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Abstract

Background: In the cerebellum of newborn S/00B-EGFP mice, we had previously noted the
presence of a large population of SI00B-expressing cells, which we assumed to be immature
Bergmann glial cells. In the present study, we have drawn on this observation to establish the
precise spatio-temporal pattern of S/00B gene expression in the embryonic cerebellum.

Results: From EI2.5 until E17.5, SI00B was expressed in the primary radial glial scaffold involved
in Purkinje progenitor exit from the ventricular zone and in the Sox9+ glial progenitors derived
from it. During the same period coinciding with the primary phase of granule neuron precursor
genesis, transient EGFP expression tagged the Paxé+ forerunners of granule precursors born in the
cerebellar rhombic lip.

Conclusion: This study provides the first characterization of S100B-expressing cell types of the
embryonic mouse cerebellum in a high-resolution map. The transient activation of the SI00B gene
distinguishes granule neuron precursors from all other types of precursors so far identified in the
rhombic lip, whereas its activation in radial glial precursors is a feature of Bergmann cell gliogenesis.

Background

The medial and lateral compartments of the alar plate of
the metencephalon have been shown to confer distinct
patterning information during neurogenesis and gliogen-
esis of the embryonic cerebellum (Cb) (for a review see
[1]). Whereas cerebellar inhibitory neurons like Purkinje
cells (PCs) and Bergmann glial cells are generated in the
medial portion of the fourth ventricle (V4) [2], primary
precursors of granule neurons (GPs) are produced from its
lateral recesses, the so-called cerebellar rhombic lip (RL)

[3]. During the third week of gestation in the mouse,
radial glial cells of the medial aspect of the ventricular
zone (VZ) progressively retract their somata towards the
cortex and actively divide to generate precursors of Berg-
mann glial cells and astrocytes [4]. At the same time,
young PCs migrate radially from the neuroepithelium to
the surface in a strictly caudal-to-rostral order, paralleling
the emergence of cohorts of neuron precursors from the
RL and their superficial migration along the dorsal surface
of the Cb primordium [5].
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Using a line of transgenic mice in which tamoxifen-induc-
ible Cre expression at the time of birth results in perma-
nent P-galactosidase labeling, RL precursors destined to
populate the internal granule layer (IGL) were estimated
to be generated in a rostral-to-caudal sequence between
E13 and E17 [6]. At the time, these Lac-Z-labelled IGL
cells were thought to represent a homogenous population
of granule neurons. A recent study has provided evidence
that besides granule cells, the cerebellar RL gives birth to
another IGL population of neurons, unipolar brush cells
(UBCs), between E14.5 and E19.5 [7]. Furthermore, gran-
ule and UBC neurons are preceded by glutamatergic Deep
Cerebellar Nuclei (DCN) neurons. The first DCN neuron
precursors are born in the RL at around E10. At E11.5,
they stream over the entire dorsal surface of the Cb, and
from E12.5 until E14.5 they aggregate in the NTZ, a tran-
sient zone of differentiation [6,8,9].

The RL therefore appears to be highly dynamic, giving rise
to distinct neuronal populations, and a consensus has
now emerged from all these fate-mapping studies, which
redefines the RL as a functional rather than anatomical
entity. The RL is now considered as a territory within
rhombomere 1 which is required for the sequential gener-
ation of all cerebellar and extracerebellar superficial
migratory streams, therefore contributing neurons to the
proprioceptive/vestibular/auditory ~ sensory = network
which task is to sense the organism's position in space [8].
The cells of this functional system all depend on the
expression of the basic-helix-loop-helix transcription fac-
tor Math1for their genesis [3], and the paired and homeo-
domain containing transcription factor Pax6 for their
proper migration [10].

In S100B-EGFP mice, we had previously noted that the
transgene is activated during histogenesis of the Cb
between E13.5 and P3, and reported the existence of a
large population of S100B+ cells in the Cb cortex of new-
born mice [11]. Because S100B is commonly used as a
marker of Bergmann glia and white matter astrocytes in
the Cb of adult mice [12], we assumed that its presence in
the embryonic Cb marked their precursors. S100B is a
small EF-hand calcium and zinc binding protein, highly
expressed in the adult vertebrate central nervous system
(CNS) along with five other S100 family members [13].
The S100B protein sequence is extremely well conserved
(> 97%) among mammals, suggesting that it is endowed
with important physiological functions [14]. However, as
judged by the vitality of mice strains lacking the S100B
protein, there must be a fundamental resiliency of the
developmental program involving the S100B protein
[15,16].

S100B is a highly soluble protein implicated in the initia-
tion and maintenance of a pathological, glial-mediated

http://www.biomedcentral.com/1471-213X/7/17

pro-inflammatory state, and its presence in biological flu-
ids is a well-established biomarker for severity of neuro-
logical injury and prognosis for recovery [17]. A
consensus sequence for SI00B target proteins was pub-
lished as (K/R)(L/I)xWxxIL and matches a region in the
actin capping protein CapZ [18]. Several additional S100B
targets are known, including p53[19], two NDR kinases
[20], the RAGE receptor [21], protein kinase C, and Gap-
43 [22,23]. The range of effector proteins so far identified
suggests roles in the regulation of transcription, cell-cycle
progression [24], and cell morphology. In astrocytes
where S100B is abundantly expressed, its best-character-
ized roles involve modulating protein-protein interac-
tions of all three classes of cytoskeletal structures, and
preventing these interactions blocks astrocyte stellation
[25].

With the present study, we sought to determine the pre-
cise spatio-temporal pattern of S100B expression in the
embryonic Cb using the S100B-EGFP mouse as a model.
We found that S100B protein expression in radial glial
cells of the medial portion of the cerebellar VZ marks the
onset of gliogenesis. In addition, we provide evidence for
transcriptional activation of the endogenous S100B gene
being associated with the prenatal phase of GP produc-
tion in the RL.

Results

S100B expression in the cerebellum (E17.5)

The observation that incited us to launch the present
study is illustrated in figure 1. At around E17.5, and com-
pared to other regions of the brain, a relatively high level
of the S100B-EGFP reporter protein was found in the Cb
primordium (Fig 1A), and this was matched by a fair level
of S100B protein expression in densely packed radial glial
cells located at the midbrain-hindbrain boundary (Fig 1B,
MHB) or bordering the fourth ventricle (Fig 1C), in iso-
lated cells of the cortical transitory zone (Fig 1D), and to
a lesser extent in the RL (Fig 1E). Unlike EGFP, both
nuclear and cytoplasmic, the S100B signal was often
restricted to the cytoplasm but specificity was inferred
from the total absence of S100B immunosignal in corre-
sponding sections obtained from S100B null embryos
(data not shown).

Between E13.5 and E17.5, migratory Purkinje progenitors
are subject to "contact guidance", a process by which they
adhere to radial glial processes to reach their final destina-
tion in the cortex [26]. From E14.5 until P7, Bergmann
glial cells are thought to derive from primary radial glial
cells that translocate their somata from the VZ into the
Purkinje cell layer, giving rise to a secondary radial glial
scaffold [27]. Detection of S100B in the cerebellar radial
glial scaffold at E17.5 therefore incited us to go back in
time and determine exactly when, and in which cell type,
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S100B EGFP (E17.5)

Y ‘I

Figure |

S100B gene driven expression of EGFP in S100B+ cells of the ventricular and cortical transitory zones of the
cerebellum at E17.5. A: confocal fluorescent image of a parasagittal section of the E17.5 S/00B-EGFP cerebellar vermis. In
addition to neural cells, the EGFP reporter is strongly expressed in the mesenchyme underlying the CPe. The staining patterns
for SI00B and EGFP are overlapping near the MHB (B), in the VZ (C), CTZ (D), and RL (E). The white dashed lines mark the
ventricular and pial limits of the Cb. In this and the following figures, numbers above bars indicate the scale in microns.
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transcription of the S100B gene is activated in the embry-
onic Cb.

S100B expression in the cerebellar radial glial scaffold
(E14.5-E16.5)

Compared to E17.5, the number of EGFP+ VZ cells co-
expressing S100B was much reduced at E13.5, except in
the narrow strip of cells located at the midbrain-hindbrain
boundary (compare the boxed areas in Figs. 1A and 2A,B).
To better understand the 3-dimentional structure of this
region, we examined coronal sections as well and found
that EGFP expression was prominent in a medial stretch
of ventral neuroepithelium of approximate width 300
microns that belongs to the inferior tectal neuroepithe-
lium, and not to the Cb as originally thought (Fig 2c). In
the Cb, the number of EGFP+ cells was strikingly
increased near the midline and organized in an S-shaped
intensely EGFP+ radial glial scaffold spanning the primor-
dium from the VZ to the pial surface (Fig. 2E). The scaf-
fold could only be visualized in its integrity in
paramedian sections (compare Figs 2D and 2F).

Figure 3A illustrates the general pattern of EGFP expres-
sion observable on parasagittal sections of a Cb hemi-
sphere at E14.5. The radial glial nature of the cells aligned
in the VZ was first inferred from the oval-shaped somata
and long ascending processes traversing the entire thick-
ness of the Cb primordium filled with post mitotic B 3
tubulin+ neurons (Fig 3B, inset). The radial glial nature of
the cells was confirmed using the technique of immuno-
histochemistry to detect the expression of two markers:
brain lipid binding protein (BLBP), a member of the large
family of hydrophobic ligand binding proteins exclusively
expressed in radial glia during embryonic brain develop-
ment [28], and Sox9, a transcription factor expressed in
the neuroepithelium and choroid plexus epithelium [29].
The high level of EGFP;S100B and EGFP;BLBP co-expres-
sion is illustrated in figures 3C, and 3D, respectively. As
expected, we found that epithelial cells of the choroid
plexus, radial glial cells and isolated cells located in the
CTZ also expressed the transcription factor Sox9 from
E13.5 (not shown) to E16.5 (Fig 3E).

Together these results indicated that before midline fusion
of the Cb plates, EGFP and S100B were co expressed in the
Sox9+ BLBP+ primary radial glial scaffold traversing the
Cb primordium from the IC posterior limit to the RL, with
a higher level of expression near the midline. In addition,
EGFP;S100B co-expression was prominent in a median
stretch of inferior tectal neuroepithelium directly abutting
the rostral Cb primordium.

http://www.biomedcentral.com/1471-213X/7/17

Characterization of the S100B-EGFP cell population of
the CTZ (EI13.5-E16.5)

In the mouse, all cerebellar PCs are produced during only
three embryonic days from E10.5 to E12.5 [30], and most,
if not all glial precursors in the Cb take the form of radial
glial cells from E12.5 to E14.5, during the phase of PC
migration [27]. Using an antibody directed against calbi-
ndin-1 (spot 35), which starts being expressed in post-
mitotic PCs [26], we found no colocalisation of calbindin
and EGFP from E13.5 until E16.5 (Fig. 4). Beginning on
E13.5, EGFP expression was restricted to the single cell
layer of radial glia bordering V4, whereas calbindin+ PCs
were distributed in a broad cellular cortical zone of the
future hemisphere (Fig. 4A). Some PCs located near the
VZ were closely apposed to EGFP+ radial processes (Fig.
4B), which is a characteristic feature of migrating progen-
itors. The number of EGFP+ cells was greatly increased at
E16.5 but EGFP and calbindin were never co-expressed in
the same cells (Fig. 4C-F).

Based on the evenly distribution and morphology of
EGFP+ cells connected to the pial surface via their apical
radial process (Fig. 4E,F), which characterize prospective
Bergmann glial cells [31], we conclude that the radial glia-
derived EGFP+ population present in the Cb primordium
between E13.4 and E17.5 likely contains glial precursors
some of which are already contributing to the secondary
Bergmann radial glial scaffold that will later be used by
GPs to migrate from the EGL to the IGL.

Characterization of the S100B-EGFP cell population of
the RL (E12.5-E15.5)

Before E12.5, EGFP expression was not detected in the RL
(Fig 5), or any other territory of the CNS. Beginning on
E12.5, EGFP expression was detected in a subpopulation
of bipolar cells present in the RL (Fig 6A,B) and emitting
subpial branching processes into the nascent EGL (Fig
6C). However, in contrast to cells present in the medial
portion of the cerebellar VZ, BLBP expression was much
reduced and expression of the transgene was not matched
by detection of the S100B protein (data not shown). With
some exceptions [32], it is now generally accepted that the
RL generates exclusively neuronal precursors. Precursors
of DCN glutamatergic projection neurons are born in the
prospective RL and migrate into the future EGL before
gathering in the NTZ between E10 and E13.5 [8,9],
whereas the first cerebellar GPs and UBCs are born during
the last gestational week beginning on E13 [7]. Therefore,
we assumed that EGFP expression in the RL beginning on
E12.5 could reflect activation of the S100B gene in GP or
(and) UBC precursors, but not in DCN precursors.

The non DCN nature of EGFP+ RL precursors was tested
by performing immunohistochemistry with a pair of anti-
bodies directed against the transcription factor Pax6
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Figure 2

pattern of SI00B gene expression in the cerebellum and inferior colliculus before midline fusion of the cerebel-
lar plates (E13.5). A: lower power confocal image of the Cb primordium, illustrating the strong EGFP signal present near the
MHB (red box) in a parasagittal section. B: zooming on the boxed area in A reveals the high level of SI00B/EGFP colocalisation
at the single cell level. C: near the MHB, and on coronal sections, EGFP tags a stretch of neuroepithelial cells approx. 300 uM
in width, emitting thin processes towards the pial surface (arrowheads). The red dotted lines represent the approximate planes
of sections D and F. The glial scaffold (boxed area) is entirely (D, E) or only partially visible (F), depending on how close to
the midline is the plane of section. E: higher magnification of the boxed area in (D) illustrating the pattern of EGFP expression
near the midline: both the S-shaped radial glial scaffold of the Cb, and the abutting IC neuroepithelium, are strongly labeled.
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Figure 3
S100B and EGFP are co-expressed in the radial glial scaffold of the cerebellar plates (E14.5 and E16.5). A: lower

power view of the lateral portion (future hemisphere) of the E14.5 cerebellum plate. B: higher power view of the boxed area
in (A), illustrating localization of cell somata in the VZ and long radial processes traversing a CTZ filled with post-mitotic 33-
tubulin+ neuron precursors (inset). C: zooming on the VZ area reveals a high level of SIO0B/EGFP colocalisation at the single
cell level. D: As expected for radial glial cells, EGFP+ cells present in the VZ express BLBP. E: at EI6.5, and in addition to radial
glial cells and CPe cells, Sox9 expression is maintained in isolated cells emigrating from the VZ (arrowheads).
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E16.5

Figure 4

EGFP is not expressed in post-mitotic calbindin+ Purkinje progenitors (E13.5-E16.5). A: lower power view of the
lateral portion (future hemisphere) of the E13.5 Cb plate illustrating the broad subcortical distribution of calbindin+ PCs. B:
higher power view of the boxed area in (A), illustrating the contacts between post-mitotic calbindin+ EGFP-negative PC pre-
cursors (white dots) and EGFP+ radial glial processes. Arrowheads point to the non specific red fluorescence of small capillar-
ies. C: at E16.5, the radial glia-derived EGFP+ cell population is greatly increased. D-F: no matter which region of the Cb
primordium is examined, the EGFP+ and calbindin+ populations are clearly separate entities. Most EGFP+ cells are connected
to the pial surface via their apical process, constituting the so-called secondary radial glial scaffold used by the EGL population
of GPs during their postnatal phase of radial migration.
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Figure 5

EGFP is not expressed in the cerebellar rhombiclip
before E12.5. A lower power view of a future Cb hemi-
sphere at El 1.5 illustrates the absence of EGFP expression in
the rhombic lip, contrasting with its presence in the neigh-
bouring mesenchyme (arrowhead), posterior semicircular
canal (SCC) of the otic vesicle, and glial cells of the trigemi-
nal (V) and facial (VII) ganglions.

http://www.biomedcentral.com/1471-213X/7/17

expressed in the RL throughout its neurogenetic interval
[10], and the transcription factor Olig2 known to label the
NTZ starting on E12.5 [33]. The high proportion of
EGFP+ Pax6+ double positives present in the lateral por-
tion of the RL at E12.5 is illustrated in figures 6B and 6C
(colored dots). Their non-DCN nature was inferred from
the discontinuity that existed at E13.5, between the NTZ
already filled with Olig2+ nuclei and the territory of EGFP
expression restricted to the RL and posterior EGL (Fig 6D).

Until E14.5 (Fig 7), a high level of EGFP expression was
maintained in a subpopulation of Pax6+ precursors
present in the RL and in the EGL, whereas from E15.5
(data not shown) onwards (Fig 1A, Fig 4C-F), EGFP
expression was down-regulated in the EGL, and the
number of EGFP+ cells present in the RL decreased con-
siderably in proportion to the growth of the EGL. During
that time, expression of the transgene was not matched by
a significant S100B signal (data not shown). However, the
possibility that the transgene could be ectopically
expressed was discredited once we realized that S100B
mRNA had previously been detected in that region [34]
(high resolution pictures of the E14.5 stage available

[35]).

From our results and the results provided by a recent study
that will be discussed below [7], we believe that transient
expression of the S100B-EGFP transgene is a specific
marker of the primary phase of GP genesis in the embry-
onic RL.

Discussions and conclusions

The aim of the present study was to establish the spatio-
temporal pattern of S100B expression in the mouse
embryonic Cb. We compared the distribution of the
S100B-EGFP reporter to that of the endogenous S100B
protein from E12.5 to E17.5. Our results establish the
S100B protein as a marker of the BLBP+ Sox9+ primary
radial glial scaffold starting on E13.5. In addition, and
although the S100B protein was not detected, we provide
evidence that ST00B-EGFP expression in Pax6+ derivatives
of the RL marked the onset of primary GP production. In
addition, our results suggest that depending on the site of
S100B synthesis, primary radial glial scaffold and deriva-
tives or RL and neuron precursors, S100B may be retained
within the cell or secreted.

The onset of SI100B expression in the cerebellar ventricular
zone: marking the transition from neurogenesis to
gliogenesis in primary radial glial cells

Although we found no mention of the S100B protein
being expressed in the mouse embryonic cerebellar radial
glia, the S100B mRNA was detected in the rat cerebellar
radial glia [12]. Additionally, in a study designed to ana-
lyze the expression pattern of 158 murine orthologs of
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Figure 6

The RL generates EGFP+ cells that are not precursors of DCN neurons (E12.5-E13.5). A: lower power view of a
future Cb hemisphere at E12.5 illustrating the pattern of EGFP expression in two seemingly related cell populations: tightly
packed bipolar cells in the RL, and isolated cells with a unipolar shape and a leading process contacting the pial surface in the
nascent EGL, which is characteristic of migrating GPs (arrows). B, C: higher power views of the E12.5 RL, illustrating the local-
isation of EGFP+ Pax6+ cells in the medial (B), and lateral (C), portion of the RL, and the presence of Paxé+ EGFP- cells in the
nascent EGL (arrowheads). Nuclei of the cells in which EGFP/Pax6é co-expression is obvious are marked by colored dots,
EGFP+ Pax6- cells by asterisks. The long branching processes emitted by the RL EGFP+ cell population are better visualized in
C. D: at E13.5 and on coronal sections, the Olig2+ NTZ (I) and EGFP+ EGL (2) constitute clearly distinct populations.
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Figure 7

EGFP+ Pax6+ granule precursors in the RL and EGLat E14.5. A: lower power view of the lateral portion of the future
Cb hemisphere, illustrating the pattern of EGFP/Pax6 co expression in the RL and EGL at E14.5. B: higher power view of the
EGL showing clusters of migrating Pax6+ EGFP+ neuron precursors with their intensely Paxé+ nuclei (upper panel) and EGFP+
cytoplasm (lower panel). C: higher power view of the RL illustrating the predominant population of EGFP+ Pax6+ cells
(colored dots) and the presence of EGFP+ Pax6- cells (asterisks).
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genes identified on human chromosome 21, the S100B
mRNA was detected in the VZ of the mouse embryonic Cb
on whole mounts and tissue sections [34].

The radial glial origin of EGFP+ S100B+ cells present in
the CTZ in increasing number from E14 to E17.5 is also
consistent with several reports showing that in addition to
being essential for PC exit from the VZ between E13.5 and
E17.5 [36], the primary radial glia is linked to gliogenesis
from E14 to P7 [27]. According to 3H thymidine and BrdU
birth dating studies, PCs are produced between E11 and
E13 [37], and expression of calbindin-1 is first detectable
at around E14 in post mitotic PCs that have migrated a
short distance away from the VZ [26].

Here we show that EGFP+ cells that detach from the VZ
and migrate into the CTZ beginning on E14.5, are not
post-mitotic Purkinje cells. While migrating towards the
surface most EGFP+ cells lose their connection to the VZ
but not their connection to the pial membrane, a feature
of prospective Bergmann glial cells. Finally, we show that
near the onset of gliogenesis (E16.5), Sox9 expression is
maintained in some radial glia-derived EGFP+ cells. This
is in line with a previous report showing that most, if not
all glial precursors in the Cb take the form of radial glial
cells [27] and Bergmann glial cells maintain Sox9 expres-
sion from the early migrating progenitor stage through
adulthood [29].

Several molecules known to be expressed in Bergmann
glial cells of the adult mouse Cb start being expressed in
the embryonic radial glia, at around E14. They include the
intermediate filament protein vimentin [4], the lipid
binding protein BLBP [38], the enzyme Glutamine syn-
thetase [39], the extra cellular matrix molecule with neu-
ron-glia cell adhesion activity Tenascin-C [40], the
glutamate transporter Glast [41], the enzyme 3PGDH
involved in L-serine biosynthesis [42], the Punc neural
cell-adhesion molecule [43], and the transcription factor
Sox9 [29]. We now suggest that S100B be added to the list.

The midbrain-hindbrain junction: a privileged site of S100B
expression before cerebellar midline fusion

The strongly S100B+ median stretch of ventral neuroepi-
thelium we observed at the midbrain-hindbrain junction
(Fig 3E) is reminiscent of a previously reported vimentin+
radial glial structure linking the IC to the Cb in E20 rat
embryos [44]. In the mouse, this isthmic territory is
thought to provide a cellular substratum and the signals
essential for fusion of the cerebellar plates along the dor-
sal midline [44]. In addition, this territory is subsequently
relinquished to the velum medullaris, a neuron-free sheet
of cells that is very short before birth but which develops
during the following days and links the anterior pole of
the vermis to the inferior colliculus.

http://www.biomedcentral.com/1471-213X/7/17

S100B: a rhombic lip marker of primary granule precursor
genesis

The RL is a specialized germinative epithelium that arises
as a result of the ongoing interaction between the neural
tube and the non-neural roof plate ectoderm of V4
(reviewed in [1]). Its main derivatives include primary
precursors of glutamate releasing excitatory granule neu-
rons, by far the most numerous neurons in the CNS,
which relay afferent, excitatory information from mossy
fibers to Purkinje neurons. In addition, the RL produces
precursors of DCN neurons, the main output centers of
the Cb [9], and cortical UBCs, which amplify inputs from
vestibular ganglia and nuclei [45].

In the present study, we provide evidence for transcription
of the S100B gene being specifically activated in the RL
during the primary phase (E13-E17) of GP genesis. First,
we have shown that expression of the S100B-EGFP trans-
gene is initiated in Pax6+ precursors present in the RL at
E12.5, which is after the bulk of DCN neuron precursors
have left the RL [9] and reached the NTZ [8]. The non-
DCN nature of the RL Pax6+ precursors is substantiated by
the existence of a clear boundary, at E13.5, between the
EGFP-tagged RL and the EGFP-negative NTZ (Fig 5D).
Such a discontinuity is not expected to occur when using
a LacZ reporter gene driven by the Math1 locus [8].

Second, we think we can exclude UBC precursors as possi-
ble candidates for S100B-EGFP expression on the basis of
their mode of migration that is different from the subpial
mode of Pax6+ EGFP+ precursor migration within the
EGL. Both populations of GPs and UBC precursors are
known to share expression of the RL markers Pax6 and
Math1. However, unlike UBC precursors which stream
from the RL and posterior EGL into the developing white
matter, and are therefore excluded from the anterior EGL
[7], EGFP+ Pax6+ precursors invested the entire EGL with
their leading process contacting the pial surface (Fig.
5A,C), a signature of migrating GPs [44,46]. Hence, we
believe that transient expression of the S100B gene is a
specific marker of the primary phase of GP genesis in the
embryonic RL.

Finally, although we could not detect the S100B protein in
the mouse RL, evidence exists for the presence of the
S100B protein in the hamster EGL [32], and SI00B mRNA
in the murine cerebellar VZ including the RL [12,34].
Therefore, one interpretation for our results is that both
the endogenous S100B gene and the transgene are
expressed in the RL but the S100B protein cannot be
detected because its cytoplasmic level is below detection
limit, or because it is released in the intercellular space.
The latter cannot be expected from the reporter EGFP pro-
tein since it is not a fusion of S100B and EGFP [11].
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How is the S100B gene activated during cerebellar
morphogenesis?

Before cerebellar midline fusion, the medial-most portion
of the Cb neuroepithelium and abutting inferior tectal
neuroepithelium, both co expressing EGFP and S100B at
the highest level (Fig. 2), are also known territories of high
En-1 expression [44]. This designates En-1 as a potential
inducer of S100B gene expression in the Cb. Beginning on
E8.5 in the mouse, the Fgf-8 molecule produced in the
isthmic orgnizer [47] induces expression of a series of
genes including Wnt-1 and En-1 [48]. Wnt-1 maintains
En-1 expression, which in turn, positively regulates Fgf-8,
resulting in amplification of the Fgf-8 signal necessary for
proper Cb specification and development [49,50].

Interestingly, the earliest site of strong S100Bexpression in
S100B-EGFP mice is the notochord beginning on E10.5
(Hachem and Legraverend, unpublished), and inhibition
of En-1 expression by antisense targeting of early somite
mouse embryos resulted in the loss of SI00B expression
in the notochord region subjacent to affected neural tube
segments [51]. Therefore, SI00B may be a downstream
component of the Wnt/En-1 regulatory cascade involved
in the specification of both the notochord and Cb.

Which function(s) for S100B during cerebellar
morphogenesis?

In the mouse embryonic Cb, radial glial cells and imma-
ture astrocytes express the intermediate filament vimentin
[52], a protein with which S100B was shown to interact in
vitro [53]. S100B also binds to and activates in a Ca2+-
dependent manner NDR-1 and NDR-2, two nuclear pro-
teins that belong to an evolutionary conserved subfamily
of serine/threonine protein kinases involved in the regu-
lation of cell morphology [20]. These types of interaction
are consistent with S100B participating in vivo in the
establishment and maintenance of a radial glial pheno-
type in the medial portion of the Cb where S100B is intra-
cytoplasmic.

S100B may also be released from cerebellar rhombic lip
EGFP+ Pax6+ precursors and promote the extension and
branching of their neurites as illustrated in Fig. 6C. In
1985, Kligman and Marshak identified the extra cellular
disulfide form of S100B as the molecule responsible for
neurite extension of cultured chicken embryonic cortical
neurons and named it "Neurite Extension Factor" [54].
This NEF effect of S100B was later demonstrated on vari-
ous types of neurons including cortical neurons [55], ser-
otonergic mesencephalic neurons [56], dorsal root
ganglion neurons [57] and spinal cord neurons [58], but
the mechanism responsible for the NEF effect is
unknown.

http://www.biomedcentral.com/1471-213X/7/17

Another possible role exerted by the S100B protein
released in the extracellular space is that of a trophic fac-
tor. Added in ovo at physiological concentrations, S100B
was indeed capable of preventing the naturally occurring
death of chicken motor neurons [59]. The neurotrophic
activity of S100B is thought to involve activation of NF-
kappaB [60], binding to the receptor for advanced glyca-
tion end products (RAGE) and increased expression of the
anti-apoptotic protein Bcl-2 [21].

Methods

Animals

Transgenic S100B-EGFP mice [11], and S100B knockout
mice [15] were housed under standard laboratory condi-
tions in a 12-h light/dark cycle with access to food and
water ad libitum. Experiments were performed according
to the principles of laboratory animal care, following the
guidelines approved by INSERM. Adult mice were allowed
to mate overnight, and females were inspected for the
presence of vaginal plugs the next morning (E0.5). Preg-
nant females were anesthetized with sodium pentobarbi-
tal and perfused through the ascending aorta with
phosphate-buffered saline (PBS, pH 7.4) followed by 300
ml of fixative composed of 4% Para formaldehyde in 0.1
M phosphate buffer, pH 7.4. Embryos were quickly
removed from the uteruses, anesthetized by hypothermia,
and sacrificed by decapitation.

Immunohistochemistry

Embryos were cryoprotected by immersion in 30%
sucrose in PBS for 12-24 h at 4°C, embedded in OCT
compound (Tissue-Tek, Washington, DC) and frozen at -
30°C. Tissue sections (15 uM) were obtained in a JUNG
CM 300 cryostat (Leica), mounted onto poly-lysine-
coated slides, and stored at -20°C. After several rinses in
PBS, frozen sections were incubated in PBS containing
0.1% Triton X-100 and 10% goat serum for 1 h at room
temperature (RT) and then incubated for 24 h at 4°C with
primary antibodies followed by incubation with second-
ary antibodies for 1 h at RT. Primary antibodies were
diluted in PBS containing 0.1% Triton X-100 and second-
ary antibodies were diluted in PBS containing 0.05%
bovine serum albumin (BSA). After three rinses in PBS,
sections were mounted in Mowiol (Calbiochem, La Jolla,
CA) containing 2.5% 1,4-diazabicyclo- (2.2.2) octane
(DABCO). The specificity of S100B immunolabeling was
confirmed on sections of S100B null embryos (data not
shown).

Primary and secondary antibodies

The following antibodies were used: rabbit polyclonal
antibodies specific for S100B (1:1,000; Dako, Glostrup,
Denmark, or Carpinteria, CA); Olig2 (1:6,000; obtained
from Dr. Takebayashi, National Institute for Physiological
Sciences, Okazaki, Japan); Pax6 (1:500; Berkeley Anti-
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body Company, Richmond CA); Sox9 (1:500; Santa Cruz
Biotechnology, Santa Cruz, CA); calbindin-1 (1:1000;
Swant, Bellinzona, Switzerland). We used secondary don-
key anti-rabbit IgG Cy3-F (ab0) 2 conjugates (1:1,000;
Jackson ImmunoResearch, West Grove, PA). The specifi-
city of S100B immunolabeling was confirmed on brain
sections of S100B knockout embryos.

Confocal microscopy and illustrations

A Bio-Rad 1024 confocal laser scanning microscopic
(CLSM) system equipped with an argon/krypton mixed
gas laser was used for the analysis of adult and embryonic
S100B-EGFP mice. Non-stacked CLSM images were
obtained, representing optical sections with a depth of
field of 0.5-3 uM. Two laser lines emitting at 488 nm and
568 nm were used for exciting EGFP and CY3-conjugated
secondary antibodies, respectively. Four inputs were aver-
aged to reduce the background noise, and green and red
images were collected sequentially. Data acquisition and
processing were controlled by the Laser sharp 1024 soft-
ware and processing system. Unless otherwise stated, we
marked EGFP+ Pax6- cells with asterisks and EGFP+
Pax6+ double positives with colored dots (green over red
pax6+ nuclei, red over green EGFP+ cells). Pax6+ EGFP-
cells were left unmarked. A cell was considered EGFP+
when both nucleus and cytoplasm were stained, or ifa rim
of green cytoplasm could be clearly assigned to a given
nucleus. As a result, the number of double positives was
most probably under evaluated. The pial and ventricular
surfaces were outlined with white dashed lines; the limit
between neuroepithelium and choroid plexus epithelium
was marked with a blue dashed line; the choroid plexus
epithelium of the fourth ventricle was outlined with a red
dashed line.

Abbreviations
V trigeminal ganglion

VII facial ganglion

ant anterior

aq aqueduct

BLBP brain lipid binding protein

cap blood capillary

Cb cerebellum

CNS central nervous system

CP chroroid plexus of the fourth ventricle

Cpe choroid plexus epithelium

http://www.biomedcentral.com/1471-213X/7/17

CTZ cortical transitory zone

DCN deep cerebellar nuclei

di diencephalon

dors dorsal

EGFP enhanced green fluorescent protein
egl external granule layer

En-1 engrailed 1

Fgf-8 fibroblast growth factor 8

Gap43 growth-associated protein 43
GFAP glial fibrillary acidic protein

GP cerebellar granule neuron precursor
IC inferior colliculus

lat lateral

med medial

mes mesencephalon

NDR nuclear (Saccharomyces cerevisiae) Dbf2-related
kinase

NTZ nuclear transitory zone

PC Purkinje cells

Post posterior

RL cerebellar rhombic lip

scc semi-circular canal of otic vesicle
tel telencephalon

UBC unipolar brush cells

V4 fourth ventricle

VZ ventricular zone

Wnt-1 wingless
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