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Abstract

Background: The retinal vasculature is a capillary network of blood vessels that nourishes the
inner retina of most mammals. Developmental abnormalities or microvascular complications in the
retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the
advantages of zebrafish for genetic, developmental and pharmacological studies of retinal
vasculature, we characterised the intraocular vasculature in zebrafish.

Results: We show a detailed morphological and developmental analysis of the retinal blood supply
in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first
found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose
contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the
juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of
mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are
ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO),
subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with
cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid
and retinal vasculature development.

Conclusion: Zebrafish have a retinal blood supply with a characteristic developmental and adult
morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of
genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal
vasculature in development and disease.
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Background

The retina is one of the most metabolically active tissues,
with a higher rate of oxygen consumption than the brain
[1]. Nourishment of the retina by a vascular network is
critical for vision, and severe forms of human blindness
including diabetic retinopathy, age-related macular
degeneration and retinopathy of prematurity are linked
with vascular abnormalities [2,3].

In most mammals, the adult retina is nourished by two
independent circulatory systems, choroidal and retinal
vessels. Choroidal vessels overlying the retinal pigmented
epithelium (RPE) carry ~80% of retinal blood flow, and
nourish the outer retina. The central retinal artery emanat-
ing from the optic nerve head carries the remaining ~20%
of blood flow and nourishes the inner two thirds of the
retina [4]. These retinal vessels develop intraretinal capil-
laries that ramify at the inner and outer plexiform layers
[3,5]. Retinal vessels in mammals are not fenestrated and
nourish the retina by transcytosis of nutrients, encapsu-
lated in vesicle vacuolar organelles [6]. Unique to retinal
and brain capillaries, pericytes directly contact the vascu-
lar endothelium, are enclosed by the basement membrane
and have strong expression of smooth muscle actin con-
ferring contractile function [5,7].

During mammalian eye development, the inner retinal
vasculature is absent, and oxygenation of the retina is pro-
vided by choroidal and hyaloid vessels. The hyaloid vas-
culature is a complex of transient intraocular vessels
comprising: i) the wvasa hyaloidea propia (VHP), ii) the
tunica vasculosa lentis (TVL) and iii) the pupillary membrane
(PM). The VHP corresponds to the hyaloid artery entering
the retina at the optic disc and branching anteriorly
through the vitreous to the lens. The TVL is a capillary net-
work cupping the posterior region of the developing lens,
while the PM is an extension of the TLV that covers the
anterior lens [8]. Hyaloid vessels undergo progressive
regression as the retinal vasculature develops on an astro-
cyte scaffold [9,10]. There has been much debate as to
whether the retinal vasculature forms by angiogenesis or
vasculogenesis, though angiogenesis is now accepted
[3,5,11]. Regression of the hyaloid vasculature by apopto-
sis and formation of the retinal vasculature by angiogen-
esis are synchronised processes. Failure of the hyaloid
vasculature to regress is associated with ocular pathologies
referred to as persistent foetal vasculature. Symptoms
include severe intraocular haemorrhage, retinal detach-
ment, cataracts and eventually blindness. Persistence of
the hyaloid vasculature is accompanied by incomplete ret-
inal vascularization, suggesting that overlapping signal-
ling networks simultaneously control hyaloid regression
and formation of the retinal vessels [8,12-14].
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Although some genetic and environmental factors
required for correct development of the retinal vasculature
are known, the genetic pathways remain poorly defined
[11]. A critical role for genetics in retinal vasculature
development is exemplified by Norrie disease, an X-linked
congenital syndrome characterized by persistence of the
hyaloid vasculature and abnormalities in retinal vessels.
This disease results from mutations in the norrie disease
protein (NDP), a novel ligand for the frizzled-4 receptor
that activates the canonical Wnt pathway [15]. Mutations
in frizzled 4 cause familial exudative vitreoretinopathy
(FVER), a developmental disorder with abnormal retinal
vascularization. In addition, Wnt7b expression on retinal
macrophages is essential for apoptotic regression of
hyaloid vessels in mice [14]. Indeed, Wnt, Frizzled and
NDP are proposed as a new family of angiogenic factors
[16].

In mammals, vascular endothelial growth factor-A (VEGF-
A) plays a key role in the formation of the hyaloid vascu-
lature, its regression and the formation of retinal vascula-
ture. VEGF-A transcripts are detected in the developing
lens as well as in the astrocyte scaffold accompanying the
nascent retinal vessels [17,18]. In mouse, transgenic
expression of VEGF-A isoforms from lens specific promot-
ers, results in hyperplastic hyaloid vessels and abnormal
patterning of retinal vasculature, with more diffusible
forms of VEGF-A causing more severe phenotypes [19].
Lens crystallins are upregulated in persistent foetal vascu-
lature, suggesting an unforeseen role in regulating retinal
vascularization [20].

The amenability of zebrafish to high-throughput genetic
and pharmacological screens in vivo provides novel
opportunities to decipher vertebrate genes associated with
vasculature defects and to identify lead drugs for thera-
peutic intervention [21-24]. These approaches are
enhanced by the availability of the Tg(flil:EGFP) trans-
genic line, which specifically expresses EGFP in blood ves-
sels [25]. Genes required for trunk vasculature have been
identified through characterisation of zebrafish mutants
and morphants [26,27]. Subsequently, drugs which res-
cue a zebrafish model of lethal aortic coarctation (grid-
lock), were identified in random small molecule screens
[28]. However, extensive analysis of the morphology and
genetic determinants of hyaloid and retinal vasculature in
zebrafish has not been performed. This reflects difficulties
in analysing these vessels in whole animals because of the
refractive properties of the lens and the technical expertise
required to dissect the minute larval eyes (~0.5 mm).

Here we develop methods to analyse the hyaloid and ret-
inal vasculature in larval and adult zebrafish, and we doc-
ument their  development,  morphology  and
ultrastructure. Using this framework, and screening
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zebrafish mutants and morphants, we identify a cohort of
genes encoding extracellular matrix and cell surface pro-
teins required for hyaloid and retinal vasculature develop-
ment (Table 1).

Results

Adult zebrafish have a random network of retinal vessels
The morphology of the retinal vasculature in adult
Tg(flil:EGFP) zebrafish was characterised using fluores-
cent microscopy to directly visualise the vessels (Fig 1A-G
and 1K-L). The retinal vasculature in wild type and albino
animals was determined by immunohistochemistry and
nuclear staining (Fig 1H-L and data not shown).

The inner limiting membrane of the zebrafish retina is
covered by a complex system of blood vessels (Fig 1). The
optic artery penetrates the retina posteriorly through the
optic stalk and enters the vitreal space. At the optic disc, 4
to 9 main vessels ramify and spread over the inner surface
of the retina (Fig 1A-B). The vasculature constitutes a
membranous layer firmly attached to the vitreal interface
of the adult retina. The vessels are in direct contact with
the ganglion cell layer (Fig 1C) but do not form subretinal
plexi. The main branches arborise radially from the optic
disc eventually anastomosing with neighbouring capillar-
ies before connecting to a circumferential vein (Fig 1D
and 1G). This vein is the inner optic circle (IOC) which
surrounds the retina at the cilliary marginal zone [29,30].
From 30 dpf to 22 months some of the thinnest capillaries
show sprouting filopodia (Fig 1D) consistent with active
angiogenesis [10,18]. The diameter of the vessels is ~26 +
3 um proximal to the optic disc, ~9.8 + 1 pm at mid retina
and reduces to capillary size of ~6.5 + 0.8 pm at peripheral
positions (Fig 1E-G). The IOC has a constant diameter of
9.5-12 pm. In contrast, branch point distances vary from
~30 to ~300 um with no apparent relation to their posi-
tion relative to the optic disc (Fig 1A).

The majority of adult retinas have 6-7 retinal vessels
branching from the central artery (Table 2). The exact pat-
tern of the vessels varies amongst individuals and an
asymmetrical number of branches are observed between
the left and the right eyes of ~80% of adult zebrafish ana-
lysed (Table 3). In ~9% of retinas that only have 4-5 main
vessels (n = 45) two of these branches anastomose close
to the optic disc, enabling arborisation of the entire retina
(Fig 1B).

Markers of retinal vasculature described in mammals are
present on the zebrafish retinal vasculature (Fig 1H-J).
Collagen IV marks the basal lamina of the vessels,
smooth-muscle-actin stains retinal pericytes, and factor
VIII labels the vascular endothelial cells [5,9,13]. To eluci-
date whether the retinal blood supply in zebrafish is asso-
ciated with a glial scaffold comprised of astrocytes as

http://www.biomedcentral.com/1471-213X/7/114

occurs in humans and mice, glial-fibrillary-acidic-protein
(GFAP) staining was performed [3,9]. Although we find
no evidence of an astrocytic scaffold associated with the
zebrafish retinal vasculature, we do find GFAP staining
the retinal vessels in adult zebrafish (Fig 1K) and a popu-
lation of cells throughout the retina. This GFAP staining is
stronger at the optic disc and the peripheral retina. Mor-
phology and immunolabelling identifies them as Miiller
cells and not astrocytes or microglia (Fig 1K-L). These
GFAP-positive Miiller cells span the entire retinal thick-
ness and at the ganglion cell layer, the Miiller endfeet
come into contact with the basal lamina of the retinal ves-
sels, forming projections which directly contact the vascu-
lar endothelial cells (Fig 1K-L). Analysis of retinas from
Tg(gfap:EGFP) transgenic animals (Additional file 1),
which express EGFP under control of a glial fibrillary
acidic protein (GFAP) promoter, confirms the direct con-
tact between the Miiller cells and the vessels. When the
vascular layer is dissected from the retina, the Miiller end-
feet remain attached to the vessels revealing a tight vascu-
lar-glial interaction (Additional file 1C).

Dynamic development of the hyaloid-retinal vasculature
in zebrafish

To characterise the development of the retinal blood sup-
ply in zebrafish, eyes of fli1-EGFP transgenic fish from 24
hpf to 22 months old were analysed. By 48 hpf, some
EGFP positive cells are present between the lens and the
retina (data not shown). These endothelial cells give rise to
the first hyaloid vessels, distinguishable by 2.5 dpf as a
rudimentary vasculature tightly attached to the lens (Fig
2A). At 5 dpf, the vessels are organized in a hemispherical
basket embracing the lens from the central optic disc to
the peripheral IOC (Fig 2B). As this vasculature grows
around the lens, the vessels rapidly branch and at 19 dpf
have formed an intricate network (Fig 2C). Numerous
filopodia project from these vessels indicating dynamic
patterning by angiogenesis [18].

At 15 dpf, the vitreo-retinal vasculature gradually becomes
more attached to the retina loosening its contact to the
lens (Figs 2C-D). This detachment initiates at the centre
of the posterior lens and moves anteriorly (Fig 2C-D).
Detachment from the lens and association to the retina is
progressive, as vessels missing on the dissected lens com-
plement those found on the corresponding retina (inset in
Fig 2F). The age at which this transition occurs is variable
and reflects the diverse rates of larval growth. At 60 dpf,
juvenile zebrafish retinas show an elaborate vasculature
largely identical to adults (Fig 2E-G). This movement of
the hyaloid vessels to form the mature retinal vasculature
contrasts with mammals where remodelling by hyaloid
regression and retinal angiogenesis is necessary (Fig 2C-
F) [8,9]. From 2 to 18 months the morphology of the ret-
inal vasculature looks similar. However in senescent fish

Page 3 of 17

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:114

http://www.biomedcentral.com/1471-213X/7/114

Table I: Mutant and morphants examined in the present study. Larval stages and number of specimens analysed are detailed in the
table, together with a brief description of the overall phenotype and the morphology of the intraocular vasculature

NAME CATEGORY AGE n GENERAL PHENOTYPE HYALOID -RETINAL
PHENOTYPE
MAGPI MORPHANT Microfibril 3 dpf 15 Dilated brain and caudal vessels. Stagnated growth of hyaloid vasculature
associated glycoprotein | Irregular lumen of axial with less and thicker branches.
vasculature(Chen et al. 2006) Aggregation of vascular endothelial
cells at the posterior lens
5 dpf 15
HS6ST2 MORPHANT heparan sulfate 5 dpf 15 Over-lumenized vessels and defective Hyaloid vasculature with scarce and
sulfotransferase 2 branching in caudal vein plexus oversized branches that display
(Chen et al. 2005) an aberrant patterning.
Syn 2 MORPHANT Morphant 5 dpf 6  Aberrant or absent sprouting Sparse disorganized endothelial cells
of syndecan 2 in the intersegmental vessels surrounding very small lens.
(Chen et al. 2004)
Sppl2b MORPHANT Signal peptide 5 dpf 10 Erythrocyte accumulation in an NO PHENOTYPE
peptidase like protein 2b enlarged caudal vein
(Krawitz et al. 2005)
Mab2112 MORPHANT Male abnormal 5 dpf 5 Microphthalmia. Apoptosis in the Thicker vessels that cover
21 like-2 protein developing retina and lens only posterior part
(Kennedy et al. 2004) of the lens.
obd VASCULAR MUTANT Plexin-D|1 3 dpf 5 Mispatterning of the trunk Mis-patterning of the hyaloid vessels
out of bounds intersegmental (variable severity). Abnormal branching
vessels (variable severity). and extra
~10% of mutants die before 6 dpf interconnections obvious at 5 dpf.
(Childs et al. 2002; Torres-Vazquez et  Atypical loops, tortuosity and increased
al. 2004) number of vessels in the
retinal vasculature of the adult.
5 dpf 20
6 dpf 5
10 dpf 5
20 dpf 3
Adult 10
ace VASCULAR MUTANT 5 dpf 5 General CNS abnormalities. NO PHENOTYPE
FGF8 Hypomorph Absence of vessels in the dorsal brain.
acerebellar Abnormal heart development
(Reifers et al. 1998; Reifers et al.
2000)
arl LENS MUTANT Laminin alphal 3 dpf 3 Abnormal eye development. Complete absence of
arrested lens Lens development halted at 24 hpf. hyaloid vessels in all
Lack of any lens structure from 48 hpf.  stages analysed
(Vihtelic et al. 2001;
Vihtelic and Hyde 2002;
Semina et al. 2006)
4 dpf 3
5 dpf 3
6 dpf 3
mgf LENS MUTANT/Unknown 4 dpf 7  Abnormal eye development from 3 dpf. At 4 dpf rudimentary hyaloid vasculature
margin affected Very small lens (fewer vessels and branches) on lens.
(Unpublished) At 5 dpf complete absence
of hyaloid vasculature on small lens
5 dpf 8
dsl LENS MUTANT/Unknown 5 dpf 5 Abnormal eye and lens development. NO PHENOTYPE
disrupted lens (Vihtelic et al. 2001;
Vihtelic and Hyde 2002)
6 dpf 4
8 dpf 5
fe LENS-VASCULAR 3 dpf 7  Synophthalmia. Abnormal/absent No hyaloid vessels
MUTANT intersegmental blood vessels. on the lens
/Unknown (Unpublished)
fused eyes
plt LENS MUTANT/Unknown 4 dpf 3 Defects in melanin pigmentation. Premature detachment of
platinum Photoreceptor and RPE degeneration hyaloid vessels from the lens at 4 dpf.
from 5 dpf. Less vessels and less patterning
(Vihtelic et al. 2001; of the branches covering only
Vihtelic and Hyde 2002) posterior lens at 6 dpf.
5 dpf 3
6 dpf 3
lop LENS MUTANT/Unknown 6 dpf 4 Lens opacity NO PHENOTYPE

lens opaque

(Vihtelic et al. 2005)

Page 4 of 17

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:114 http://www.biomedcentral.com/1471-213X/7/114

ColllV 100

FVill/cohes "_‘{ o / /FLI-1  20pm

Figure |

Adult zebrafish have a complex system of retinal blood vessels. A: Wholemount retina showing central major vessels
that radiate into thinner vessels covering the entire inner surface of the retina. B: Example of disparity in branch number
between left (5) and right (8) eyes. C: Transverse view of the blood vessels (green: Fli|-EGFP) overlaying the inner limiting
membrane of the adult retina (blue: DAPI nuclear staining). Inset shows the same vessels overlying GCL nuclei in a flatmount
preparation. D: At peripheral retinal regions, neighbouring vessels anastomose (inset), and elongated filopodia sprout from the
capillaries suggesting active angiogenic remodelling. E-G: The diameter of vessels is thicker proximal to the optic disc and thin-
ner peripherally. Numbers refer to the thickness of the vessel and the angle of measurement in reference to horizontal plane.
H-K: Flatmount adult retinas immuno-labelled with retinal vasculature markers. H: collagen IV (red) stains the basal membrane
of blood vessels. I: smooth muscle actin (SMA) stains vascular pericytes (green). J: Factor VIII labels endothelial cells (red).
Cone photoreceptors label green as analysis was performed in Tg(3.2TaCP:EGFP) transgenic line [67]. K-L: Glial fibrillary acidic
protein (GFAP) stains retinal vessels in adult zebrafish and a population of cells throughout the retina. GFAP (red), DAPI (blue)
and flil-EGFP (green). K: Flat-mounted retina, and L: Transverse view of the peripheral retina. Miiller endfeet (asterisks)
directly contact the endothelial cells (yellow co-staining). Inset in K: FITC channel turned off to highlight the GFAP reactivity
of retinal vessels. ILM: inner limiting membrane; GCL: ganglion cell layer; IPL: inner plexiform layer; OPL: outer plexiform layer; INL: inner
nuclear layer; ONL: outer nuclear layer; I0OC: inner optic circle.

Table 2: Random numbers of retinal vessels branch from the
optic disc. The number and patterning of the retinal vessels was
examined in 150 retinas from ~100 adult wild type zebrafish.
Most of the retinas (64%) exhibit 6 or 7 main branches radiating

Table 3: Asymmetrical number of main retinal branches in
individual fish. Left and right retinas from individual zebrafish
(n = 21) show differential number of main branches.

from the optic disc, although the number of vessels varies from 4

to 9. In some individuals (n = 21), the retina from the left eye was DIFFERENCE IN NUMBER OF 0 I 2 3
compared to the retina from the right, showing no apparent BRANCHES LEFT VS RIGHT EYE
correlation between anatomical location and the number of main
branches.

Number of branches 4 5 6 7 8 9

Percentage of fish (n = 21) 19% 52% 24% 5%

Retinas (n = 150) 7%  23% 39% 25% 5% 1%

Left retinas (n = 21) 10% 33% 23% 29% 0% 5%

Right retinas (n = 21) 0% 38% 38% 14% 10% 0%
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(> 18-20 months) the retinal vessels progressively
become thinner and more fragile (Fig 2I), consistent with
an age-related loss of retinal vasculature function [31].

The zebrafish retinal vasculature features pericytes
junctional complexes and vesicle vacuolar organelle

The ultrastructure of the zebrafish vitreo-retinal vessels
was examined to elucidate cellular interactions with the
lens and retina (Fig 3). Sections of retinas from adults con-
firm the presence of a vascular system in direct contact
with the inner limiting membrane and the ganglion cell
layer (Fig 3A). Vascular endothelial cells are intercon-
nected forming interdigitating junctional complexes (Fig
3B-D). Multiple mature pericytes with Golgi networks
and vacuoles (Fig 3B-C) are found associated with the
vessels in all young and senescent specimens, but not in
the larvae (Fig 3H). The pericytes are located between the
vascular endothelium and the basal lamina of the retinal
vessels in direct contact with both (Fig 3B-C), as observed
in mammalian retinas [5,32]. At the inner limiting mem-
brane, numerous vesicles ranging from ~20-250 nm are
coupled to the cell membranes at both the vascular and
the ganglion cell sides (Fig 3E). These vesicles fuse with
the plasma membranes (Fig 3F) suggesting nourishment
by active transcellular transport, equivalent to the vesicle
vacuolar organelles (VVO) observed in mammalian reti-
nas [6].

In senescent fish, the inner surface of the retina is also vas-
cularised and there are no apparent differences in the
number of pericytes or presence of VVOs compared to
younger fish. The senescent retinas are distinguished by
the thinner diameter (~19 + 3 um) of the vessels proximal
to the optic disc compared to the younger fish (~26 + 3
pm), an observation supported by fluorescence micros-
copy (Fig 2). Detailed morphometric analysis shows a sig-
nificant increase in the width of the tight and adherent
interendothelial junctions in senescent zebrafish (Fig 3G)
resembling that observed in age-related degeneration of
mammalian retinal vasculature [33-35].

There is no vitreal space in 5 dpf zebrafish larvae [36], and
consequently the intraocular vasculature is in direct con-
tact with the lens and retina (Fig 3H). The attachment of
the vessels to the retina is not as comprehensive as with
the lens (Fig 3I) an observation supported by the visuali-
sation of the vessels on the lens after dissection (Fig 2).
The ultrastructure of the vessels in larval eyes confirms
close association of the vascular basal lamina and the lens
via fused membranes (Fig 3H-I). In contrast to the mam-
malian TVL (part of hyaloid vasculature covering the pos-
terior lens), no fenestrations are found on the zebrafish
vascular interface contacting the lens, instead VVOs indic-
ative of transcytosis are present [8,37].
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ECM and cell membrane proteins required for hyaloid-
retinal vasculature

We screened genes known to have caudal and/or interseg-
mental vascular phenotypes, for defects in hyaloid and
retinal vessels. In both MAGP1 and HS6ST-2 morphants,
the development and patterning of the hyaloid vascula-
ture appears arrested, displaying defects in angiogenic
remodelling and failing to coalesce into defined branches
(Fig 4B-C). Lens vessels in morphants of the microfibril-
associated glycoprotein 1 (MAGP1) have a phenotype (Fig
4B) similar to related abnormalities described for the
trunk vasculature [38]. Morphants of MAGP1 exhibit an
aggregate of vascular endothelial cells at the posterior lens
and an extremely reduced number of branches that appear
thicker, poorly patterned and stagnated compared to
hyaloid vasculature of wild type larvae or control mor-
phants (Fig 4A-B). Morphants of the extracellular matrix
regulator, heparan sulfate sulfotransferase 2 (HS6ST-2)
have caudal vein defects being overlumenized, obstructed
and displaying less branching [39]. In the HS6ST-2 mor-
phants vascular endothelial cells do proliferate to expand
across the lens but fail to remodel to form a defined net-
work of hyaloid vessels (Fig 4C). Morphants of syndecan
2 (Syn 2), a cell surface heparan sulfate proteoglycan
essential for angiogenic sprouting in the trunk [40], com-
pletely lack vessels or their precursors on the lens (Table 1
and data not shown). In contrast no significant abnormal-
ities of the vitreoretinal vasculature were observed in mor-
phants for the signal peptide peptidase homologue
(Sppl2) although it is necessary for caudal vein formation
(Table 1 and data not shown) [41].

The plexin D1 receptor is mutated in out of bounds (obd)
mutants resulting in patterning defects of intersegmental
vessels [27,42]. In obd larvae, patterning defects of the
hyaloid vessels are subtle at 3 dpf but by 5 dpf the vessels
distinctly form abnormal branches and extra interconnec-
tions (Fig 4E). The phenotype is variable in juvenile (~30
dpf) where the hyaloid vasculature is often undistinguish-
able from wild type. However, in adult obd zebrafish
increased tortuosity of the retinal vasculature is consist-
ently observed, with highly contorted looping not found
in wild type retinas (Fig 4F and Additional File 2). Com-
pared to wild types, adult obd retinae have a significantly
higher number of vessels at the mid-retina (Fig 5C and
Additional File 2). The obd phenotype is not a result of
more frequent vessel branching across all of the retina, as
the average number of branches per vessel is not
increased, but in fact is significantly decreased (Fig 5D).
The higher number of retinal vessels in obd mutants stems
from a significantly increased number of primary
branches radiating from the optic disc (Fig 5C) and a sig-
nificantly reduced distance to the secondary branch (Fig
5E).
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Figure 2

Dynamic development of the hyaloid and retinal vasculature in zebrafish. Shown are fluorescent images of blood
vessels on lenses and wholemount retinas dissected from Tg(flil:EGFP) zebrafish. A: First intraocular vessels are detected at 60
hpf surrounding and attached to the forming lens. B: This vasculature evolves quickly and at 5 dpf covers the lens from the
optic disk to the IOC. C: At |9 dpf an intricate network of hyaloid vessels branches around the lens. Some vessels at the pos-
terior lens have lost contact and are attached to the retina (inset). D: At 28 dpf, detachment of the vessels from the lens has
progressed anteriorly from the central region and extensive vasculature is found on the inner retina. E: Retina and F: lens from
a 60 dpf zebrafish. In this specimen some vessels are attached to the lens although most of them are found on the retina. Inset
in F: Overlay of the retina from E pseudo-coloured in red, and the lens from F depicts the complementing network of vessels.
G: Retina of another 60 dpf zebrafish with the complete vasculature overlying the inner retina. H: Typical vascular pattern of
intraocular vasculature in a 6 month old fish. I: Inner retina of a 22 month old senescent zebrafish showing slightly thinner and
more fragile vessels. White circumferences demarcate the lens in A-F. Yellow arrows point from posterior to anterior lens in
A-D&F and from dorsal to ventral retina in E&G-I. Scale bars: 50 ym in A-D; 100 um in E-G and 500 ym in H-I.
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Figure 3

Ultrastructural analysis of the inner retina blood supply in zebrafish. A: Light microscopy image of blood vessels
(highlighted by a red square) overlying the inner limiting membrane (ILM) of the retina in adult zebrafish. 40x magnification. B:
Ultrastructure of capillary. The basal lamina (BL) is in contact with the ILM enclosing pericytes (PE) and the vascular endothe-
lium. Scale bar: 5 um. C: Typical structural features of pericytes, e. g. Golgi apparatus (GA), rough endoplasmic reticulum (RER)
and large membrane bound vesicles. Scale bar: | um. D: Vitreal space lined by pericyte overlying endothelial cells (EC) which
display interdigitating junctional complexes (arrows). Scale bar: 500 nm. E: Multiple vesicles (arrows) from 20 to 250 nm con-
tacting the inner limiting membrane of the retina indicate active interaction between the vessels and the ganglion cell layer (at
the Miiller endfeet). Scale bar: | um. F: Vascular (top) and ganglion cell layer interface (bottom). A vesicle (left panel) appar-
ently separated from the cell membrane, fuses with the cell membrane when the section is tilted by 43° (right panel) suggesting
transcellular transport. Scale bar: 500 nm. G: Interendothelial junctions are significantly more open in the senescent fish. Dis-
tance between endothelial cells at tight (asterisks) and adherent (arrows) junctions were measured in different peripheral and
central areas of retinas from senescent and young adult fish. Error bars: sem. Inset in H: Histology of a 5 dpf zebrafish eye. 40
magnification. H: EM image of a 5 dpf larval eye illustrating the relationship of hyaloid vessels (encircled by a red line) to both
the lens and the retina. Scale bar: 10 um. I: Higher magnification of the hyaloid vessel confirms its tight attachment to the lens
and looser contact to the retina (arrows). Scale bar: | um. MUE: Miiller cell endfeet; GC: ganglion cell; GCL: ganglion cell layer; VL:
vascular layer; RPE: retinal pigmented epithelium; RET: retina.
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Figure 4

Genes required for hyaloid and retinal vasculature development. A-E: Fluorescent images of flil-EGFP hyaloid vessels
on dissected lenses. A: Characteristic pattern of hyaloid vasculature attached to the lens of 5dpf wild type fish. B: Stagnated
growth of hyaloid vasculature with less and thicker branches in MAGPI| morphants, and aggregation of vascular endothelial
cells at the posterior lens. C: Aberrant oversized branches and lack of patterning in hyaloid vasculature of 5 dpf HS65T2 mor-
phants. D: hyaloid vessels in 5 dpf mab2 112 morphants are thicker and poorly patterned. E: Poor patterning and abnormal
branching of the vessels attached to the lens of 5 dpf obd mutants F: Wholemount retina showing the retinal vasculature of an
adult obd mutant exhibiting atypical loops (small arrows) and increased number of vessels. G-P: Alkaline phosphatase staining of
hyaloid vasculature on lenses from mutant (left) and wild type larvae (right). G-H: Lens from mgf mutants is reduced in size and
shows only residual unorganized vascular tissue at 4 dpf and no vessels at 5 dpf. I: Lens from fe mutants is slightly smaller and
has no hyaloid vessels at 3 dpf. J-L: Lens from dsl mutants are much smaller but the hyaloid vasculature displays no apparent
abnormalities at 5-8 dpf. M-O: Hyaloid vessels of plt mutants are loose at the back of the lens (asterisks) and the vascular pat-
tern gradually becomes less intricate. P: Vasculature attached to lens of 4-6 dpf lop mutants is similar to vessels on wild type
lens. Arrows point from posterior to anterior lens in all panels expect in 4F, where it points from dorsal to ventral retina. Scale
bars: 50 um in all panels except F, 500 um.
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Figure 5

Adult-onset retinal vasculature phenotypes in Plexin DI mutants. A-B: Pseudo-coloured adult retinas from (A) wild
type and (B) obd adult fish to facilitate quantification of the vessel branches. A black circumferential line demarks half the dis-
tance between the optic disc and the annular peripheral vein at different retinal regions (MID- retina). C: The number of main
branches radiating from the optic disc and the number of vessels crossing the mid-retina are higher in obd mutants (n = 18)
than in wild type retinas (n = 24). D: The average number of branch points per vessel is significantly decreased in obd (n = 5)
versus wildtype (n = 5) retinas. The number of branch points per 9 randomly chosen vessels in each retina was counted from
outside in. To avoid bias, the nearest vessel was chosen every 40° of retinal circumference, starting from the most ventral poin.
E: A significant reduction in the distance from the optic disc branches to the secondary branches, but not to the tertiary
branches, is observed in obd vessels (n = 40) versus wildtypes (n = 22).

Lens regulators required for hyaloid vasculature

development

The intimate association between the developing hyaloid-
retinal vasculature and the lens suggests that lens-derived
signals may regulate vessel development. Therefore we

analysed the intraocular vasculature of several mutants
characterised by defects in lens development.

Arrested lens (arl) mutants have a causative mutation in
the gene encoding laminin alpha 1 [43-45]. In arrested lens
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(arl) mutants only a rudimentary lens vesicle is observed
at 48 hpf which disappears by 60 hpf [43]. We observe
that in the absence of laminin alpha 1, a complete loss of
intraocular vasculature results at 3-6 dpf (Table 1 and
data not shown). Margin affected (mgf) mutants exhibit
small eyes and lens opacity at 4 dpf. At this stage mgf
mutants exhibit disorganised vascular tissue attached to
the lens, with fewer vessels and fewer branches than the
wild type larvae (Fig 4G). At 5 dpf, mgf mutants have only
a vestigial lens with no vasculature (Fig 4H). Similarly,
fused eyes (fe) mutants have smaller lenses with no associ-
ated vascular structures (Fig 4I). Not all lens mutants
present defects in the hyaloid vessels. Lens opaque
mutants (lop) exhibit lens opacity but have a hyaloid vas-
culature indistinguishable from wild type (Fig 4P)[44].
Furthermore the loss of vessel development in mgf and fe
mutants is not simply due to the smaller lens, as disrupted
lens (dsl) mutants [43,44], have quite normal hyaloid vas-
culature at 3-8 dpf despite stunted lens growth (Fig 4J-
4L). In addition we identify mutants with normal lens size
that exhibit defects in vessel patterning. Platinum (plt)
mutants display a subtle ocular phenotype recognisable
after 4 dpf by small pupils and pale pigmentation (Viht-
elic, unpublished data). plt lenses are normal in size at 5
dpfbut ~20% smaller than wild type at 6 dpf (Fig 4M-0O).
Although intraocular vessels are present in the mutant
they prematurely detach from the posterior lens at 4 dpf
(Fig 4AM-N). At 6 dpf, the plt mutant vessels are reduced in
number, have less patterning of branches and cover only
the posterior half of the lens (Fig 40).

Using antisense morpholinos we determined a novel role
for the mab2112 gene in hyaloid vasculature development.
Mab2112 morphants display retinal and lens defects [46].
At 5 dpf, the hyaloid vessels in mab2112 morphants are
thicker than wild types, and their growth is retarded to
only cover a small portion of the posterior lens, (Fig 4D).

Discussion

We describe the cellular and ultrastructural morphology
of the hyaloid and retinal vasculature in zebrafish from
early development through senescence and identify genes
encoding extracellular matrix and cell surface proteins
that are required for their development (Fig 6).

Comparison of human and zebrdfish retinal vasculature

Zebrafish provide a useful model to analyse the genetics
and pharmacology of human retinal vasculature. In both
humans and zebrafish; i) the primitive retinal vasculature
branches by angiogenesis from the central retinal artery,
ii) there is an initial hyaloid vasculature tightly associated
with the lens and later a retinal vasculature tightly associ-
ated with the Miiller endfeet in the ganglion cell layer, iii)
the retinal vasculature is enriched in pericytes enclosed by
the vessel basal lamina and iv) nourishment is likely

http://www.biomedcentral.com/1471-213X/7/114

mediated by subcellular vesicle vacuolar organelles
exchanged between the vessels and retina.

However, several features distinguish developing human
and zebrafish retinal vasculatures. An avascular region
equivalent to the cone-enriched fovea of mammals is not
present in adult zebrafish. In most mammals, the primary
retinal vessels branch to form intraretinal capillaries that
form plexi within the inner and outer plexiform layers
[3,5]. These intraretinal plexi are not present in adult
zebrafish, probably because the thinner zebrafish retina
(~150 pum) can be nourished by the surface retinal and
choroidal vessels. A similar phenomenon occurs in some
mammals in which the entire retina is nourished only by
the choriocapillaris [5,8]. The coupled hyaloid regression
and retinal angiogenesis observed during human retinal
vasculature development is not observed in zebrafish.
Instead, the vessels gradually move away from the lens
onto the retina as the vitreous forms. It is likely that the
closer proximity of the retina and lens in zebrafish means
that re-modelling rather than re-growth of the vessels is
sufficient.

A hallmark of retinal vasculature development in mam-
mals is the appearance during hyaloid regression of astro-
cytic networks that act as a scaffold and signalling source
for the forming retinal vasculature [3,9]. We find no evi-
dence of an astrocytic scaffold associated with the devel-
oping retinal vasculature in zebrafish. The scaffold is
presumably unnecessary, as coupled hyaloid regression
and retinal angiogenesis is not required. Nevertheless, we
do find that the retinal vessels in zebrafish contact radial
Miiller glial cells. Perhaps these Miiller cell-retinal vascu-
lature interactions regulate retinal neovascularisation as
they do in mammals under hypoxic conditions [47].
Additionally, signals emanating from zebrafish retinal
vessels after injury have been reported to control repro-
gramming of the multipotent Milller cell lineage to pro-
duce a niche of stem cells that regenerate the injured
retina [48].

ECM and Cell Surface Factors Required for Retinal
Vasculature Development

We find several cell surface and extracellular matrix
(ECM) proteins required for hyaloid and retinal vascula-
ture development. Some ECM components are present in
all vessels and some are tissue-specific. The ECM provides
structural support and acts as a signalling centre regulating
development and repair of blood vessels [49].

Within the ECM, we identify a critical role for the gene
encoding microfibril associated glycoprotein 1 (MAGP1)
in retinal vasculature development. MAGP1 is known to
be expressed in primitive vessels that first form on the pos-
terior lens [38]. Consistently, in the absence of MAGP1,

Page 11 of 17

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:114

http://www.biomedcentral.com/1471-213X/7/114

GENETIC DETERMINANTS OF RETINAL BLOOD SUPPLY IN ZEBRAFISH

ADULT (>2 MONTHS)

&
S
& <

&
é@‘

EARLY LARVA (48 hpf)

LARVA (3-20 dpf)

mgf

MAGP1 Mab2112

HS6ST2 Laminin alpha 1 (arl)
Syn2 fe

Plexin D1 (obd) plit

GENES AFFECTING DEVELOPMENT OF RETINAL BLOOD SUPPLY IN ZEBRAFISH

Plexin D1 (obd)

Sppl2 | FGF8 (ace) | dsi | lop
GENES WITH NO EFFECT ON DEVELOPMENT OF RETINAL BLOOD SUPPLY IN ZEBRAFISH

ECM-Cell Membrane / lens mutants

Figure 6

Model demarking the stages of retinal vasculature development and genetic determinants in zebrafish. Shown
are fluorescent micrographs of partially dissected eyes from Tg(flil :EGFP) fish showing the hyaloid and retinal vasculature in lar-
vae and adult. Hyaloid vessels first appear attached to the back of the lens at 48 hpf and grow rapidly to reach the front of the
lens at 3 dpf. In the adult, vessels are found associated with the inner surface of the retina. Insets are 3D models of this process
where vessels have been coloured in green, retinas in pink and lens in white. Genes identified in our analysis to affect retinal
vasculature development at different stages are boxed in green and genes unrelated to retinal vessels development are boxed
in grey. ECM genes: red; lens/retina genes: blue. CHOR: choroidal vasculature; RPE: retinal pigmented epithelium; NR: neuro-retina;

10C: inner optic circle.

the growth of the hyaloid vasculature is stagnated and
fails to form the characteristic wild type network of
hyaloid vessels. Microfibrils provide elasticity to blood
vessels and MAGP1 binds with fibrillin, a major compo-
nent of mircofibrils [38]. Previously, MAGP1 has been
reported to control vessel development in the trunk via
integrin signalling [38]. Similar ECM-integrin signals pre-
sumably operate in the hyaloid vasculature. We also deter-
mine that defects in the ECM complement of heparan
sulfate proteoglycans can result in defective vitreo-retinal
vasculature development. Heparan sulfate proteoglycans

on the cell surface and in the ECM are key regulators of
growth factor signalling and pericyte recruitment during
angiogenesis [50,51]. Impairment of this activity likely
underlies the hyaloid vasculature defects in HS6ST-2 and
syndecan 2 morphants. Heparan sulfate sulfotransferase 2
(HS6ST-2) differentially sulfates heparan sulfate prote-
oglycans conferring tissue-specificity to the extracellular
matrix [39]. HS6ST-2 is expressed in the developing eye at
24 hpf and loss of its sulfotransferase activity results in a
conglomeration of endothelial cells around the posterior
lens that fail to form a normal branching network. Like-
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wise, we find that loss of syndecan 2, a cell-surface heparan
sulphate proteoglycan, results in a rudimentary lens lack-
ing vitreoretinal vasculature, similar to the angiogenic
sprouting defects reported for syndecan 2 in the zebrafish
trunk [40]. Lastly, we find that the plexin D1 receptor
expressed on the cell surface of endothelial cells is
required for normal vascular patterning of the hyaloid
vasculature. In addition, zebrafish plexin D1 mutants [42]
survive to adulthood, unlike the knockout mice [52], ena-
bling us to observe retinal vasculature phenotypes charac-
terised by superfluous vessel branching and vessel
tortuosity. The signalling networks accounting for the
hyaloid and retinal vasculature abnormalities in the
absence of plexin D1 remains to be determined. Plexins
are receptors for semaphorins and are necessary for axonal
path-finding and vascular patterning during development
[53]. Indeed, plexin D1 has different roles in different vas-
cular beds. In the trunk, where stereotypical vessel assem-
bly normally occurs, disruption of semaphorin 3-plexin
D1 signalling results in the intersomitic vessels launching
from irregular positions, following aberrant paths of
migration and interconnecting ectopically [27,42]. In the
caudal plexus, which displays a variable vascular architec-
ture, defects in vessel remodelling are observed upon dis-
ruption of plexin D1 signalling [27].

Although we identify MAGP1, HS6ST2, syndecan 2 and
plexin D1 as genetic determinants of the hyaloid/retinal
vasculature, they are generic determinants of vasculature.
Evidence that the hyaloid/retinal vasculature has unique
gene combinations underlying its development initially
comes from our findings that no hyaloid vasculature
defects are observed in FGF8 or sppl2 mutants, despite
their fundamental role in vascular development of the
brain and heart, and caudal vein, respectively [41,54,55].
We hypothesised that lens or retinal factors may specifi-
cally regulate retinal vasculature patterning. Development
of hyaloid vessels tightly attached to the lens, followed by
progressive attachment to the retina suggests key roles for
secretory or cell surface signals emanating from the lens
and retina. Further proof-of-principle is evident from exper-
iments where lens expression of norrie transgenes partially
rescues retinal vasculature defects in knockout mice [56].
Thus, we examined zebrafish with genetic defects in lens
and retinal development for associated defects in the
hyaloid/retinal vasculature.

Retinal and Lens Factors Required for Retinal Vasculature
Development

Our analyses demonstrate that laminin alpha 1, mgf, fe, plt
and mab2112 genes are required for hyaloid and retinal
vascular development. Laminin alpha 1 is a glycoprotein
constituent of basement membranes in ocular tissues.
Loss of laminin alphal has recently been shown to result
in a complex ocular phenotype including loss of lens
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structures and a disorganized ganglion cell layer [45].
Consistent with the published data reporting the failure of
vascular endothelial cells to differentiate into capillaries,
we find no hyaloid vasculature in arl mutants. Mab2112
genes are highly conserved in vertebrates but have
unknown intracellular function [46]. We find a role for
mab2112 in hyaloid vessels patterning as the vessels in
mab2112 morphants only cover the posterior lens, are
thicker and have a less elaborated pattern. This is consist-
ent with a proposed role for mab2112 in cell proliferation
[57]. Three other genes fe, mgf and plt, which remain to be
cloned and fully characterised are also required for retinal
vasculature development. Notably, mab2112, mgf and plt
appear to have a specific role in hyaloid vasculature for-
mation as no defects in the trunk or gut vasculature are
associated with these genes. Cloning and functional char-
acterisation of these genes will help to define the networks
controlling hyaloid vasculature formation.

Zebrafish models of human retinal vasculature disease?
In addition to the identification of genetic determinants,
zebrafish may also be used to create models of human
hyaloid/retinal vasculature disease. Diabetic retinopathy,
age-related macular degeneration and retinopathy of pre-
maturity are prominent vascular abnormalities resulting
in human blindness [2,3].

As retinopathy of prematurity (ROP) is a developmental dis-
order, it is logical to think that this leading cause of child-
hood blindness could be modelled in zebrafish. In ROP,
premature infants are placed into high oxygen leading to
cessation of hyaloid vessel regression and growth of nas-
cent retinal vessels. Upon return to normoxia the infant
retina is hypoxic leading to abnormal neovascularization
which eventually leads to retinal detachment [12]. Our
results, however, demonstrate that zebrafish cannot
model this disease as they do not undergo overlapping
hyaloid vessel regression and retinal vessel angiogenesis.

Diabetic retinopathy and age-related macular degenera-
tion are adult-onset diseases characterised by leaky,
dilated vessels and unwanted growth of new blood vessels
into the vitreous. A good animal model to investigate the
pathogenesis of vasculoproliferative retinal disease does
not exist [58,59]. Adult zebrafish may fill this void as our
results show their retinal vasculature to share many simi-
larities with humans. These include pericytes and junc-
tional complexes, cellular hallmarks which become
perturbed in human disease [32,35,60].

Conclusion

We present a framework documenting the morphology
and ultrastructure of hyaloid and retinal vasculature
development in zebrafish. We also identify an initial
cohort of genes required for normal formation of these
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vasculatures. These results provide a foundation to utilise
genetic and pharmacological approaches in zebrafish, to
understand the development and diseases of hyaloid/ret-
inal vasculature.

Methods

Zebrafish maintenance and strains

Zebrafish (Danio rerio) were maintained according to
standard procedures on a 14-h light/10-h dark cycle at
28°C. Embryos were obtained by natural spawning and
developmental stages established by time and morpho-
logical criteria [61]. Tg(flil1:EGFP), Tg(gfap:EGFP) and
albino (alb4) lines were obtained from ZIRC [62].

Morphants and mutants

Details of the morpholinos and mutants analysed are pre-
sented in Table 1. All morpholinos, including their
sequences and specificity have previously been published
in terms of trunk vasculature or eye size [38-41,46]. In
brief, 6 ng of MAGP1, 8 ng of HS6ST2, 2 ng of Syn2, and
4 ng of sppl2b morpholinos and respective controls were
injected at the 1-4 cell stage into Tg(flil:EGFP) embryos
using standard techniques [63]. Co-injection of a p53
morpholino at 1.5 times the concentration of the vascu-
lar-associated morpholino was used to reduce toxicity
[64]. Injected embryos with viability greater than 50%,
were incubated at 30°C for 3-5 days, and scored for the
published tail vasculature phenotype [65]. Mab2112 (anti-
sense-1) and control morpholinos [46] at 2.5 mg/ml in
Danieau buffer were injected into single-cell
Tg(fli1:EGFP) embryos and incubated at 28°C for 5 days.
Lens mutants (obd, arl mgf, dsl, fe, plt and lop) were selected
based on described and unpublished phenotypes (Table
1). Ace mutants were obtained from Prof. Michael Brand
(Biotechnological Center of the Technische Universitit
Dresden, Germany).

Retinallens dissection and preparation

Larvae and adult fish were euthanised with a lethal dose
of benzocaine. Whole larvae (0-30 dpf) and juveniles
(30-60 dpf) were fixed in 4% paraformaldehyde (PFA) in
PBS for 2 hours at 4°C. The cornea was removed to facili-
tate retina and lens dissection. For adult fish (greater than
2 months old), eyes were enucleated and fixed in 4% PFA
at 4°C (2 hours - overnight). After removal of the cornea
and lens, retinas were dissected from adult eyes and fixed
for another 15 min at room temperature before further
processing. Retinas were flat mounted onto glass slides or
directly embedded in 15% methylcellulose before transfer
to depression slides for transmitted light microscopy or to
coverslip glass-bottom Petri dishes for confocal micros-
copy. Lenses were embedded in 15% methylcellulose
before microscopy. Vessels were visualised under bright-
field, epi-fluorescence and confocal microscopes (Zeiss
Lumar V12 stereo microscope, Olympus SZX16 stereo
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zoom microscope, Zeiss UV510 META LSM confocal
microscopy system).

Immunohistochemistry

Retinas were gradually dehydrated in methanol, rehy-
drated in PBS, permeabilised with PBS/0.5% Triton x100
(PBT) for 30 minutes at RT and blocked in PBT/10% goat
serum for 30 minutes at 4°C. Retinas were incubated
overnight with the primary antibody (1:100 - 1:200) in
PBT/10% goat serum at 4°C. Primary antibodies were:
collagen IV (Chemicon International), smooth muscle
actin (DakoCytomation), FVIII (DakoCytomation), and
GFAP (Sigma). After washes the retinas were incubated
with cy2- and cy3- conjugated secondary antibodies (Jack-
son Immunoresearch) diluted 1:200 in PBT/5% goat
serum, for 2 hours at RT. The adult retinas were flat-
mounted on glass slides and photo-protected with
Vectashield (Vector) prior to confocal microscopy. Stain-
ing results were confirmed using primary antibodies
diluted 1:100 followed by detection with peroxidase
labelled secondary antibodies and colorimetric develop-
ment reactions (DAB kit, Vector).

Alkaline phosphatase staining

Staining of the endogenous alkaline phosphatase (AP)
activity of hyaloid vessels was performed as previously
described [66]. Briefly, larvae were fixed in 4% PFA over-
night at 4°C and then rinsed with PBS. Eyes were pierced
with a tungsten micro-needle and larvae transferred to
100% methanol for 2 hours at 4°C. Larvae were rehy-
drated gradually in PBS, rinsed in PBS/1% Tween-20 and
treated for 30 minutes at RT with NTMT-alkaline phos-
phate buffer (pH = 9.5). NBT (0.4 mg/ml) and BCIP (0.19
mg/ml) were added and the staining was carried out in
darkness at RT. Stained larvae were fixed for 2 hours in 4%
PFA at 4 C. Lenses were dissected and prepared for micro-
scopy as described above.

Ultrastructural analysis

For transmission electron microscopy, whole eyes from
adult (n = 3) and senescent (n = 3) fish were fixed in a
mixture of 4% PFA and 2.5% glutaraldehyde diluted in
0.1 M Sorensen phosphate buffer (pH = 7.3) at RT. After 2
hours, retinas were dissected in the fixative and left over-
night at RT. Whole 5 dpf larvae (n = 3) were directly fixed
overnight using the same conditions. All samples were
post-fixed in 1% osmium tetroxide in 0.1 M Sorensen
phosphate buffer (pH = 7.3) for 1 hour at RT, dehydrated
in ascending concentrations of alcohol to 100% and
embedded in Epon resin using standard methods. Survey,
semi-thin (1 pum) sections were examined by light micro-
scopy where areas of interest were identified for ultrastruc-
tural analysis. Ultra-thin sections (80 nm) were cut using
a diamond knife and a Leica UC6 ultramicrotome, picked
up on 200 mesh copper grids and contrasted with uranyl
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acetate (20 mins) and lead citrate (10 mins). Sections
were examined in a Tecnai 12 BioTwin transmission elec-
tron microscope (FEI Electron Optics) using an accelera-
tion voltage of 120 Kv and an objective aperture of 20 um.
Digital images at various magnifications were acquired
with a MegaView 3 camera (Soft Imaging Systems) and
specimen tilting experiments were facilitated using the
CompusStage alpha tilt features of the microscope.
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Additional material

Additional File 1

Physical interaction of Miiller glia and retinal vasculature in adult
zebrafish. A: Transverse view of peripheral retina in an adult
Tg(gfap:EGFP) transgenic animal shows Miiller cells (green) expanding
through all retinal layers (blue: nuclear DAPI staining). B: Higher mag-
nification shows Miiller endfeet interposed with ganglion cell soma and
contacting the retinal vessels (v). C: When the vascular layer is dissected
from the inner interface of the retina (arrows) Miiller endfeet remain
attached to the vessels indicating a tight interaction. D: Blood vessel
(green: Flil-EGFP) overlying an adult retina seen from above with gan-
glion cell layer in the background (blue: DAPI nuclear staining). Miiller
cell endfeet (red: GFAP antibody) are observed on the entire surface of the
inner retina, but especially concentrated along the retinal vessel, in direct
contact with the vascular endothelium (yellow co-staining). GCL: gan-
glion cell layer; v: vessel; IPL: inner plexiform layer; INL: inner
nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-114-S1.tiff]

Additional File 2

Retinal vasculature in adult Plexin D1 mutants (obd) is character-
ised by a higher number of vessels and increased tortuosity. A: Left and
right retinas from an obd mutant showing 9—-10 main vascular branches
radiating from the optic disc. Scale bar 1 mm. B: Higher magnification
of an adult obd retina exhibiting extraneous vascular branches and loops
that are never observed in wild types. Scale bar 200 pm. C: Plexin D1
obd mutant retina exhibiting increased vessel tortuosity. Scale bar 500
pm. OD: optic disc

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-114-82.tiff]
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