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Abstract

Background: Heterorhabditis bacteriophora is applied throughout the world for the biological
control of insects and is an animal model to study interspecies interactions, e.g. mutualism,
parasitism and vector-borne disease. H. bacteriophora nematodes are mutually associated with the
insect pathogen, Photorhabdus luminescens. The developmentally arrested infective juvenile (l]) stage
nematode (vector) specifically transmits Photorhabdus luminescens bacteria (pathogen) in its gut
mucosa to the haemocoel of insects (host). The nematode vector and pathogen alone are not
known to cause insect disease. RNA interference is an excellent reverse genetic tool to study gene
function in C. elegans, and it would be useful in H. bacteriophora to exploit the H. bacteriophora
genome project, currently in progress.

Results: Soaking L| stage H. bacteriophora with seven dsRNAs of genes whose C. elegans orthologs
had severe RNAi phenotypes resulted in highly penetrant and obvious developmental and
reproductive abnormalities. The efficacy of postembryonic double strand RNA interference (RNAI)
was evident by abnormal gonad morphology and sterility of adult H. bacteriophora and C. elegans
presumable due to defects in germ cell proliferation and gonad development. The penetrance of
RNAI phenotypes in H. bacteriophora was high for five genes (87—100%; Hba-cct-2, Hba-daf-2 |, Hba-
icd-1; Hba-nol-5, and Hba-W01G7.3) and moderate for two genes (usually 30-50%; Hba-rack-I and
Hba-arf-1). RNAI of three additional C. elegans orthologs for which RNAi phenotypes were not
previously detected in C. elegans, also did not result in any apparent phenotypes in H. bacteriophora.
Specific and severe reduction in transcript levels in RNAi treated LIs was determined by
quantitative real-time RT-PCR. These results suggest that postembryonic RNAi by soaking is
potent and specific.

Conclusion: Although RNAI is conserved in animals and plants, RNAi using long dsRNA is not.
These results demonstrate that RNAI can be used effectively in H. bacteriophora and can be applied
for analyses of nematode genes involved in symbiosis and parasitism. It is likely that RNAi will be
an important tool for functional genomics utilizing the high quality draft H. bacteriophora genome
sequence.
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Background

Heterorhabditis bacteriophora is a rhabditid entomopatho-
genic nematode (EPN) symbiotic with the enteric bacte-
rium Photorhabdus luminescens, a dangerous liaison lethal
to many insect hosts [1]. EPNs are applied globally for the
biological control of insects. The nematode is also a
potentially powerful animal model to study interspecies
interactions such as mutualism, parasitism, and vector-
borne disease. Genomics and genetics are available for the
symbiont, and because it is a close relative to Caenorhabdi-
tis elegans, are being developed for the nematode. In addi-
tion, well-studied arthropod models (e.g. Drosophila
melanogaster) can be used as hosts [2].

The developmentally arrested infective juvenile (IJ) nem-
atodes exist in soil and transmit an average of 130 P. lumi-
nescens bacteria in their gut mucosa, sometimes for several
months, before locating and infecting a suitable insect
host [3]. The IJs search, locate and penetrate the insect
exoskeleton or intestine, sometimes by using a buccal
tooth, and then regurgitate the bacteria into the haemo-
coel (Figure 1). The association is an obligate mutualism
since both the nematode and bacterium are required for
insect pathogenicity.

The nematode is dependent on symbiotic bacteria for
insect pathogenicity and nematode growth and reproduc-
tion since axenic IJs do not cause insect mortality nor
develop and reproduce normally [4]. In contrast, P. lumi-
nescens are highly virulent when injected into the insect
haemocoel, having an LDs, <30 cells for many insect
hosts, but are dependent on the IJs for transmission and
persistence outside of insect hosts. After the bacteria are
regurgitated by the IJs [3], insect mortality rapidly ensues
(usually <48 h) and the bacteria grow to high cell densi-
ties and produce insecticidal toxins, secondary metabo-
lites to inhibit saprophytic microbes, bacteriophagous
nematodes and savaging insects. In addition, the bacteria
are required for nematode growth and reproduction [4,5].

Reproduction of H. bacteriophora is heterogonic: both
automictic hermaphrodites and amphimictic females and
males are formed [6]. The IJs are hermaphroditic, but gen-
erate automictic and amphimictic progeny that grow and
reproduce for several generations on P. luminescens, after
which, the hermaphroditic IJ stage is formed. The IJs are
specifically colonized by P. luminescens and transmit the
bacteria to new insect hosts.

Heterorhabditis bacteriophora is closely related to C. elegans
(Rhabditidae) and can be propagated outside of insect
hosts on agar based media and in liquid culture provided
that a monoculture of symbiotic P. luminescens is present.
We sought to further utilize the techniques and knowl-
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edge of C. elegans to study the interactions between H. bac-
teriophora, P. luminescens and insects.

One of these techniques is targeted gene silencing by
RNAI, a powerful molecular genetic tool to elucidate gene
function. In C. elegans, RNAi was originally performed by
injecting dsRNA into the body of L4 animals [7,8] and
also shown to be effective by soaking [9,10], on lawns of
bacteria expressing dsRNA [11] or by expressing dsRNA in
C. elegans cells [12]. RNAi by feeding [13,14], soaking [15]
and injection [16] are amenable to high throughput
methodologies. The dependence of H. bacteriophora for
symbiotic bacteria for growth and reproduction makes
RNAi by feeding problematic. Therefore, we developed a
soaking protocol for efficient RNAi in H. bacteriophora.
Using this protocol we detected highly penetrant and
obvious phenotypes in H. bacteriophora for seven C. ele-
gans orthologs, previously reported to have highly pene-
trant and obvious phenotypes in C. elegans. This is the first
demonstration of RNAIi by soaking in H. bacteriophora, a
technique difficult for many nematodes other than C. ele-
gans perhaps due to inefficient uptake of environmental
dsRNA [[17], M. Montgomery pers. comm.|. This tech-
nique is amenable to high-throughput methodologies
and should greatly enhance the analysis of gene function
in H. bacteriophora.

Results and discussion

Optimization of RNAi methodology for H. bacteriophora
Since H. bacteriophora requires P. luminescens for growth
and reproduction, one strategy for RNAi might be to
express H. bacteriophora dsRNA in Escherichia coli HT115
(DE) delivered while in co-culture with P. luminescens. We
tested the validity of this approach by determining if
highly penetrant ds Cel-pop-1 RNA, retains silencing activ-
ity in C. elegans when grown in co-cultures of P. lumines-
cens. C. elegans 1.4 grown on lawns of HT115 expressing ds
Cel-pop-1RNA resulted in embryonic lethality (Emb) with
100% penetrance. However, silencing was abolished
when as little as 2% P. luminescens were added (0% Emb)
and to a lesser extent in the presence of 2% Escherichia coli
OP50 (data not shown). Therefore, the strategy to deliver
dsRNA as a HT110-P. luminescens co-culture was not feasi-
ble, presumably due to nucleases produced by P. lumines-
cens. We then attempted to use a soaking methodology to
deliver dsRNA for RNAi in H. bacteriophora.

Soaking L1 H. bacteriophora in M9 buffer resulted in high
lethality (>90%). Survival of L1 larvae was improved in S-
basal media and found to be optimal in Ringer's solution
buffered with HEPES (pH 6.9). Initial experiments soak-
ing L1 larvae for 24 h in Ringer's solution sometimes
resulted in significant adult sterility. However, using L1s
harvested from pure monocultures of P. luminescens, the
adult nematodes were fertile. Thus, a pure monoxenic cul-
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Life-cycle of Heterorhabditis bacteriophora (adapted from [1]). The non-feeding developmentally arrested dauer or
infective juvenile (IJ) transmits a monoculture of symbiotic P. luminescens (GFP-labelled P. luminescens are shown) to the haemo-
coel of an insect host, where it regurgitates the bacteria. The bacteria rapidly kill the insect (usually <48) and grow to high den-
sities allowing nematode growth and reproduction (The lower panel is an image taken from the bioluminescence of the
bacteria). The nematodes grow for 2-3 generations, feeding on P. luminescence, after which (~10 d at 28°C) IJs are formed en

masse, most transmitting symbiotic P. luminescens.

ture of H. bacteriophora-P. luminescens is important for sur-
vival and development of the nematodes during and after
RNAI.

From 850 EST sequences, kindly communicated by Ann
Burnell (National University of Ireland, Maynooth, Ire-
land), seven orthologs that had obvious and highly pene-
trant RNAi phenotypes in C. elegans, were chosen for RNAi
by soaking in H. bacteriophora (Table 1, see additional file

1). Three other ESTs whose C. elegans orthologs had no
discernable RNAi phenotype in C. elegans were also tested.

RNAi by soaking L1s in dsRNA corresponding to portions
of Hba-cct-2, Hba-icd-1, Hba-daf-21, Hba-nol-5, Hba-
WO01G7.3, Hba-K04D7.1 and Hba-arf-1 were successful as
evidenced by sterility, defective gonad development and
germline proliferation in adult animals (Table 2, Figure
2). L1s soaked in Ringer's solution with no dsRNA added

or dsRNA corresponding to portions of Hba-mrp-4, Hba-

Table I: Candidate H. bacteriophora genes for RNAi gene silencing

GeneA Predicted FunctionB C. e. Ortholog %ldentity, length© C. elegans PhenotypesP [ref]

Hba-cct-2 T-complex chaperonin T21BI10.1 (Cel-cct-2) 79, 357 Emb, Ste [13,14], Pch, Pvl, [14], Lva [13]

Hba-daf-21 Hsp-90 chaperonin C47E8.5 (Cel-daf-21) 79, 804 Emb, Ste [31]

Hba-icd-1 BTF3 transcription factor Anti-apoptotic C56C10.8 (Cel-icd-1) 75, 529 Emb [13,14, 31], Gro [13,14,15], Stp
[14,15], Bmd, Clr, Sck [13], Unc [14]

Hba-nol-5 Ribosome biogenesis Nop58p/Nop5p WOIBI 1.3 (Cel-nol-5) 74, 634 Lva [14,31,53], Emb, Lva [31,53], Gro,
Muv, Pvl, Sle, Stp, [31]

Hba-WO01G7.3 RNA polymerase subunit L WO0I1G7.3 (Ce-W01G7.3) 80, 81 Emb [13,14,15,31], Gro [14,31], Ste, Stp
[31], PvI [14], Lva [15]

Hba-rack-1 G protein B-like subunit K04D7.1 (Cel-rack-1) 75, 441 Gro [13,14], Emb, Egl [13], Slu [14]

Hba-arf-1 ADP-ribosylating factor B0336.2 (Cel-arf-1) 75,219 Emb [13,14,36], Unc [13,14], Pvl, Rup, Ste
[13], Gro [14]

Hba-ben-1 B-tubulin, benomyl sensitivity C54C6.2 (Cel-ben-1) 78,518 no phenotype reported

Hba-mrp-4 Mrp-1 multidrug resistance family F21G4.2 (Cel-mrp-4) 61,468 no phenotype reported

Hba-nhr-47 nuclear hormone receptor C24G66.4 (Cel-nhr-47) 65, 269 no phenotype reported

A Based on ESTs, see methods for accession #'s.

B Based on Wormbase gene description for C. elegans ortholog.

CBased on BLASTN analysis in Wormbase.

D RNAI phenotypes reported previously. Abbreviations are: Bmd = body morphology defect, Clr = clear, Egl = egg laying defective, Emb = embryonic lethal, Gro = slow
growth, Muv = multivulva, Pch = patchy coloration, Pvl = protruded vulva, Sck = sick, Sle = slow embryonic development, Slu = sluggish, Ste = sterile, Stp = sterile progeny,
Unc = uncoordinated
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ben-1, and Hba-nhr-47, resulted in adults with normal fer-
tility, gonad morphology and oocyte formation (Table 2,
Figure 2).

RNAi of H. bacteriophora

The C. elegans cct-2 (T21B10.1) gene encodes a compo-
nent of eukaryotic T-complex chaperonin (CCT or
TRiC)[18]. CCT is a group II chaperonin of similar struc-
ture to the prokaryotic GroEL chaperonin, but found only
in Eukarya and Archea [19]. CCT/TRiC is required to fold
actin [20], tubulin [21], cyclin E1 [22] and also 10% of
newly synthesized cytoplasmic proteins [23], including
proteins with WD40 domains [24]. In C. elegans, mec-3
independent expression of cct-2 touch receptors has also
been demonstrated, suggesting a role for CCT in touch
receptor function, possibly through microtubule assem-
bly [25].

Table 2: H. bacteriophora and C. elegans RNAi Phenotypes

http://www.biomedcentral.com/1471-213X/7/101

In C. elegans, published RNAi experiments of cct-2 resulted
in embryonic lethal (Emb) and sterile (Ste) phenotypes
[13,14] and sometimes a protruding vulva (Pvl)(Table
1)[14]. RNAi by feeding L1 C. elegans with bacteria
expressing ds Cel-cct-2 RNA resulted in a highly penetrant
Ste phenotype with Pvl also observed (Table 2). Soaking
L1 H. bacteriophora in ds Hba-cct-2 RNA resulted in a
highly penetrant (100% in 4 trials, 96% and 94% in two
other trials) Ste phenotype (Table 2). The cause of sterility
was likely due to defective gonad development and
absence of germ cells (Figure 2F, F). Mature H. bacterio-
phora hermaphrodites which lack gonads have an empty
or transparent appearance due to a void space in the pseu-
docoelom normally occupied by the gonad (Figure 2E, F).
Both C. elegans and H. bacteriophora treated with their
respective ds cct-2 RNA were sterile and had abnormal
gonads, although only C. elegans had a protruded vulva

Trial
Nematode I %Pen.(n)A 2 %Pen.(n) 3 %Pen.(n) 4 %Pen.(n) 5 %Pen.(n) 6 %Pen.(n)
Gene
(Phenotype)
H. bacteriophora®
(-)water (Ste) 0 (49) 0(17) 0 (20) 0(39) 0 (40) 0 (30)
Hba-cct-2 100 (34) 100 (36) 100 (16) 96 (24) 94 (64) 100 (34)
Hba-daf-21 100 (36) 100 (19) 100 (30) 92 (24) 82 (34) 87 (47)
Hba-icd-1 100 (31) 100 (38) 87 (15) 100 (15) 98 (40) 98 (40)
Hba-nol-5 95 (39) 100 (32) 100 (41) 93 (30) 57 (28) 72 (32)
Hba-W01G7.3 95 (39) 100 (34) 95 (39) 100 (33) 83 (47) 86 (49)
Hba-rack-1 31 (39) 82 (22) 28 (25) 61 (28) 10 (39) 33 (33)
Hba-arf-1 50 (32) 67 (15) 47 (15) nd¢ nd nd
Hba-ben-1 0 (48) 38 (21) Il (36) 0 (45) 0 (42) 0(33)
Hba-nhr-47 nd 12 (17) 3(36) nd nd nd
Hba-mrp-4 0(57) 10 (21) 0 (26) nd nd nd
C. elegansP®
Cel-cct-2 (Pvl) 83 (86) 71(97) 53 (92) nd nd nd
(Ste) 100 (86) 100 (97) 100 (92) nd nd nd
Cel-icd-1 (Pvl) 81 (118) 86 (114) nd nd nd nd
(Ste/Stp) 100(118) 100 (114) nd nd nd nd
Cel-WOIG7.3 (Pvl) 10 (94) 9 (64) 12 (69) nd nd nd
(Ste) 100 (94) 100 (64) <100 (>50) nd nd nd
(Egl, Stp) nd nd few nd nd nd
Cel-nol-5 (Pvl) 68 (94) 64 (98) nd nd nd nd
(Ste) 100 (94) 100 (98) nd nd nd nd
Cel-rack-1(Pvl) 19 (66) 4 (80) 3(72) nd nd nd
(Ste) 100 (66) <100(>50) <100(>50) nd nd nd
(Egl, Stp) 0 Few few nd nd nd
Cel-ben-1 witE (>50) wt (>50) wt (>50) nd nd nd
APercent penetrance (% Pen.), number of worms examined (n).
B Number of sterile adult female or hermaphrodites with defective gonads from RNAI by soaking, see methods for details.
€ Not determined
D Postembryonic phenotypes from RNAI by feeding, see methods for details.
EIndistinguishable from wt.
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Figure 2

Postembryonic RNAi phenotypes of H. bacteriophora. Heterorhabditis bacteriophora adult hermaphrodites 80—96 h after
soaking L|s with A,, B. no dsRNA added. C,, D. ds Hba-ben-I RNA, E., F. ds Hba-cct-2 RNA, G., H. ds Hba-daf-21 RNA, 1., ]. ds
Hba-icd-1 RNA, and K., L. ds Hba-nol-5 RNA. v = vulva, i = intestine, g = gonad, ab = abnormal gonad.
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(Table 2). The comparable penetrances of these pheno-
types suggest that RNAi by soaking in H. bacteriophora is
nearly as efficient as by feeding in C. elegans.

The C. elegans daf-21(C47E8.5) gene encodes a member of
the Hsp90 family of molecular chaperones important for
maturation of signal transduction kinases in neurons
involved in odorant perception and required for larval
development [26]. Hsp90 is also expressed in the gonad
and required for germline development [27], but is also
expressed somatically during stress as part of the age-1
related aging regulon [28-30]. A published RNAi experi-
ment of daf-21 in C. elegans resulted in Emb and Ste phe-
notypes [31]. The post-embryonic phenotype of H.
bacteriophora treated with ds Hba-daf-21 RNA resulted in
sterile animals with abnormal gonad morphology (Figure
2G, H). Like RNAi of Hba-cct-2, RNAi of Hba-daf-21 was
highly penetrant (Table 2, 100% for 3 trials and 92%,
82%, 87% each for single trials).

The C. elegans icd-1 (C56C10.8) gene encodes the beta
subunit of nascent polypeptide associated complex
(BNAC) associated with the mitochondrial membrane
and an inhibitor of apoptosis [32]. Published RNAi exper-
iments of icd-1 in C. elegans resulted in Emb, slow growth
and Ste phenotypes (Table 1) [13-16]. We detected highly
penetrant Ste, Pvl, and defective gonad morphology phe-
notypes by feeding C. elegans ds-icd-1 (Table 2, Figure 3).
Postembryonic RNAi of H. bacteriophora resulted in Ste
phenotype due to an abnormal gonad with little germ cell

http://www.biomedcentral.com/1471-213X/7/101

proliferation (Figure 2I, J). This phenotype was highly
penetrant (Table 2, 100% Ste in 3 trials, 98% in 2 trials,
and 87% in one trial). We did not observe apoptosis in H.
bacteriophora, and we were unable to generate sufficient
males to observe defects in male tale rays, phenotypes
observed in C. elegans [32].

The C. elegans W01B11.3 gene, recently named nol-5
(Jonathan Hodgkin, personal communication), is pre-
dicted to encode an ortholog of the ribosome biogenesis
protein Nop58p/Nop5p and is likely essential for infor-
mation processing. Published RNAi experiments of Cel-
nol-5 usually resulted in larval arrest and Emb pheno-
types, with multivulva, protruding vulva, slow growth,
maternal sterility and sterile progeny phenotypes also
observed [14,31]. RNAi by feeding ds Cel-nol-5 RNA
resulted in Pvl, Ste with abnormal gonad development
phenotypes (Table 2, Figure 3E, F). RNAi of Hba-nol-5 in
H. bacteriophora resulted in a Ste phenotype with abnor-
mal gonads (Figure 2K, L), which was highly penetrant
(Table 2, 100% two trials, 95%, 93%, 72% and 57% in
four other trials).

The C. elegans gene W01G7.3, like Cel-nol-5, is likely
essential for information processing since it is predicted to
encode subunit L of RNA polymerase. RNAi of W01G7.3
in C. elegans resulted in Emb phenotype with several other
growth defects observed (Table 1) [13-15,31]. RNAi of
Hba-W01G?7.3 resulted in Ste phenotype with an abnor-
mal gonad, likely due to the essential role for this protein

Figure 3

Postembryonic RNAi phenotypes of C. elegans. Caenorhabditis elegans adult hermaphrodites of 72—80 h after L1s were
placed on E. coli HT 110 expressing A., B. dsGFP RNA, C,, D., ds Cel-icd-| RNA, E., F., and ds Cel-nol-5 RNA. v = vulva, pv = pro-
truding vulva, i = intestine, g = gonad. Arrow denotes abnormal gonad.
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in cell viability and division (Table 2). This phenotype
was highly penetrant, with >83% of adults being sterile
with abnormal gonads (Table 2).

The C. elegans rack-1 (K04D7.1) gene is predicted to
encode the homolog of mammalian receptor of activated
C kinase. Published RNAi experiments of Cel-rack-1 in C.
elegans resulted in less obvious and penetrant phenotypes
than those described above: Emb, slow growth, egg laying
defect, aldicarb resistance, and larval lethality (Table
1)[13,14]. RNAi of Hba-rack-1 resulted in 10-82% of ani-
mals with a Ste phenotype and abnormal gonad develop-
ment (Table 2, Figure 2). Thus, lower penetrances were
observed using ds-rack-1 RNA for both H. bacteriophora
and C. elegans.

The C. elegans arf-1 (B0336.2) gene encodes a predicted
ADP-ribosylating factor (ARF). ARFs are known to regu-
late membrane trafficking and the actin cytoskeleton,
phospholipase D1 and phosphatidylinositol 4-phosphate
5-kinase [33]. RNAi of Cel-arf-1 resulted in Emb and a
variety of other defects (Table 1) [14,15]. RNAi of Hba-arf-
1 resulted in a Ste phenotype with abnormal gonads in
50%, 67% and 47% in each of three trials (Table 2).

The C. elegans ben-1 (C54C6.2) gene, also known as tbb-1,
encodes the beta subunit of tubulin, which when dis-
rupted, results in resistance to benzimidizole [34]. RNAi
of ben-1 in C. elegans usually resulted in no observed
defect [13,35,36] although Emb, abnormal post-embry-
onic development, larval arrest and larval development
were sometimes observed [13,35,36]. RNAi of Hba-ben-1
in H. bacteriophora usually resulted in no observable
defect, although a Ste (38%, 11%) phenotype was
observed in two experiments.

The C. elegans mrp-4 (F21G4.2) gene is predicted to
encode a multidrug-resistance associated (mrp-1 type)
protein related to human cystic fibrosis transmembrane
conductance regulator, CFTR. RNAIi of mrp-4 in C. elegans
resulted in no observed phenotype [13,16]. Since the P.
luminescens symbiont of H. bacteriophora produces several
known secondary metabolites, such as hydroxystilbene
antibiotics, anthraquinone pigments [37] and a photo-
bactin siderophore [38], it is possible that H. bacteriophora
multidrug-resistance associated proteins might be
involved in exporting these secondary metabolites. RNAi
of Hba-mrp-4 in H. bacteriophora resulted in no observed
defect in two trials and 10% sterility in one trial (Table 2).
It is likely that H. bacteriophora, like C. elegans [39], has
several multidrug-resistance associated proteins and this
redundancy might be responsible for the weak phenotype
from RNAi of Hba-mrp-4. Alternatively, other resistance
mechanism might be employed to resist secondary
metabolites produced by P. luminescens.

http://www.biomedcentral.com/1471-213X/7/101

The C. elegans nhr-47 (C24G66.4) gene is predicted to
encode a nuclear hormone receptor and is induced upon
worm exposure to estradiol [40]. Published RNAi experi-
ments of Cel-nhr-47 in C. elegans resulted in no observed
phenotype [13,16,35]. Similarly, RNAi of Hba-nhr-47 in
H. bacteriophora usually resulted in no observed pheno-
type, although 12% and 3% Ste animals were observed
(Table 2, Figure 2).

Quantification of RNAi by Real-time RT-qPCR

To determine the extent of RNAI silencing in H. bacterio-
phora, quantitative real-time RT-qPCR experiments were
performed. Message levels of Hba-cct-2 and Hba-nol-5
were quantified relative to Hba-ben-1 when treated with
the specific or unspecific dsRNA (i.e. for Hba-cct-2 and
Hba-nol-5, RNAi using ds Hba-nol-5 and ds Hba-cct-2 RNAs
were used, respectively). Relative amounts of mRNA were
determined using the AAC, method. RNAi of Hba-cct-2
resulted in mRNA levels 5.8 x 103 and 8.5 x 10° relative
to the nonspecific dsRNA control. RNAi of Hba-nol-5
resulted in mRNA levels 2.6 x 103 and 7.1 x 102 relative
to the nonspecific dsRNA control. RNAi of Hba-ben-1
resulted in mRNA levels 1.6 x 10-2and 9.9 x 10-4relative
to two nonspecific dsRNA controls: Hba-nol-5 in an Hba-
cct-2 RNAI experiment or Hba-cct-2 in a Hba-nol-5 experi-
ment, respectively. From these data we conclude that
RNAIi by soaking in H. bacteriophora is potent and specific.

RNA:i treated H. bacteriophora are normal in symbiotic
host-bacterial interactions

One of our goals for developing RNAI in H. bacteriophora
is to use this technique along with imminent high quality
draft (6x coverage) H. bacteriophora genome sequence (R.
Wilson, personal communication), to identify genes
involved in symbiotic host-bacterial interactions. Many of
the genes silenced have essential functions in the nema-
tode and we sought to determine if these RNAI treated ani-
mals have defects in symbiotic host-bacterial interactions.
RNAI treated worms for all 10 genes described above were
reared on GFP-labeled P. luminescens and observed for
bacterial colonization in the adult nematode intestine. No
difference was seen in the presence of GFP-labeled P. lumi-
nescens in the intestines of RNAI treated and untreated
worms (see additional file 2). This observation suggests
that specific genes involved in symbiotic host-bacterial
interactions can be identified using RNAi.

Conclusion

Gene silencing by RNAI is a powerful reverse genetic tool
to study gene function. Although, RNAi using long dsRNA
is robust in C. elegans, it is inefficient in many other nem-
atodes. The robustness of RNAi in C. elegans can be par-
tially attributed to the systemic RNAi defective gene, Cel-
sid-1, involved in the transport of long dsRNA [41,42] and
recently, Cel-sid-2 required for efficient transport of
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dsRNA in the C. elegans intestine [17]. Recently, the sys-
temic RNAI defective gene, Hba-sid-1, was identified in H.
bacteriophora [43] which might partially explain the obvi-
ous phenotypes and high penetrances of RNAi in H. bac-
teriophora. Because the nematode egg yolk is synthesized
by intestinal cells, it is possible that the Ste and gonad
defective phenotypes are caused by RNAi of only the nem-
atode intestinal cells. However, the low amounts of tran-
script levels detected in L1s following RNAI suggests that
RNAI is nearly systemic. This hypothesis could be tested,
in principle, by performing RNAi on muscle tissue, for
example by silencing the unc-22 gene conferring a twitch-
ing phenotype to C. elegans [44]. Attempts to use degener-
ate primers to amplify Hba-unc-22 were not successful and
Hba-unc-22 has not been found in existing H. bacteriophora
EST datasets. After the completion of the H. bacteriophora
genome, this and many other RNAi experiments will be
performed.

This study demonstrates that RNAi by soaking is an effi-
cient methodology for gene silencing in H. bacteriophora,
which can be applied to study many aspects of the unique
biology including parasitism and mutualism. One limita-
tion to this methodology is the development of RNAi
treated nematodes to adults versus the infective juvenile
stage, the later which transmits the symbiotic bacteria and
are insect parasitic. The lack of IJ development from RNAi
treated larvae is likely due to the large amount of food sig-
nal provided by the confluent lawn of P. luminescens on
which the L1s are placed. The density of L1 larvae might
also influence the development of the L1 larvae to the IJ
stage. The severe and highly penetrant phenotypes
observed here suggests that RNAi will be a useful tool to
study gene function in H. bacteriophora, i.e. related to sym-
biont transmission, parasitism, sex determination, stress
resistance and infective juvenile formation.

More generally, mixed results concerning the efficiency of
RNAi have been reported in several clades of parasitic
nematodes [45]. Problems encountered using RNAI in
parasitic nematodes includes non-target effects of dsRNA,
variable efficiencies of RNAi with regard to the target gene
silenced and dsRNA preparation, and in vitro cultivation.
These problems appear to be less of a concern for H. bac-
teriophora due to the high specificity and penetrances of
RNAI. In the potato cyst nematode Globodara padilla, RNAi
of neuronal FMRF amide-like peptides was surprisingly
robust [46]. The results reported here are promising to the
applicability of RNAI to study gene function in H. bacteri-
ophora. However, further refinements of the RNAi meth-
odology are expected when targeting diverse genes
expressed in different tissues, when applied to nematodes
of different developmental stages and when applied to
larger gene sets.

http://www.biomedcentral.com/1471-213X/7/101

Methods

Strains and growth conditions

Heterorhabditis bacteriophora strain TTO1 was kindly pro-
vided by Ann Burnell (National University of Ireland-
Maynooth). Photorhabdus luminescens subsp. laumondii
were isolated from IJs that were surfaced sterilized for 5
min in 2% commercial bleach (~ 12% sodium hypochlo-
rite) and allowed to release the bacteria on 2% Proteose
Peptone #3 (PP3)(Difco, Detroit, MI) agar. Glycerol
stocks (25% vol/vol sterile glycerol) of the bacterium were
stored at -80°C. The nematodes were cryopreserved as
described previously [47] and maintained by infecting
Greater Waxmoth larvae, Galleria mellonella (Rainbow
Mealworms, Compton, CA) or propagated on lawns of
symbiotic bacteria as follows: the primary phase variant of
P. luminescens was grown overnight at 28°C in 3 ml of PP3
after which 50 (MICRO) ul were spread on NA+chol (1.5x
Nutrient Broth, 1.5% agar (Difco, Detroit, MI) and 10 pg/
ml cholesterol), the inoculated plates were incubated at
28°C overnight, after which 50-100 surface sterilized IJs
were added. The nematode cultures were grown at 28°C
and eggs were collected ~ 86 h or IJs ~ 10 d after inocula-
tion. An inbred line, M31e, was obtained by self-fertiliz-
ing the hermaphrodites for 13 generations by placing
single IJs onto NA+chol containing a lawn of P. lumines-
cens and inoculating new cultures with single IJ offspring,
a process repeated 13 times.

Caenorhabditis elegans N2 were maintained on E. coli OP50
seeded NGM agar as previously described [48].

Generation of dsRNA

A dataset of approximately 650 expressed sequence tags
(ESTs) obtained from H. bacteriophora HP88 IJs recovered
on lawns of symbiotic P. luminescens was kindly provided
by Ann Burnell. The EST dataset was analyzed for the pres-
ence of C. elegans orthologs by BLASTX analysis [49] and
for gene function and RNAi phenotypes using gene anno-
tations and WormBase [50]. Seven ESTs were chosen that
had severe RNAi phenotypes in C. elegans (Hba-cct-2, Hba-
icd-1, Hba-daf-21, Hba-nol-5, Hba-W01G7.3, Hba-
K04D7.1, Hba-arf-1) and one potentially involved in sym-
biosis (Hba-mrp-4), potentially conferring resistance to
benomyl (Hba-ben-1) and a nuclear hormone receptor
(Hba-nhr-47) (Table 1, see additional file 1). Oligonucle-
otide primers were designed using the EST sequence and
Primer3 [51]. Large introns were avoided by aligning the
EST sequence with the C. elegans genome and using the
gene structure content of WormBase. The T7 RNA
polymerase promoter sequence taatacgactcactatagggaga
(T7) was added to each of the 5' ends of the PCR primers
for in vitro transcription to generate dsRNA. The primer
sequences are: Hba-cct-2T7f, (T7)cagccaaagaggatggagaa;
Hba-cct-2T7r,  cctccgagaacaagtgcaag,  Hba-daf-21T71,
(T7)cgagaaattgccgaagata; Hba-daf-21T7r, (T7)tggcaactcca-
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gaccttctt; Hba-icd-1T7f, (T7)agggaactccacggagaaag; Hba-
icd-1T7r, (T7)tcggcctttgtctcattctt; Hba-nol-5T7f,
(T7)ggagctagagcagcecatacg; Hba-nol-5T71, (T7)tgtgcaggctg-
tatcacttc; Hba-W01G7.3T7f, (T7)aagttcggccatcaaatcag;
Hba-W01G7.3T7r, (T7)caaaggttcctaacgctget; Hba-
K04D7.1T7f, (T7)ggacaattcgctctttctgg; Hba-K04D7.1T7r,
(T7)agcgatccatcaggtgaaac; Hba-arf-1T7f, aaact-
gggcgaaatcgttact;  Hba-arf-1T7r,  ggcagcattcatagcattagg;
Hba-ben-1T7f, (T7)aaatggcggcaagtatgttc; Hba-ben-1T7r,
(T7)gaaggaacgacggaaaatga; Hba-mrp-4T7f, (T7)cggtcga-
gagtcaatacaagg, Hba-mrp-4T7r, (T7)gccggggtaatgtttgaatg;
Hba-nhr-47T7f, (T7)cgatgcagctagtcaacgaa; Hba-nhr-47T7r,
(T7)ggcctaattcctaacgcagtc.

Genomic DNA was purified from H. bacteriophora IJs col-
lected from P. luminescens containing NA+chol plates
using a modified CTAB/phenol extraction protocol [52]
after which bacterial DNA was digested with Dpnl (New
England Biolabs, Bedford, MA). 100-200 ng of template
was added to a PCR reaction containing 20 pM of each
primer, in a 50 pl vol using the standard reaction provided
for Taq (Promega, Madison, WI). The PCR condition used
was: 1.94°C for 3 min, 2.94°C 45 sec, 3. 57°C 30 sec, 4.
72°C 45 sec, 5. repeat steps 2-4 30x then 6.72°C 10 min.
The PCR reactions were analyzed for a single band of pre-
dicted size on a 1.2% agarose gel. 5 pl of the PCR reaction
was then used directly for in vitro transcription using the
Megascribe T7 kit (Ambion, Austin, TX) or T7 RiboMax
(Promega) according to the instructions provided, except
the transcription reactions were incubated for >6 h at
37°C. The DNA templates were removed by DNAse treat-
ment and then dsRNA precipitated by adding 1/10 vol. of
5 M ammonium acetate and 2.5 vol. of 100% ethanol for
>1 h at 4°C. The precipitated dsRNA was centrifuged for
30 min at 16,000 x g and then washed with 70% ethanol
prepared in RNAse free water. After air drying for 5 min,
the pellet was dissolved in 25 pl of RNAse free water. The
quality of the transcribed RNA was determined by run-
ning 1 pl on a 1.2% agarose gel and quantified (A,4,)
using a NanoDrop (Nanodrop Technologies, Wilming-
ton, DE).

RNA:i of H. bacteriophora

Heterorhabditis bacteriophora eggs were harvested from NA
+chol. containing P. luminescens usually 82-86 h after the
addition of 50-100 IJs when grown at 28-29°C. Washing
1-2 week old IJs three times in 15 ml of Ringer's solution
(100 mM NaCl, 1.8 mM KCl, 2 mM CacCl,, 1 mM MgCl,,
5 mM HEPES pH 6.9) improved the synchrony of IJ recov-
ery. At this time most of the eggs were at the pretzel stage
of embryonic development. The eggs were harvested by
washing the plates 3x with 2 ml of sterile Ringer's solution
and bacteria removed by filtering on a 10 um TCTP mem-
brane (Millipore, Billerica, MA) with a gentle vacuum
applied. Eggs and adult hermaphrodites were washed 3
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times with 10 ml of Ringer's solution after which eggs
were purified from hermaphrodites by their different set-
tling rates. The eggs were concentrated by centrifugation,
2,000 x g for 1-2 min and resuspended in Ringer's to a
concentration of ~ 5 eggs per pl. 4 pl of 5-7.5 mg/ml
dsRNA was then added to eggs at total volume of 20 pl.
The eggs hatch in the dsRNA solution while they are incu-
bated for >24 h at 28°C. The resulting L1s were then
placed on 18-24 h lawns of P. luminescens on NA+chol
plates. Postembryonic abnormalities caused by the
dsRNA were observed 2-5 days post RNAI treatment.

Quantification of RNAi by Real-time RT-qPCR

RNAIi was performed as described above except 150-250
L1s were soaked with 4 ul of 5-7.5 mg/ml dsRNA in a
total volume of 15 pl. After 24 h, the L1s were washed 3x
in Ringer's solution. The RNA was extracted by adding 500
ul Trizol (Invitrogen, Carlsbad, CA) and stored at -80°C
before extracting according to the manufacturer's instruc-
tions. 80-100 ng total RNA treated with 10 U DNAse I for
15 min at 37 °C. The following primers were used for RT-
gPCR where one of the primers lies outside the dsRNA
used for RNAi: Hba-nol-5RTfor: gtgagatcagtcgagcacca, Hba-
nol-5RTrev: cggaggagatcgagtcaaag, Hba-ben-1RTfor: tcatt-
tcggatgaacatgga, Hba-ben-1 RTrev: ggacggaatagcagtccaaa,
Hba-cct-2 RTfor: acttcctggtatgtatcagee, Hba-cct-2 RTrev:
gccataactccageatecge. 50 ng of total RNA was reverse tran-
scribed using, ThermoScript Reverse Transcriptase (Invit-
rogen) according to the Manufacturer's instruction, 56°C
annealing temperature, using antisense primers. Real-
time RT-qPCR was performed according to the manufac-
turer's instructions using Syber Green PCR Master Mix
(Applied Biosystems Incorporated, Foster City, CA) per-
formed using a ABI Prism 7900HT Sequence Detection
System located at the Michigan State University Research
Technology Support Facility. Using Hba-ben-1 as an inter-
nal standard, Hba-cct-2 and Hba-nol-5 mRNAs were quan-
tified either in RNAi experiments using specific dsRNA or
the unspecific dsRNA corresponding to the other gene (i.e.
Hba-cct-2 mRNA treated with ds Hba-nol-5 RNA). Non-RT
samples were used as negative controls. The experiments
were repeated twice.

RNA:i by feeding of C. elegans

RNAi by feeding was done as published [13], except that
eggs were harvested by alkaline hypochlorite lysis of
gravid hermaphrodites and added to the HT115 express-
ing dsRNA. The following HT115(DE3) clones expressing
dsRNA in the feeding vector 1440 were obtained from the
Ahringer RNAi feeding library : pop-1, 1-1K04; cct-2, 1I-
6012; icd-1, 11-5103; arf-1, 1I1-3A13; nol-5, 1-1018;
WO01G7.3, 1I-9A23; K04D7.1, IV-5K04; ben-1, 1I-1F10;
mrp-4, X-1E23. Sterility of adults, abnormal gonad devel-
opment and protruding vulva phenotypes were scored
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72-80 h after eggs were placed on dsRNA expressing bac-
teria.

Accession numbers

The accession numbers (Genbank, dbEST) for H. bacterio-
phora ESTs used in this study are: EE724174 (Hba-cct-2);
EE724171-EE724173 (Hba-daf-21); EE724162,
EE724228 (Hba-icd-1); EE724163-EE724164 (Hba-nol-
5); EE724167-EE724168 (Hba-W01G7.3); EE724169-
EE724170 (Hba-arf-1); EE724158-EE724161, EE724188,
EE724199,  EE7241206-EE7241209  (Hba-rack-1);
EE724165-EE724166 (Hba-ben-1); EE724176 (Hba-mrp-
4); EE724175 (Hba-nhr-47).
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Additional material

Additional file 1

Alignment of H. bacteriophora ESTs to C. elegans genes. Alignments of
ESTs used for RNAi to homologs in C. elegans. Bar in A = 300 bp for A-
H and 600 bp for I and ]. The panels are genome views from BLASTN
analysis of H. bacteriophora ESTs (lower sequences) to the C. elegans
genes (upper sequences) using Wormbase [50]. Blocks and lines indicate
exons and introns, respectively. A. Hba-W01G7.3 B. Hba-icd-1
(C56C10.8.2) C. Hba-rack-1 (K04D7.1.1), D. Hba-nol-5
(W01B11.3), E. Hba-arf-1 (B0336.2.1), F. Hba-ben-1 (K01G5.7.1),
G. Hba-cct-2 (T21B10.7.1), H. Hba-daf-21 (C47E8.5.2), I. Hba-
mrp-4 (F21G4.2)., J. Hba-nhr-47 (C24G6.4.1).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-101-S1.jpeg]

Additional file 2

GFP-labeled P. luminescens in H. bacteriophora adult hermaphrodites.
H. bacteriophora adult hermaphrodites 80-96 h after soaking L1s and
grown on lawns of GFP-labeled P. luminescens A., B., no dsRNA added,
C., D., ds Hba-cct-2 RNA added. i = intestine.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-101-S2.jpeg]
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