-f1 as the
tubulogenic agent present in FCS.

Low concentrations of exogenous TGF-{I recapitulate the
tubulogenic effect of acidified FCS

We next asked whether exogenous TGF-B1 could be able
to recapitulate the tubulogenic activity of acid-treated
FCS. As TGF-B1 is known to elicit different cellular
responses in the same cell type depending on its concen-
tration, we examined the effects of a wide range of concen-
trations of TGF-B1. Addition of low concentration (20 to
100 pg/ml) of recombinant TGF-B1 stimulated the rapid
formation of branching tubular outgrowths from the wall
of the original cysts (Fig. 2B). At higher magnification, the
outgrowths were seen to enclose a patent lumen, which
was often continuous with the cyst cavity (Fig. 2D). Exam-
ination of semi-thin sections confirmed the tubular
nature of TGF-B1l-induced centrifugal outgrowths (Fig.
2E). The tubulogenic effect of TGF-B1 was already evident
after 24 hours and increased progressively during the next
2-3 days of treatment. At slightly higher concentrations
(200-500 pg/ml), TGF-f1 induced the extension of
pointed outgrowths devoid of a visible lumen (not
shown). Finally, incubation with TGF-f1 at concentra-
tions greater than 500 pg/ml resulted in the conversion of
existing cysts into disorganized, lumen-less cellular aggre-
gates, from which numerous thin cellular cords extended
radially into the surrounding matrix (Fig. 2C). Similar
effects were observed following addition of recombinant
TGF-B2 or TGF-B3 (data not shown). These results indi-
cated that when added to collagen gel cultures of J3B1A
cells in the concentration range of 20-100 pg/ml, exoge-
nous TGF-Bs induce the morphogenesis of hollow tubular
structures that are reminiscent of mammary gland ducts.
Based on the foregoing findings, subsequent experiments
were designed to characterize in more detail the tubulo-
genic activity of low concentrations of TGF-B1. A quanti-
tative analysis demonstrated that TGF-B1 elicits the
formation of tubular outgrowths in a dose- and time-
dependent manner, a significant (p < 0.0005) effect being
observed after 48 hours of treatment with TGF-1 concen-
trations as low as 20 pg/ml (Fig. 2F).

To determine whether TGF-f1-induced tubulogenesis was
dependent on cell interaction with collagen fibrils or
could also occur in other types of three-dimensional
matrices, we next examined the TGF-B1 response of J3B1A
cells suspended in fibrin gels. When grown in fibrin gels
in defined medium, J3B1A cells formed spherical cysts
(Fig. 3A). In striking contrast, in the presence of 20-100
pg/ml TGF-B1, the cells formed branched tubules (Fig.
3B,C). Addition of TGF-B1 at concentrations greater than
200 pg/ml induced the development of complex, highly

http://www.biomedcentral.com/1471-213X/7/7

arborized networks of branching and anastomosing cell
cords (Fig. 3D), which were however devoid of a visible
lumen, similarly to what we had observed in collagen gels
(see above).

A quantitative analysis demonstrated that TGF-B1 elicits
tube formation in fibrin gels in a dose- and time-depend-
ent manner, a highly significant (p < 0.0005) effect being
observed after 48 hours of treatment with TGF-B1 concen-
trations as low as 20 pg/ml (Fig. 3E). Finally, we assessed
the effect of TGF-B1 on J3B1A cells grown in Matrigel, a
laminin-rich extracellular matrix [29]. Contrary to what
we observed in collagen or fibrin gels, both control and
TGF-B1-treated cells formed spheroidal colonies in
Matrigel. The lack of tube formation in this experimental
setting is unlikely due to an inhibitory effect of a Matrigel
component, because J3B1A cells exhibited a robust tubu-
logenic response to TGF-B1 (50 pg/ml) when grown in a
1:1 mixture of Matrigel and type I collagen (data not
shown). We speculate that cells suspended in pure
Matrigel, which is a highly compliant non-fibrillar sub-
stratum [30], are unable to generate the traction forces
required for centrifugal outgrowth into the surrounding
matrix.

Inhibitors of p38 MAPKs abrogate TGF-fI-induced
tubulogenesis

In addition to the Smad-mediated signaling pathway,
mounting evidence indicates that TGF-f also activates sev-
eral mitogen-activated protein kinases (MAPKs), includ-
ing extracellular signal-regulated kinases (ERKs), c-Jun N-
terminal kinases (JNKs) and p38 kinases [31-34]. To
begin assessing the contribution of MAPKs to TGF-B-
induced branching tubulogenesis, we used several small-
molecule inhibitors that selectively block the ERK, JNK, or
p38 pathways. Pretreatment of collagen gel cultures with
U0126, a selective inhibitor of the ERK activators MEK1
and MEK2 [35], attenuated TGF-B1-induced branching
tubulogenesis in a dose-dependent manner, a 63% inhibi-
tion being observed at 20 uM (Fig. 4B,D). Likewise, addi-
tion of SP600125, a JNK inhibitor [36], resulted in 65%
inhibition of tubulogenesis at 20 uM (Fig. 4D). Remarka-
bly, the p38 inhibitor PD169316 [37] was comparatively
much more effective in suppressing TGF-B1-induced
tubule formation, with an 88% inhibition being observed
with a concentration as low as 5 uM and a virtually total
inhibition at 20 uM (Fig. 4C,D). These findings suggest
that MAPK (and particularly p38) signaling is required for
TGF-B1-induced tubulogenesis. Validation of this hypoth-
esis will await additional studies involving knockdown of
MAPKs by siRNA technology.
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Figure 2

Low concentrations of exogenous TGF-B1 induce morphogenesis of branching tubules. (A) J3BIA cells grown in a collagen gel
in defined medium for a total of 10 days. (B) Parallel culture in which J3BIA cells were grown in a collagen gel for 6 days to
allow cyst formation and were subsequently treated with 50 pg/ml TGF-B 1 for an additional 4 days. TGF-B1 has induced the
outgrowth of tube-like structures from the wall of existing cysts. (C) Treatment with 2 ng/ml TGF-f1 has resulted in the for-
mation of numerous thin cell cords extending out into the surrounding collagen matrix. Notably, at this relatively high concen-
tration, TGF-B 1 also disrupts the organization of preformed cysts, resulting in lumen obliteration. (D) Higher magnification
view of a multicellular structure formed in a culture treated with 20 pg/ml TGF-1 for 4 days. The outgrowths enclose a patent
lumen, which at least in some tubes is continuous with the cavity of the cyst. (E) Semi-thin section of a collagen gel culture of
J3BIA cells treated with 50 pg/ml TGF-1 for 4 days. Bars (A-E), 200 um. (F) Quantitative analysis of TGF-§1-induced tubulo-
genesis. J3BI A cells were grown in a collagen gel for 6 days to allow cyst formation and were subsequently treated with differ-
ent concentrations of TGF-B 1. Tube formation was evaluated as described in Materials and Methods after 4 days of treatment.
Data were expressed as mean number of outgrowths per colony * s.e.m. from three separate experiments. p < 0.0005 for val-
ues of 20 pg/ml TGF-B1 at 2 days compared with control at 2 days, as well as for values of 100 pg/ml TGF-$1 at 2 days com-
pared with 50 pg/ml TGF-B1 at 2 days; p < 0.0025 for values of 50 pg/ml TGF-f1 at 4 days compared with 2 days; p < 0.01 for
values of 50 pg/ml TGF-B1 at 4 days compared with 20 pg/ml TGF-1 at 4 days; p < 0.025 for values of 50 pg/ml TGF-B1 at 2
days compared with 20 pg/ml TGF-B1 at 2 days, as well as for values of 20 pg/ml TGF-f1 at 4 days compared with 2 days.

TGF-pl-induced branching tubulogenesis requires MMP
activity

Formation of epithelial tubes in collagen gels has previ-
ously been shown to require the activity of matrix metal-
loproteinases (MMPs) [38-41]. To assess the potential role
of MMPs in TGF-B1-induced tubulogenesis, we examined
the effect of TGF-B1 on the production of MMPs impli-
cated in extracellular matrix (ECM) degradation, includ-
ing membrane-type-1-MMP (MT1-MMP or MMP-14), 72
kDa gelatinase (MMP-2), 92 kDa gelatinase (MMP-9),

and collagenase-3 (MMP-13) [42]. By Northern blot,
MT1-MMP (MMP-14) mRNA was constitutively expressed
by J3B1A cells but not ostensibly modulated by TGF-B1,
whereas MMP-2 mRNA was not detected. In contrast, the
levels of MMP-9 mRNA were increased by TGF-1 in a
dose-dependent manner (data not shown). Western blot
analysis confirmed both the lack of modulation of MT1-
MMP (MMP-14) and the dose-dependent induction of
MMP-9 (Fig. 5A). Western blots also showed that MMP-
13 is constitutively expressed by J3B1A cells, and that this
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Figure 3

TGF-B-induced tubulogenesis in fibrin gels. (A) ]3BIA cells grown in a fibrin gel in defined medium for || days have formed
spherical cysts. (B, C) J3BI A cells grown in a fibrin gel in defined medium for 4 days and subsequently treated with 20 pg/ml (B)
or 100 pg/ml (C) TGF-BI for an additional 7 days have formed branched tubules. (D) Cells grown as in (A-C) but incubated
with 500 pg/ml TGF-B1 have generated a complex network of solid anastomosing cords. Bar, 200 um. (E) Quantitative analysis
of TGF-B1-induced tubulogenesis in fibrin gels. J3BIA cells were grown in a fibrin gel for 6 days to allow cyst formation and
were subsequently treated with different concentrations of TGF-f1. Tube formation was evaluated as described in Materials
and Methods after 2, 4 and 7 days of treatment. Data were expressed as mean number of outgrowths per colony * s.e.m. from
three independent experiments. p < 0.0005 for values of 20 pg/ml TGF-B1 at 2 days compared with control at 2 days, as well
as for values of 50 pg/ml and 100 pg/ml TGF-f1 at 7 days compared with 2 days; p < 0.005 for values of 20 pg/ml TGF-B1 at 7
days compared with 2 days; p < 0.01 for values of 50 pg/ml TGF-B1 at 4 days compared with 2 days; p < 0.025 for values of 100
pg/ml TGF-BI at 4 days compared with 2 days; p < 0.05 for values of 20 pg/ml TGF-B1 at 4 days compared with 2 days, as well
as for values of 50 pg/ml TGF-f1 at 2 days compared with 20 pg/ml TGF-1 at 2 days.
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Figure 4

Suppression of TGF-f1-induced tubulogenesis by a p38 inhibitor. (A-C) J3BIA cells were grown in collagen gels for 6 days and
subsequently treated with 50 pg/ml TGF-f1 alone (A), co-treated with TGF-B1 and UQ126, an inhibitor of the ERK activators
MEK| and MEK2 (B), or co-treated with TGF-1 and PD 169316, a p38 inhibitor (C), for 4 days. The inhibitors were added two
hours before treatment with TGF-B1. Whereas relatively high concentrations (20 uM) of U0126 only attenuate TGF-1-
induced tubulogenesis, PD 169316 has a profound inhibitory effect at a concentration as low as 5 uM. Bars, 200 um. (D) Quan-
titative analysis of inhibition of tubulogenesis. Data were expressed as mean number of outgrowths per colony * s.e.m. from at
least three separate experiments, and statistical significance was determined using the Student's unpaired t-test. p < 0.0l and p
< 0.0005 for values of 5 uM and 10 uM UO126, respectively, compared with cultures incubated with TGF-f1 alone (Ctrl). p <
0.05 and p < 0.0005 for values of 5 UM and 10 uM SP 600125, respectively, compared with cultures incubated with TGF-$ 1
alone (Ctrl). p < 0.0005 for values of 2 uM PD 169316 compared with cultures incubated with TGF-B1 alone (Ctrl).

expression is not ostensibly modulated by TGF-B1 (Fig.
5A). By zymographic analysis [43], conditioned media
from untreated J3B1A cells produced a band of gelatin
lysis corresponding to the reported molecular weight
(102-105 kDa) of the latent form of mouse MMP-9.
Treatment with TGF-f1 resulted in a marked dose-
dependent increase in this activity. In contrast, consistent
with the lack of detection of MMP-2 mRNA, no proteo-
lytic activity corresponding to the molecular weight of
MMP-2 was detected in control or TGF-f1-treated cells
(Fig. 5B).

To determine whether MMP activity is required for TGF-
B1-induced tubulogenesis, we first assessed the effect of
TGF-B1 (50 pg/ml) in the presence of the hydroxamate-
based metalloproteinase inhibitor BB94 [44]. Formation
of branching tubules was abrogated in a dose-dependent
manner by BB94, but not by the related inactive isomer
BB1268 (Fig. 6A-C). Since hydroxamate-based inhibitors
also inactivate members of the adamalysin family of met-
alloproteinases [45,46], we next used recombinant tissue
inhibitor of metalloproteinases-2 (TIMP-2), which more
selectively suppresses the activity of MMPs [47]. TIMP-2
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Figure 5

TGF-B1 induces the production of MMP-9 by J3BIA cells. (A) Western blot analysis of conditioned media from J3BIA cells

incubated with 50, 200 and 1000 pg/ml TGF

-B1 for 72 hours. MMP-9 is induced by TGF-B1 in a dose-dependent manner. MMP-

I3 and MT1-MMP (MMP-14) are constitutively expressed by J]3BIA cells and are not ostensibly modulated by TGF-1. Condi-
tioned medium from PMA-treated human U937 cells was used as a positive control for MMP-9, and conditioned medium from
SVECA4-10 cells as a control for MMP-13 and MMP-14. Uniform loading of lanes was verified by silver staining. The blots shown
are representative of at least two independent experiments. (B) Gelatin zymography of conditioned media from J3BIA cells
incubated with 50, 200 and 1000 pg/ml TGF-B1 for 72 hours. TGF-B1 induces the secretion of MMP-9 in a dose-dependent
manner, a clear increase in MMP-9 activity being already evident at 50 pg/ml TGF-f 1. Conditioned medium from PMA-treated
U937 cells, which are known to produce MMP-2 and MMP-9, was used as a positive control.
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(2 pg/ml) inhibited TGF-B1-induced tubulogenesis (Fig.
6D) by 84.6% (p < 0.0005; n = 30 colonies from three
independent experiments), thereby confirming the
involvement of the MMP family of metalloproteinases.
Finally, we examined the potential effect of CL-82198 and
MMP-9 Inhibitor I, two synthetic compounds that selec-
tively target MMP-13 and MMP-9, respectively [48,49].
Addition of CL-82198 at concentrations ranging from 10
to 100 uM had no obvious inhibitory activity on TGF-B1-
induced tubulogenesis (Fig. 6E), whereas MMP-9 Inhibi-
tor 1 suppressed this biological response in a dose-
dependent manner (Fig. 6F,G). These findings support a
role for MMP-9 in TGF-B1-induced branching tubulogen-
esis.

Discussion

To identify the molecular cues that orchestrate epithelial
tubulogenesis, we took advantage of an in vitro system in
which J3B1A mammary epithelial cells grown in collagen
gels in chemically defined medium form spherical cysts.
Addition of acidified FCS to the defined medium induced
the formation of branching tubes. Using a pharmacologi-
cal inhibitor of TGF-f receptor signaling and a neutraliz-
ing antibody to TGF-B1, we identified the active
component in acidified FCS as TGF-B1. Importantly, the
effect of acidified FCS was accurately recapitulated by
exogenous TGF-B1 in the concentration range of 20-100
pg/ml. These findings demonstrate that, at low concentra-
tions, TGF-B1 can activate a morphogenetic program cul-
minating in formation of epithelial tubes.

TGF-B1 is a multifunctional cytokine that elicits different
and sometimes opposite cellular responses in the same
cell type depending on its concentration [50-54]. In
accordance with this notion, the effects of TGF-1 in our
system were clearly concentration-dependent. Thus, in the
range of 20-100 pg/ml, TGF-f1 stimulated the rapid
extension of hollow branched tubes from the wall of exist-
ing cysts. In contrast, at concentrations higher than 200
pg/ml, TGF-B1 induced the formation of thin cellular out-
growths, similar to those described in cultures of gallblad-
der [55] and thyroid [56] epithelial cells.

The results presented here complement those obtained
previously using TAC-2 cells, a different murine mam-
mary epithelial cell line [57]. In the latter study, we
reported that low concentrations of TGF-f1 promote the
elongation and branching of epithelial cords. However,
the absence of a central lumen within TAC-2 cell cords
supported the interpretation that TGF-1 was sufficient to
mediate only a subset of morphogenetic events involved
in the formation of duct-like structures [57]. Using J3B1A
mammary epithelial cells grown in chemically defined
medium, we provide now evidence that, at concentrations
of 20-100 pg/ml, TGF-B1 is able to induce the formation
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of hollow tubes that mimic the organization of mammary
gland ducts.

Several groups have reported that TGF-B1, at relatively
high concentrations, stimulates a process of epithelial-
mesenchymal transition (EMT) characterized by the
acquisition of spindle-like cell morphology, reorganiza-
tion of cortical actin into stress fibers, downregulation
and/or relocalization of junctional proteins (e.g., E-cad-
herin, B-catenin and ZO-1) and gain of mesenchymal
markers [33,58,59]. This phenotypic conversion has been
primarily described in NMuMG mammary epithelial cells,
but is much less pronounced, or does not occur at all, in
other cell lines. Thus, in MCF-10A mammary epithelial
cells, TGF-B1 decreases the insoluble pool of E-cadherin
without inducing conversion to a spindle phenotype [60].
Moreover, in a screening of 18 established epithelial cell
lines, only two strains were reported to undergo EMT in
response to TGF-B1 [61]. Of particular relevance to the
present study, it has been shown [20] that TGF-B1 induces
full EMT in Ras-transformed EpH4 cells, but not in wild-
type EpH4 cells (i.e., the parental cell line from which we
isolated the J3B1A clone). In our own studies, the effects
of TGF-B1 on J3B1A cells grown on a planar substrate
(e.g., in conventional plastic wells or atop of a collagen
gel) were concentration-dependent. Following incubation
with relatively high concentrations (200 pg/ml to 1 ng/
ml) of TGFp1 for 3 days, J3B1A cells acquired an irregular
shape and underwent a moderate degree of scattering. In
contrast, when treated with tubulogenic concentrations
(e.g., 50 pg/ml) of TGF-B1, J3B1A cells formed multicellu-
lar colonies that were slightly less compact than in control
cultures but nonetheless retained close cell-cell contacts
and typical epithelial morphology (R. M., unpublished
data). Likewise, we found that 1 ng/ml TGF-B1 induces
the expression of mesenchymal markers (e.g., fibronectin
and a-SM-actin) and slightly decreases the expression of
epithelial markers (e.g., E-cadherin and tight-junction-
associated proteins) in J3B1A cells. In contrast, 50 pg/ml
TGEF-B1 did not elicit ostensible changes in the epithelial
markers examined, while inducing a marginal upregula-
tion of a-SM-actin (F. C., unpublished data).

The concentration-dependent effects of TGF-f reported in
this study can be interpreted as reflecting graded changes
in epithelial plasticity. It is now well established that the
epithelial phenotype is highly dynamic and finely modu-
lated by microenvironmental cues. Epithelial plasticity
encompasses a whole spectrum of changes, ranging from
full EMT to more subtle alterations that are not associated
with overt mesenchymal conversion [62,63]. Thus, during
biological processes that involve coordinate cell reposi-
tioning, such as branching morphogenesis [64,65], epi-
thelial cells transiently downregulate or relocalize
adhesion proteins while remaining connected by intercel-
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Figure 6

Effect of MMP inhibitors on TGF-1-induced tubulogenesis. (A-C) The broad spectrum metalloproteinase inhibitor BB94 abro-
gates TGF-B1-induced branching tubulogenesis. ]3B1 A cells were grown in a collagen gel for 6 days to allow cyst formation and
were subsequently treated with 50 pg/ml TGF-B1 for an additional 4 days in the absence (A) or in the presence (B) of BB94 (|
uM; the inhibitor was added two hours before treatment with TGF-f1). Bars, 200 um. (C) Quantitative analysis of the effect of
BB94 on TGF-B1-induced tubulogenesis. ]3BIA cells grown in collagen gels for 6 days were treated with TGF-1 alone (50 pg/
ml), co-treated with TGF-B1 and BB94 (30 nM to 3 uM), or co-treated with TGF-f1 and the inactive isomer BB1268 (3 nM)
for 4 days. Formation of tubular outgrowths is suppressed in a dose-dependent manner by BB94, but is not significantly
decreased by the inactive isomer BB1268. * p < 0.0125 and ** p < 0.0005 compared with cultures incubated with TGF-31
alone. (D-F) TGF-B1-mediated branching tubulogenesis is suppressed by pre-treatment with 2 pg/ml recombinant TIMP-2 or 5
1M MMP-9 Inhibitor |, but not by pre-treatment with 100 uM CL-82198, a selective inhibitor of MMP-13. Bars, 200 um. (G)
Quantitative analysis of the effect of MMP-9 inhibitor I. ]3BI A cells grown in collagen gels for 6 days were treated with TGF-f1
alone (50 pg/ml) or co-treated with TGF-B1 and MMP-9 Inhibitor | (1-5 uM) for 4 days (MMP-9 Inhibitor | was added two
hours before treatment with TGF-f1). Formation of tubular outgrowths is abrogated by MMP-9 inhibitor | in a dose-dependent
manner. * p < 0.0025 and ** p < 0.0005 compared with cultures incubated with TGF-B1 alone.
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lular junctions [11,41,66-68]. In light of these notions, we
propose that low concentrations of TGF- induce a mod-
erate increase in epithelial plasticity, thereby facilitating
the morphogenetic cell rearrangements required for tubu-
logenesis. In contrast, higher concentrations of TGF-j
would trigger more pronounced alterations of the epithe-
lial phenotype, resulting in disturbances of cell polarity
and partial EMT. This hypothesis is supported by the find-
ing that, in our system, low concentrations of TGF-B1 pro-
mote the development of well-organized tubular
structures, while higher concentrations cause the forma-
tion of lumen-less cell cords.

The formation and elongation of tube-like epithelial
structures in collagen gels involve a process of invasive
growth [6,39], which is dependent on the activity of
MMPs, a family of zinc-dependent endopeptidases that
play a key role in ECM degradation [42]. As a first step
toward elucidating the mechanisms responsible for TGF-
B1-induced tubulogenesis, we assessed the effect of TGF-
B1 on the production of MMPs involved in collagen turn-
over, including MT1-MMP (MMP-14), collagenase-3
(MMP-13), 72 kDa gelatinase (MMP-2) and 92 kDa gela-
tinase (MMP-9) [42]. MMP-13 and MMP-14 were consti-
tutively expressed by J3B1A cells, but were not obviously
modulated by TGF-f1. Interestingly, however, in accord-
ance with previous studies in keratinocytes [69], corneal
epithelial cells [70] and MCF-10 mammary epithelial cells
[71], TGF-1 markedly enhanced the expression of 92
kDa gelatinase (MMP-9) at the level of mRNA, protein,
and enzymatic activity. While gelatinases are unable to
cleave intact fibrillar collagen, they nonetheless play an
important role in collagen degradation by acting sequen-
tially after the initial cleavage of the triple helix by either
MT1-MMP or interstitial collagenases [72]. Notably,
MMP-9 is particularly well suited to effect pericellular pro-
teolysis owing to its ability to bind to cell surface mole-
cules [73,74]. To determine whether MMP activity is
required for epithelial tube formation, we used the syn-
thetic metalloproteinase inhibitor BB94 and the physio-
logical MMP inhibitor TIMP-2, and found that both of
them abrogate TGF-B1-induced tubulogenesis. Notably, a
relatively selective inhibitor of MMP-9 (MMP-9 Inhibitor
I) [49] significantly attenuated TGF-B1-induced tube for-
mation, but was less efficient in this respect than the
broad spectrum inhibitor BB94. These findings suggest
that MMP-9 participates in TGF-B1-induced tubulogenesis
in our system, possibly by acting in concert with other
MMPs, and strengthen the notion that tube formation in
collagen gels is dependent on MMP activity [38-41]. The
molecular mechanisms underlying MMP requirement for
TGF-B1l-induced tube formation are not known. A
straightforward possibility is that expression of MMPs at
the advancing tip of the cellular outgrowths creates a path
in the surrounding matrix, thereby facilitating directional
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tube elongation. However, MMPs might also participate
in epithelial tubulogenesis by more complex mecha-
nisms, e.g. by exposing cryptic sites in collagen molecules,
by releasing proteolytic fragments of matrix proteins that
stimulate cell motility, or by processing cell surface ECM
receptors [42]. Overall, our study lends significant sup-
port to the notion [75-80] that the balance of MMP/MMP
inhibitors has a key role in branching morphogenesis. It is
likely, however, that this morphogenetic process involves
additional mechanisms, including deposition of endog-
enous ECM components and altered expression of
integrin or non-integrin matrix receptors. Further studies
will be required to address these issues.

An important question raised by this study is whether the
morphogenetic activity of TGF-B1 observed in our in vitro
model is relevant to the process of branching tubulogene-
sis that occurs in vivo. At first sight, the finding that TGF-
B1 induces tubule formation appears difficult to reconcile
with previous in vitro and in vivo studies suggesting a neg-
ative regulatory role for TGF-Bs in branching morphogen-
esis. It is noteworthy, however, that while most
experimental evidence points to an inhibitory activity of
TGF-Bs [81-86], studies in embryonic lung have shown
that low concentrations of TGF-$2 promote branching
morphogenesis, whereas higher concentrations are inhib-
itory [87]. The prevalent notion that TGF-fs are negative
modulators of branching morphogenesis is based on
three main sets of experimental data. First, delivery of
TGF-f1 to mouse mammary glands using slow release
plastic implants has been shown to inhibit duct elonga-
tion [88]. It is possible however that relatively high con-
centrations of TGF-f1 were locally released by the
implants, resulting in suppression of epithelial growth. In
a second experimental approach, addition of exogenous
TGEF-B to lung bud organ cultures was reported to inhibit
branching morphogenesis [82,85]. In those studies, how-
ever, high concentrations (1-100 ng/ml) of TGF- were
used. In a third approach, perturbation of TGF- receptor
signalling in vitro [83] or in vivo [86] was associated with
increased epithelial branching, implying an inhibitory
role for TGF-Bs in branching morphogenesis. In those
experimental settings, however, TGF-B-dependent signal
transduction could have been attenuated rather than
totally abrogated, thereby unmasking a potential mor-
phogenic activity of low-level TGF- signalling. Therefore,
while caution needs to be exercised in extrapolating infor-
mation gained from our in vitro system to the whole
organism, the results reported here underscore the need
for re-evaluating the in vivo effects of TGF- on branching
morphogenesis using a wide range of cytokine concentra-
tions.

Parenchymal organs contain significant quantities of

latent TGF-f stored in the ECM. As a consequence, TGF-$3
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bioavailability is primarily regulated by the conversion of
latent TGF-B to its active form. Interestingly, it has been
shown that TGF-§ activation in the mammary gland is
controlled by ovarian hormones [89]. It is therefore
tempting to speculate that spatially and temporally
restricted activation of a small fraction of matrix-bound
latent TGF-B contributes to the morphogenesis of mam-
mary gland ducts.

In an attempt to reconcile the disparate and apparently
paradoxical effects of TGF-B1 reported in the literature, we
propose that TGF-B1 has multiple, context- and concen-
tration-dependent effects on mammary gland epithelial
cells. Low concentrations of the cytokine may increase
epithelial plasticity and promote morphogenetic cell rear-
rangements that culminate in the development of branch-
ing ducts. At higher concentrations, the growth inhibitory
activity of TGF-B1 is likely to override its ability to
enhance epithelial plasticity, resulting in suppression of
duct formation. Finally, sustained high-level expression of
TGF-B1 in the setting of a genetically altered epithelium
could lead to EMT, thereby fostering tumor progression.

Conclusion

While the precise role of TGF-f1 in the regulation of
branching morphogenesis in vivo remains to be assessed,
our study clearly demonstrates that low concentrations of
TGF-B1 can profoundly modify the spatial organization of
epithelial cells, resulting in the formation of branching
tubular structures. Owing to the rapidity and robustness
of the morphogenetic response induced by TGF-B1, the
experimental system we have developed affords a unique
opportunity for dissecting the molecular and cellular
mechanisms responsible for epithelial tubulogenesis. This
system also provides a convenient bioassay with which to
identify additional morphoregulatory molecules.

Methods

Reagents

Human platelet TGF-1, TGF-2 and TGF-B3 were pur-
chased from R&D Systems Ltd. (Minneapolis, MN).
Recombinant human epidermal growth factor (EGF) was
from PeproTech (London, UK). ITS+ Premix was from BD
Bioscences (Bedford, MA). All-trans-retinoic acid (RA) was
purchased from Sigma Chemical Co. (St. Louis, MO), dis-
solved in DMSO, stored at -20°C and protected from light
exposure. SB-431542 was obtained from Tocris Cookson
Ltd. (Bristol, UK). SP600125 (JNK inhibitor-IT), UO126,
and PD169316 were purchased from either Calbiochem-
Merck (Darmstadt, Germany) or Alexis Biochemicals
(Carlsbad, CA). The synthetic broad spectrum MMP
inhibitor BB94 and the related inactive isomer BB1268
were kindly provided by Dr. P. Brown (British Biotech
Pharmaceuticals Ltd.,, Oxford, UK). MMP-9 Inhibitor 1
(Cat. No. 44278), the selective MMP-13 inhibitor CL-
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82198 (Cat. No. 233105) and recombinant tissue inhibi-
tor of metalloproteinases-2 (TIMP-2, cat. No. PF021) were
from Calbiochem-Merck. Chicken neutralizing antibody
(IgY) to TGF-B1 (Cat. AB-101-NA), control chicken IgY
that do not react with TGFp1 (Cat. AB-101-C), and goat
neutralizing antibody to TGF-B2 (Cat. AB-112-NA) were
purchased from R&D Systems.

Cells

J3B1A cells [12], a clonal derivative of the murine EpH4
mammary epithelial cell line [19-21], were grown in Dul-
becco's modified Eagle's medium (DMEM, GIBCO Invit-
rogen Ltd, Bern, Switzerland) supplemented with 10%
donor calf serum (DCS, GIBCO) and 2 mM L-glutamine.

Assays of branching tubulogenesis

J3B1A cells were harvested with trypsin/EDTA from con-
fluent cultures, centrifuged, and washed in serum-free
DMEM/F12 medium (1:1). The cells were centrifuged
once again and resuspended in a serum-free, chemically
defined medium consisting of DMEM/F12, ITS+ Premix
(6.25 pg/ml insulin, 6.25 pg/ml transferrin, 6.25 ng/ml
selenious acid, 1.25 mg/ml bovine serum albumin and
5.35 pg/ml linoleic acid), 2 ng/ml EGF and 5 nM all-trans-
retinoic acid (this medium will hereafter be referred to as
"defined medium"). The cells were mixed with a type I
collagen solution prepared as described [39] to obtain a
concentration of 1 x 104 cells/ml, and 1 ml aliquots of the
cell suspension were dispensed into 22-mm wells of 12-
well plates (Falcon, Becton Dickinson and Co., Franklin
Lakes, NJ). After a 10-min incubation at 37°C to allow
collagen gelation, 1 ml defined medium was added above
the gels. Collagen gel cultures were then incubated in
defined medium for 6 days to allow the formation of
cystic structures [12]. Thereafter, fresh defined medium
was added with or without the indicated treatments and
the gels were gently loosened from the wells by passing a
curved-tip metallic spatula around their circumference
and were allowed to float in the medium [90]. After 48
hours, medium and treatments were renewed and the cul-
tures were incubated for an additional 48 hours.

For incorporation into fibrin gels, cells were suspended in
a polymerizing fibrinogen solution prepared essentially as
described [91]. Briefly, bovine fibrinogen (Cat. F-4753,
Sigma) was dissolved at 37°C in calcium-free DMEM to
obtain a final protein concentration of 2.5 mg/ml. J3B1A
cells were suspended in the fibrinogen solution at a con-
centration of 1 x 10% cells/ml, and clotting was initiated
by adding 1/10 v/v of CaCl, (2 mg/ml) and 25 U/ml of
thrombin (Sigma, Cat. T4684). The mixture was immedi-
ately transferred into 16-mm wells (400 pl) and allowed
to gel for at least 2 min at room temperature before being
overlaid with defined medium. Aprotinin (Trasylol, Bayer
Pharma, Zurich, Switzerland) was added to the medium
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at a concentration of 200 kallikrein inhibitory units/ml to
prevent lysis of the fibrin substrate [91]. J3B1A cells were
grown for 4-6 days to allow formation of small cysts and
were subsequently incubated for an additional 7 days in
the presence or absence of different concentrations of
TGF-B1. For incorporation in laminin-rich gels, J3B1A
cells were suspended in growth factor-reduced Matrigel
(BD Bioscences) or in a 1:1 mixture of growth factor-
reduced Matrigel and type I collagen. 20 ul drops were
placed into 16-mm wells and allowed to solidify for 90
min at 37°C before being overlaid with 400 pl defined
medium [92]. After a 6-day incubation to allow cyst for-
mation, the cultures were treated with TGF-B1.

Quantification of branching morphogenesis

At the indicated time points, 10 randomly selected colo-
nies per experimental condition in each of at least three
separate experiments (i.e., at least 30 colonies per experi-
mental condition) were photographed under bright field
illumination using the 10 x objective of a Nikon Diaphot
TMD inverted photomicroscope. Quantification of
branching morphogenesis was carried out by counting the
number of radial outgrowths longer than 40 um per col-
ony. Data were expressed as mean number of outgrowths
per colony # s.e.m., and statistical significance was deter-
mined using the Student's unpaired ¢-test.

Heat and acid treatment of FCS

Heating of FCS (GIBCO Invitrogen Ltd) was performed by
diluting the serum to 10% in DMEM/F12 and heating at
70° C for 10 min. Acidification was carried out by bringing
FCS to pH 3.0 with 0.5 M HCI. After 3 h incubation at
room temperature, the pH was adjusted to 7.4 by the
addition of 0.1 M sodium hydroxide.

Plastic embedment and semi-thin sectioning

Collagen gel cultures prepared as described above and
incubated for 4 days in the presence or absence of 50 pg/
ml TGF-1 were fixed in situ overnight with 2.5% glutaral-
dehyde in 100 mM sodium cacodylate buffer (pH 7.4).
After extensive rinsing in the same buffer, the gels were
gently removed from the wells and cut into 2 mm x 2 mm
fragments. These were extensively rinsed in cacodylate
buffer, post-fixed in 1% osmium tetroxide in Veronal ace-
tate buffer for 45 min, stained en bloc with 2.5% uranyl
acetate in 50% ethanol, dehydrated in graded ethanols
and embedded in Epon 812 as described [4]. Semi-thin (1
pum-thick) sections were cut with an LKB Ultramicrotome
(LKB Instruments, Gaithersburg, MD), stained with 1%
methylene blue and photographed under transmitted
light using an Axiophot photomicroscope (Carl Zeiss,
Oberkaden, Germany).
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Northern blot hybridization

Confluent monolayers of J3B1A cells in defined medium
were incubated with or without different concentrations
of TGF-B1. After 24 or 48 hours, the dishes were washed
with ice-cold PBS and total cellular RNA was extracted
with Trizol reagent (Life Technologies, Paisley, Scotland)
according to manufacturer's instructions. RNA was dena-
tured with glyoxal, electrophoresed in a 1% agarose gel
(15 ug RNA per lane), and transferred overnight onto
nylon membranes (Hybond-N, Amersham, Buckingham-
shire, UK). RNAs were crosslinked by baking the filters at
80°C for 2 h and stained with methylene blue to assess
18S and 28S ribosomal RNA integrity. Filters were hybrid-
ized for 16 h at 65°Cwith 1.5 x 10° cpm/ml of 32P-labeled
cRNA probes generated from mouse MMP-9, mouse
MMP-2, or human MT1-MMP ¢DNAs (kindly provided by
Dr. M. Pepper, Geneva, Switzerland). As an internal con-
trol for determining the amount of RNA loaded, the filters
were simultaneously hybridized with a 32P-labeled PO
ribosomal phosphoprotein cRNA probe. Post-hybridiza-
tion washes were performed as previously described [93].
Filters were exposed to Kodak XAR-5 films at -70°C
between intensifying screens.

Western blot analysis

J3B1A cells were plated in 100-mm dishes in defined
medium at 2 x 10° cells/dish and grown to confluence.
They were then left untreated or treated with 50 pg/ml,
200 pg/ml or 1 ng/ml TGF-B1. After 3 days, conditioned
media (for MMP-9 and MMP-13 analyses) or total protein
extracts (for MT1-MMP analyses) were collected. The con-
ditioned media were supplemented with 0.5 mM phenyl-
methylsulfonyl fluoride (PMSF) and 15 mM HEPES, and
centrifuged at 340 g for 5 minutes. The resulting superna-
tants were concentrated 3-fold by centrifugal filtration
using a Centricon YM-10 cartridge (Amicon-Millipore,
Volketsvil, Switzerland). For protein extracts, cells were
washed in PBS and incubated in lysis buffer (50 mM Tris-
HCI, 150 mM NaCl, 5 mM EDTA, pH 8.0, 1% Triton X-
100 and 1% NP-40) containing 1 mM PMSF, 200 KIU Tra-
sylol, 2 pg/ml leupeptin and 1 pg/ml pepstatin A for 1 h
on ice. The lysate was centrifuged at 12'000 g for 15 min
at 4°C, and the supernatant was collected. Equal amounts
of concentrated conditioned media (15 pl) or protein
extracts (10 pg) were separated by 10% SDS-PAGE before
being transferred onto polyvinylidene difluoride mem-
branes (PVDF, Bio-Rad, Reinach, Switzerland). Uniform
loading of lanes was verified by silver staining of proteins.
Nonspecific binding sites were blocked by incubating the
membranes 90 min at room temperature in PBS contain-
ing 0.4% (vol/vol) Tween 20 (PBS-Tween) and 5% (wt/
vol) non-fat milk powder. The membranes were then
incubated overnight at 4°C with rabbit polyclonal anti-
body to MMP-9 (ab38898, Abcam Inc., Cambridge, MA;
1:5000 dilution), mouse monoclonal antibody to MMP-
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13 (Clone LIPCO I1D1, Lab Vision Corporation, Fremont,
CA; 1:200 dilution), or mouse monoclonal antibody to
MT1-MMP (Ab-4, Oncogene, San Diego, CA; 1:2000 dilu-
tion). After extensive washing in PBS-Tween, the mem-
branes were incubated for 1 hour at room temperature
with horseradish peroxydase-conjugated secondary anti-
bodies (Amersham Biosciences, Otelfingen, Switzerland),
diluted 1:3000. Membranes were then washed extensively
in blocking buffer and antigen-antibody complexes
detected by enhanced chemiluminescence, according to
the manufacturer's instructions (Amersham). Condi-
tioned media from PMA-treated U937 cells, which pro-
duce MMP-9 [94], and from SVEC4-10 cells, which
express MMP-13 and MMP-14 [95], were used as positive
controls.

Gelatin zymography

J3B1A cells were plated in 60-mm dishes in defined
medium at 2 x 100 cells/dish and grown for 24 hours.
They were then left untreated or treated with 50 pg/ml,
200 pg/ml or 1 ng/ml TGF-B1. After 3 days, conditioned
media were collected, supplemented with 0.5 mM PMSF
and 15 mM HEPES, and centrifuged at 340 g for 5 min-
utes. The resulting supernatants were stored at -20° C until
use, then mixed with an equal volume of 2 x Novex SDS
sample buffer (Invitrogen, Bern, Switzerland) without
reducing agents and the mixture was loaded (10 pl per
lane) on a precast 0.1% gelatin-10% acrylamide zymogra-
phy gel (Invitrogen). After electrophoresis at 4°C, the gels
were soaked in 2.5% Triton X-100 for 20 minutes to
remove SDS, incubated overnight at 37°C in reaction
buffer (50 mM Tris-HCI pH 7.4, containing 150 mM
NaCl, 10 mM CacCl2), and then stained with methanol:
acetic acid: water (30:10:60) containing 0.25% Coomas-
sie Blue R250 for 4 hours. Gelatinolytic activity was
detected as a clear band on a background of uniform blue
staining. Molecular masses of gelatinolytic bands were
estimated with pre-stained molecular mass markers (Bio-
Rad Laboratories AG, Reinach, Switzerland). Conditioned
medium from PMA-treated human U937 cells, which are
known to produce MMP-2 and MMP-9 [94], was used as
a positive control.
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