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Abstract

Background: We previously identified a set of genes called ECATSs (ES cell-associated transcripts)
that are expressed at high levels in mouse ES cells. Here, we examine the expression and DNA
methylation of ECATSs in somatic cells and germ cells.

Results: In all ECATs examined, the promoter region had low methylation levels in ES cells, but
higher levels in somatic cells. In contrast, in spite of their lack of pluripotency, male germline stem
(GS) cells expressed most ECATs and exhibited hypomethylation of ECAT promoter regions. We
observed a similar hypomethylation of ECAT loci in adult testis and isolated sperm. Some ECATs
were even less methylated in male germ cells than in ES cells. However, a few ECATs were not
expressed in GS cells, and most of them targets of Oct3/4 and Sox2. The Octamer/Sox regulatory
elements were hypermethylated in these genes. In addition, we found that GS cells express little
Sox2 protein and low Oct3/4 protein despite abundant expression of their transcripts.

Conclusion: Our results suggest that DNA hypermethylation and transcriptional repression of a
small set of ECATSs, together with post-transcriptional repression of Oct3/4 and Sox2, contribute
to the loss of pluripotency in male germ cells.

Background pluriopotency in ES cells and early embryos depend on
Embryonic stem (ES) cells possess many unique proper-  genes that are specifically expressed in pluripotent cells.
ties, including long-term self-renewal and pluripotency,  These genes, collectively dubbed "ECATs" for ES cell asso-
which is the ability to differentiate into all types of  ciated transcripts, include transcription factors such as
somatic and germ cells[1,2]. Previous studies showed that ~ Oct3/4 and Sox2. Oct3/4 maintains ES cells in an undif-
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ferentiated state in a dose-dependent manner|3,4], and
Sox2 functions synergistically with Oct3/4 in this proc-
ess[5].

In addition to Oct3/4 and Sox2, we have identified a
number of novel ECATs using digital differential display
of expressed sequence tag (EST) databases. We found that
Nanog/ecat4 is a homeodomain protein essential for self-
renewal and pluripotency in ES cells and early embryos.
Overexpression of Nanog allows for sustained self-renewal
of ES cells even in the absence of leukemia inhibitory fac-
tor (LIF)[6,7]. Another ECAT member, ERas/ecat5, is a
constitutively active Ras-like protein that promotes the
robust proliferation of ES cells[8].

Two possible mechanisms could account for the ES cell-
specific expression of ECATs. One is the ES cell-specific
expression of transcription factors that regulate expression
of downstream ECATs. An example of this sort of trans-
acting regulation is the activation of ES cell-specific genes
such as Fgf4[9], Rex1[10], Utf1[11], Fbx15[12], and Nanog
[13-15] by Oct3/4 and Sox2, which can also activate their
own expression [16-18]. Alternatively, ES cell-specific
expression could be achieved by epigenetic modifications,
such as DNA methylation. For example, the cis-acting pro-
moter and proximal/distal enhancer regions of Oct3/4 are
hypomethylated in ES cells, whereas they are heavily
methylated in somatic cells and in trophectoderm line-
ages[19]. Deletion of Dnmt3a and Dnmt3b, which are de
novo DNA methyltransferases, results in global hypometh-
ylation of genomic DNA and partial resistance to differen-
tiation in mouse ES cells[20]. A similar phenomenon was
also observed when ES cells were deprived of CpG binding
protein|21]. These findings indicate that DNA methylation
plays a pivotal role in gene regulation during differentia-
tion and development.

Germ cells are themselves neither pluripotent nor totipo-
tent, but are able to transmit totipotency to the next gen-
eration. The rapid recovery of totipotency by germ cells
upon fertilization stands in stark contrast to the inability
of somatic cells to recover totipotency or pluripotency
once they have differentiated. Since ECATSs play important
roles in totipotency and pluripotency, it is possible that
they are differentially regulated in somatic cells and germ
cells. To test this idea, we examined the expression and
DNA methylation of ECATs in somatic cells and germ
cells. We found that many ECATs, including Oct3/4 and
Sox2, were expressed in male germline stem (GS) cells,
which are cultured spermatogonial stem cells derived
from newborn mouse testes[22], despite their highly
restricted potential. Furthermore, the regulatory regions of
these genes were hypomethylated in GS cells and mature
sperm. However, some ECAT genes, including Nanog,
ECAT1, Fbx15, and Fgf4, were not expressed in GS cells.
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Among these, Nanog, Fbx15, and Fgf4 have been shown to
be direct targets of synergistic activation by Oct3/4 and
Sox2. The Octamer motif and Sox-binding sites of these
three genes were hypermethylated in GS cells. Unexpect-
edly, we found that GS cells showed low Oct3/4 and little
Sox2 protein levels despite high expression levels of the
corresponding mRNA. We argue that the repression and
DNA hypermethylation of a small set of ECATs, and the
post-transcriptional suppression of Oct3/4 and Sox2 con-
tribute to the loss of pluripotency in male germ cells and
the rapid recovery of totipotency following fertilization.

Results

Most ECATs are expressed in male germline stem cells

To examine the expression of ECAT genes in germ cells, we
performed RT-PCR analysis (Fig. 1). Expression of the
germline marker mouse vasa homolog (Mvh)[23] confirmed
GS cell identity. Most ECAT genes were expressed in GS
cells but at different levels than in ES cells. Stella/dppa3
(Fig. 8), Tcl1, Salll, and Rnf17 were expressed at higher
levels in GS cells than in ES cells (group I), while GS cells
and ES cells expressed similar levels of ECATS, ECAT15-1/
Dppa4, Sox15, Sall4, and Sox2 (group II). ECAT15-2/
Dppa2, ERas, Gdf3 (Fig. 8), Utfl, Esgl/Dppa5, Dnmt3L,
Oct3/4, and Rex1 expression was detected in GS cells, but
at lower levels than in ES cells (group III).

Repression of a small set of ECATs in GS cells

Although most ECATs were expressed in GS cells, we
could not detect expression of ECAT1, Fgf4, or Nanog
(group IV). In addition, we discovered that the ES cell-spe-
cific variant of Fbx15 was expressed in ES cells, but not in
GS cells or testis. In contrast, the testis-specific variant of
Fbx15, which is transcribed from a different promoter, is
expressed at high levels in GS cells and testis and but only
weakly in ES cells (Fig. 1B). Quantification of transcript
levels by real-time PCR confirmed that expression of
Nanog, Fgf4, and Fbx15 was lost in GS cells (Fig. 1C).

DNA hypomethylation of ECATs that are expressed in GS
cells

The expression of ECAT genes in GS cells suggested that
they might show similar DNA methylation patterns in ES
cells. To test this possibility, we performed bisulfite
genomic sequencing of the regulatory regions of ECATS,
ECAT15-2/Dppa2, ERas, Esgl/Dppa5, and Rex1 (Fig. 2), all
of which were expressed in both ES cells and GS cells. In
ES cells, ECAT15-2/Dppa2, ERas, Esgl/Dppa5, and Rexl
showed hypomethylation, whereas ECAT8 showed partial
methylation. In GS cells, ECAT15-2/Dppa2, ERas, Esgl/
Dppa5, and Rex1 showed similar hypomethylation to that
observed in ES cells. ECAT8 had lower methylation in GS
cells than in ES cells. Similar methylation states were
observed in testis and sperm from adult mice. We also
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Expression of ECATSs in male germline stem (GS)cells and ES cells. A. RT-PCR was performed for the number of
cycles shown on the right. We categorized ECATSs into four groups based on their relative expression levels in GS cells com-
pared to ES cells. To monitor amplification from genomic DNA, we amplified samples in which reverse transcriptase was omit-
ted from the reverse transcription reaction (RT-). As negative controls, water was added instead of cDNA (H20). NAT/ and
Gapdh were used as loading controls. B. Expression of Fbx /5 variants examined by RT-PCR. Our previous study using 5' RACE
showed that Fbx /5 is transcribed from different promoters in ES cells and testes in the mouse (unpublished data). The ES cell-
specific variant was not detected in GS cells or adult testis, while the testis-specific variant was weakly detected in ES cells. The
two transcripts differ only in exon | sequence. The common sequence of the two transcripts was also amplified. NAT/ and
Gapdh were used as loading controls.C. Real-time PCR quantification of the expression of Oct3/4 and Sox2 target genes. The
expression of each gene was normalized with that of Gapdh. The expression in ES cells was set as 1.0.
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DNA methylation states of ECATSs expressed in GS cells. Bisulfite genomic sequencing was performed to examine the
DNA methylation profiles for the individual CpG sites of ECAT genes in ES cells, somatic cells, and male germ cells. Schematic
diagrams of regions analyzed are shown in the upper part of the figure. Black rectangles represent the exons, and arrows indi-
cate transcription initiation sites. Black horizontal bars indicate the regions analyzed. All of diagrams are in scale relative to a
100-bp scale bar. In the diagram for the Rex/ gene, the shaded square and open circle indicate the binding sites for Rox| and
Oct3/4, respectively. DNA methylation states in ES cells, somatic cells, and germ cells are shown in the lower part of the fig-
ure. Open circles indicate unmethylated CpGs and closed circles indicate methylated CpGs. The numbers indicate the relative
positions of CpG sites from the transcription initiation site. The CpG nearest to the transcription initiation site is described as
-1 (upstream) or | (downstream). Positions where CpG is absent due to DNA polymorphism are indicated by hyphens. ES,
undifferentiated ES cells (129 background); ES (RA), ES cells differentiated by retinoic acid treatment; MEFs, MEFs derived from
E13.5 C57BL/6J embryos; GS, GS cells derived from DBA neonate testis. Brain, kidney, and testis were obtained from 8-week-
old C57BL/6) mice. Sperm was isolated from the epididymis of | |-week-old C57BL/6) mice.

observed hypomethylation of the promoters of Gdf3 and
Stella/Dppa3 in GS cells (Fig. 9).

In contrast, all examined genes were methylated in
somatic cells, but to varying degrees. ECAT8, ECAT15-2/
Dppa2, and Esgl/Dppa5 were heavily methylated, while

Rex1 was ~70% methylated. The intronic region flanking
the 3'-end of the first exon of ERas was methylated in
somatic cells, but to a much lesser degree than the Esg1/
Dppa5 and ECAT15-2/Dppa2 promoters. We found that
for each gene, there were no significant differences in
methylation patterns between mouse embryonic fibrob-
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lasts, adult kidney, and brain. Retinoic acid-treated ES
cells exhibited methylation patterns that were intermedi-
ate between those of ES cells and somatic cells.

In addition to the ECAT genes, we examined the DNA
methylation status of germ cell specific genes Mvh and pre-
proacrosin, and a differentiation marker Hoxb1 (Fig. 3).
The Mvh promoter exhibited a methylation pattern simi-
lar to those of the ECAT genes. The preproacrosin promoter
was largely methylated in all cells and tissues tested. In
contrast, the Hoxbl promoter was unmethylated in most
samples except for kidney.

Oct3/4- and Sox2-binding sites of some ECATs are
hypermethylated in male germ cells

Next, we examined the DNA methylation state of ECAT
genes that were not expressed in GS cells. We found that
the proximal enhancer region of Nanog, which is regulated
by Oct3/4 and Sox2, was hypermethylated in the male
germline (Fig. 4). This region showed only partial methyl-
ation in somatic cells. In contrast, there was no difference
in methylation state between male germ cells and somatic
cells in regions both upstream and downstream of the
Nanog proximal enhancer. These results indicate that
hypermethylation occurs in a region-specific manner.
Moreover, we found that methylation of the Nanog locus
was lower in oocytes than in somatic cells, indicating that
the methylation in germ cells occurs in a sex-specific man-
ner.

Hypermethylation was also observed in the Fgf4 and
Fbx15 enhancers (Fig. 5). The Fgf4 enhancer, which is reg-
ulated by Oct3/4 and Sox2, was hypermethylated in GS
cells, adult testis, and isolated sperm, but was partially
methylated in somatic cells, including MEFs, kidney, and
brain. By contrast, the Fgf4 promoter was hypomethylated
in both male germ cells and somatic cells. The ES cell-spe-
cific Oct/Sox-dependent enhancer of Fbx15 was more
methylated in male germ cells than in somatic cells,
whereas the testis-specific promoter was hypomethylated
in all cell types analyzed.

These data raise the possibility that Oct3/4 and/or Sox2
binding sites might be targets of hypermethylation in
male germ cells. To investigate this possibility, we exam-
ined the enhancers of Oct3/4, Sox2, and Utf1, which have
previously been shown to be regulated by Oct3/4 and
Sox2 (Fig. 6). We found that the Octamer/Sox element of
Oct3/4 was partially methylated in GS cells but hyper-
methylated in testis and sperm. Similarly, the Sox2
upstream enhancer, which has two Octamer sites, also
exhibited hypermethylation specifically in male germ
cells.

http://www.biomedcentral.com/1471-213X/6/34

However, the Oct/Sox elements of the Sox2 and Utf1
enhancers did not follow this pattern: The Oct/Sox ele-
ment in Sox2 was hypomethylated in all cells, whereas
that of Utf1 was partially methylated only in somatic cells.
The Oct/Sox elements in non-ECAT genes Rifl, Nmycl,
and Tcf3[24] also did not exhibit hypermethylation in
germ cells either. The Oct/Sox site of REST/NRSF [24] was
hypermethylated not only in male germ cells, but also in
somatic cells (Fig. 7). These data demonstrate that some,
but not all, Oct/Sox elements are selectively hypermethyl-
ated in male germ cells.

Methylation state of the ECAT cluster on mouse
chromosome 6

Three ECATs, Gdf3, Stella, and Nanog, are clustered on
chromosome 6 in the mouse and chromosome 12 in
humans. This region contains other genes, including
Aicda, Apobecl, LOC384480, LOC626074, and Sic2a3 in
the mouse. We performed RT-PCR and found that Aicda,
Apobecl, and Slc2a3 are expressed in both GS cells and ES
cells (Fig. 8). Since LOC384480 and LOC626074 both
encode ribosomal proteins that share similar sequences
with numerous different genes, we were unable to specif-
ically amplify these two sequences and therefore could
not study their expression in ES cells and GS cells. Never-
theless, our data indicate that this region is transcription-
ally active in both ES cells and GS cells, with the exception
of Nanog, which is not expressed in GS cells.

We next studied the methylation state of this region (Fig.
9). We found that the male germ cell-specific hypermeth-
ylation was specific to Nanog in this region. The other
genes examined were hypomethylated in GS cells, testis,
and sperm. By contrast, all the genes in this region were
common in low methylation levels in ES cells. Most of
them were more methylated in somatic cells, except for
Apobecl and Slc2a3 that showed hypomethylation in all
tissues and cells examined.

The Oct/Sox sites are not occupied with Oct3/4 and Sox2

in GS cells

To examine the effect of DNA hypermethylation on the
binding of Oct3/4 and Sox2, we performed chromatin
immunoprecipitaion. We found that the two transcrip-
tion factors bound to the Octamer/Sox elements of Nanog,
Fgf4 and Fbx15 genes in ES cells, but not in GS cells. (Fig.
10A). Unexpectedly, the two transcription factors did not
bind to the Oct/Sox elements of Sox2, UTF1, and Rifl
genes either, despite their hypomethylation status in GS
cells. Western blot analysed showed that the amount of
Oct3/4 protein in GS cells was approximately 1/10 of that
in ES cells (Fig. 10B). Furthermore, we could not detect
Sox2 protein in GS cells despite the abundant transcripts.
This result suggests that GS cells possess a mechanism that
either inhibit translation or degrade the two proteins.
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Preproacrosin

Hoxb1

SoxOct

DNA methylation states of non-ECAT genes. Bisulfite genomic sequencing was performed to examine the DNA methyl-
ation profiles for individual CpG sites in the promoter regions of germ cell specific genes Mvh and preproacrosin, and a differen-
tiation marker Hoxb | in ES cells, somatic cells, and male germ cells. Results are shown as described in Figure 2. In the diagram
for the Hoxb | gene, the open square and shaded circle indicate the binding sites for Sox2 and Octl, respectively.
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DNA methylation state of the Nanog locus.
tion profile of individual CpG sites in the regions flanking exon |

Bisulfite genomic sequencing was performed to examine the DNA methyla-

of Nanog in ES cells, somatic cells, and male and female germ

cells. Results are shown as described in Figure 2 and 3 except for the size of the scale bar (500 bp). Oblique lines indicate

regions not examined and their approximate lengths are shown.
superovulation. ND; not determined.

Oocytes were collected from oviducts of C57BL6 mice after

Discussion

In this study, we compared the expression and DNA meth-
ylation state of ECATs in ES cells, GS cells, and somatic
cells. We found that many ECATs, including Oct3/4 and
Sox2, are expressed in GS cells in spite of their restricted
potential. Furthermore, the regulatory regions of these
genes were hypomethylated in GS cells. However, a few
genes, including Nanog, ECAT1, Fbx15, and Fgf4, were not
expressed in GS cells. Among these, Nanog, Fbx15, and
Fgf4 have been shown to be direct targets of synergistic
activation by Oct3/4 and Sox2. The Octamer motif and
Sox-binding sites of these three genes were hypermethyl-
ated in GS cells. In addition, we found that GS cells

express little Sox2 and low Oct3/4 protein in spite of the
high RNA expression levels. These data indicate that
repression and DNA hypermethylation of a small set of
ECATs, and the post-transcriptional suppression of Oct3/
4 and Sox2 may contribute to loss of pluripotency in male
germ cells.

Germ cells must perform two contradictory tasks: on the
one hand, they must transmit totipotency and pluripo-
tency to the next generation. On the other hand, germ
cells themselves must lose totipotency and pluripotency
to avoid tumor formation, especially teratomas. Since
ECATs play important roles in totipotency and pluripo-
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DNA methylation states of FbxI5 and Fgf4 . Bisulfite genomic sequencing was performed to examine the DNA methyla-
tion profiles for individual CpG sites in the Fbx/5 and Fgf4 loci in ES cells, somatic cells, and male germ cells. Results are shown
as described in Figure 2 and 3. Oblique lines indicate regions not examined and their approximate lengths are shown. White

rectangle in the diagram for Fgf4 gene indicates 3' UTR.

tency, it is likely that male germ cells maintain expression
of ECATs, in part by hypomethylation, in order to retain
pluripotency. In mature sperm, global transcription is
suppressed by heterochromatin formation, including the
displacement of histones by transition proteins and pro-
tamines[25]. Thus, most ECATs are probably not tran-
scribed in mature sperm. Nevertheless, we found that the
promoter regions of most ECATs were hypomethylated in
adult testes and isolated sperm. Presumably, this allows
rapid activation of ECAT expression following fertiliza-
tion.

Our data showed that the binding sites of Oct3/4 and
Sox2 in some genes were specifically hypermethylated in
the male germline, possibly resulting in loss of pluripo-
tency in male germ cells. Nanog may play an essential role
in this process. Nanog expression is restricted to pluripo-
tent cells, such as ES cells, EC cells, EG cells, and mGS cells
in vitro, and the ICM and PGCs in vivo[6,7,26-28]. Loss of
Nanog expression leads to loss of pluripotency, whereas
overexpression actively promotes pluripotency[6,7].
Nanog expression is not observed in germ cells after they
settle in the genital ridge, in either sex|28]. By contrast,
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DNA methylation states of Oct3/4, Sox2, and Utfl . Bisulfite genomic sequencing was performed to examine the DNA

methylation profiles for individual CpG sites in the Oct3/4, Sox2,
Results are shown as described in Figure 2 and 3. Oblique lines i
are shown.

and Utfl loci in ES cells, somatic cells, and male germ cells.
ndicate regions not examined and their approximate lengths

some reports have indicated that germ cell tumors in
human testes ectopically express NANOG[29,30]. It is
likely that in order for pluripotent epiblast cells to com-
mitt the unipotent germline stem cell fate, target genes of
Oct3/4 and Sox2 must be repressed by DNA hypermethyl-
ation. Upon fertilization, male pronucleus undergoes
active DNA demethylation, and thus erases the hyper-
methylation of the Oct/Sox sites[31].

In addition to DNA hypermethylation in the Octamer/Sox
elements, we found that Oct3/4 and Sox2 themselves are
regulated at protein levels. Although Sox2 mRNA is abun-
dant in GS cells, we could not detect Sox2 protein. Oct4
protein also showed a lower protein level than the mRNA
level in GS cells. Thus the expressions of ECATs in GS cells

are suppressed not only by DNA hypermethylation, but
also by suppressed protein expression of Sox2 and Oct3/4.

An open question is what mechanisms lead to hypermeth-
ylation of the Octamer/Sox elements. We observed germ
cell-specific hypermethylation of the Octamer/Sox ele-
ment of Fbx15, Fgf4, Nanog, and Oct3/4 and of the two
POU-binding sites of Sox2 (Fig. 4, 5, 6). However, DNA
methylation was not observed for the Octamer/Sox ele-
ments of Utfl and Sox2 or the Rox1 and Oct3/4-binding
site of RexI (Fig. 2, 6). Previous studies provide some
clues to help explain this discrepancy. It was shown by gel-
mobility shift assay that heterodimers of Oct1 or Oct6 and
Sox2 can bind in vitro to Oct3/4 and Sox2 binding sites in
Fgf4 but not in Utfl, due to differences in the DNA
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DNA methylation states of the Octamer/Sox elements of non-ECAT genes. A. Bisulfite genomic sequencing was
performed to examine the DNA methylation profiles for individual CpG sites in the Octamer/Sox elements of non-ECAT
genes in ES cells, somatic cells, and male germ cells. Results are shown as described in Figure 2 and 3. Oblique lines indicate
regions not examined and their approximate lengths are shown. B. Results of RT-PCR showing the expression of REST/NRSF,

Rifl, and Tcf3 in ES cells and GS cells.
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Expression of genes located in the ECAT cluster on
chromosome 6. RT-PCR was performed to examine the
expression of Aicda, Apobec!, Gdf3, Stella, Slc2a3, and Nanog.
PCR amplification cycle numbers are shown on the right.

sequences[11]. This suggests that differential binding
stringency of Octamer/Sox elements affects the recruit-
ment of protein complexes. Thus, properties intrinsic to
individual Octamer/Sox elements might determine
whether or not they are recognized by different protein
complexes, including DNA methyltransferases. However,
further studies are required to uncover the precise mecha-
nism of selective hypermethylation in male germ cells.

Notably, the clustered distribution of DNA methylation in
the Nanog locus suggests that waves of DNA methylation
may spread out in both directions from "methylation
centers." During tumorgenesis, an initial "seeding" meth-
ylation event is known to induce hypermethylation in
CpG islands[32,33]. The "methylation center" regions in
the Nanog locus might similarly function as physiological
methylation "seeding" sites. We could not find any obvi-
ous protein binding sites commonly to these regions, but
it is possible that proteins bind these regions and regulate
chromosome structure and transcription. Recent studies
have revealed that a nuclear structure known as a chroma-
tin loop is associated with gene expression. SATB1, a
nuclear protein that binds to AT-rich sequences, forms
cage-like networks and regulates gene expression in higher
order chromatin structures in lymphocytes[34]. Mecp2,
which binds methylated CpG sequences, regulates the
silent chromatin loop in the DIx5-DIx6 locus, with expres-

http://www.biomedcentral.com/1471-213X/6/34

sion of DIx5 and DIx6 elevated in the brains of Mecp2-defi-
cient mice[35]. These chromatin loop binding proteins
are potential candidates for regulators of methylation
centers.

Conclusion

In the current study, we examined the expression and
DNA methylation status of ES cell maker genes (ECAT for
ES cell associated transcripts). In all ECATs examined, the
promoter region had low methylation levels in ES cells,
but higher levels in somatic cells. In contrast, in spite of
their lack of pluripotency, male germline stem (GS) cells
expressed most ECATs and exhibited hypomethylation of
ECAT promoter regions. However, a few ECATs were not
expressed in GS cells, and most of them targets of Oct3/4
and Sox2. The Octamer/Sox regulatory elements were
hypermethylated in these genes. Our results suggest that
DNA hypermethylation and transcriptional repression of
a small set of ECATs might contribute to the loss of
pluripotency in male germ cells.

Methods

Cell culture

RF8 ES cells were cultured on gelatin-coated plates in Dul-
becco's modified Eagle medium (Nacalai Tesque) supple-
mented with 0.1 mM non-essential amino acids (GIBCO
BRL), 2 mM L-glutamine (GIBCO BRL), 50 U/ml Penicil-
lin-Streptomycin (GIBCO BRL), 0.11 mM 2-mercaptoeth-
anol (GIBCO BRL), 15% FBS (Biowest or Hyclone), and
0.01% conditioned medium of PLAT-E cells transfected
with an expression vector for leukemia inhibitory factor
(LIF).

To induce cell differentiation, ES cells were seeded at a
density of 2 x 105 cells per 100 mm plate and cultured in
medium supplemented with LIF for 24 hours. After rins-
ing with PBS, the medium was changed to fresh medium
supplemented with 3 x 107 M retinoic acid (RA, Sigma)
and without LIF. Medium was exchanged every 2 days.

Mouse embryonic fibroblasts (MEFs) were prepared as
described previously[36]. The GS cells were established
from the testes of a newborn DBA/2 mouse, and cultured
as described[22].

Preparation of genomic DNA and bisulfite genomic
sequencing

To prepare genomic DNA from cultured cells, cells were
washed with PBS and lysed with PUREGENE Cell Lysis
Solution (GENTRA SYSTEMS) at 37°C overnight. For
preparation of DNA from mouse tissues, isolated organs
were rapidly frozen in liquid nitrogen and crushed with a
few strokes of a hammer. Small pieces of frozen organs
were transferred into lysis buffer (50 mM Tris-HCI pH8.0,
200 mM NaCl, 25 mM EDTA, 0.2% SDS, 0.1 mg/ml pro-
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DNA methylation states of genes in the ECAT cluster on chromosome 6. Bisulfite genomic sequencing was per-
formed to examine the DNA methylation profile of individual CpG sites in the promoter regions of Aicda, Apobec!, Gdf3, Stella/
Dppa3, LOC384480, LOC626074, Nanog, and Slc2a3. Results are shown as described in Figure 2 and 3.

tease K) and were rotated overnight at 55°C. On the next
day, the lysates were treated with 0.033 mg/ml RNase A
(Nacali tesque) at 37°C for 5 minutes and genomic DNA
was extracted by phenol-chloroform extraction and etha-
nol precipitation. Extracted DNA was dissolved in 10 mM
Tris-HCI (pH 8.0).

Sodium bisulfite treatment of genomic DNA was per-
formed with the CpGenome DNA Modification Kit
(CHEMICON) according to the manufacturer's protocol
with some modifications. Genomic DNA (1 pg in 100 pl
water) was denatured by addition of 7 ul of fresh 3N
NaOH, then incubated at 50°C for 10 minutes. After add-
ing 550 pl of Reagent I solution, the DNA solution was
incubated at 50°C for 16 hours. Following incubation
with Reagent I, 750 pl of Reagent II solution was added
and incubated at room temperature for 10 minutes. The
DNA was purified using the Qiaquick gel extraction kit
(Qiagen) according to the manufacturer's instructions

and eluted from the kit column in 50 pl of elution buffer.
The bisulfite reaction was completed by the addition of 5
pl of fresh 3N NaOH followed by 5 minutes incubation at
room temperature. The DNA was purified again using the
Qiaquick gel extraction kit and eluted in 30 pl of elution
buffer.

For sodium bisulfite treatment of oocyte genomic DNA,
genomic DNA was digested with BamHI, EcoRV, or Spel,
followed by phenol-chloroform extraction and ethanol
precipitation. After incubation in 0.33 M NaOH at 37°C
for 15 minutes, sodium metabisulfite (pH5.0, SIGMA)
and hydroquinone (SIGMA) were added to final concen-
trations of 2.0 M and 0.5 mM, respectively. Following
incubation in the dark at 55°C for 12 hours, the DNA was
purified with the Wizard DNA Clean-Up system
(Promega) and incubated in 0.3 M NaOH at 37°C for 15
minutes. Ammonium acetate was added at a final concen-
tration of 3 M, and the DNA was ethanol precipitated in
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The binding of Oct3/4 and Sox2 to the Octamer/Sox elements. A. ChIP analyses was performed with anti-Oct3/4 anti-
body (0Oct3/4) and anti-Sox2 antiserum (aSox2), or with normal mouse IgG as a negative control (IgG). The genomic region
with the Octamer/Sox element in Nanog, Fgf4, Fbx15, Sox2, UTFI, and Rif| gene was amplified with specific primers. B. Western
blot analysis of Oct3/4 and Sox2 proteins in ES cells and GS cells. We used [-actin as a loading control.
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the presence of sodium acetate and glycogen. Purified
DNA was suspended in 20 pl of 10 mM Tris-HCI (pH 8.0).

For PCR, 1 ul of DNA suspension was amplified in the
first round of PCR, and 1/10 volume of the first PCR prod-
uct was used as a template for the second round of PCR.
The primers used for amplification of genomic fragments
are described in the Additional files [see Additional file 1].
PCR products were gel purified using the Qiaquick gel
extraction kit, and cloned into pCR2.1 with the TOPO TA
Cloning Kit (Invitrogen). Ten random clones were picked
and sequenced with M13 or M13 reverse primer. Clones
with incomplete bisulfite conversion were discarded from
the analysis.

RNA isolation and reverse transcription

Total RNA was isolated from cells or adult mouse testes
with TRIzol reagent (Invitrogen) according to the manu-
facturer's instructions. Extracted RNA was dissolved in
DEPC-treated water. To eliminate contaminating genomic
DNA, RNA solutions were treated with TURBO DNase
(Ambion) at 37°C for 1 hour. RNA (1 pg) was reverse
transcribed with ReveTra Ace (TOYOBO) in a 20 pl reac-
tion volume using oligo-dT primer.

RT-PCR and Real-time PCR

RT-PCR was performed with ExTagHS (TaKaRa) in a 25 pl
reaction volume. As template, 0.5 pl of cDNA was used.
Specific primers and PCR conditions are described in the
Additional files [see Additional file 2]. Real-time PCR was
performed using the 7300 Real Time PCR System
(Applied Biosystems) and Platinum SYBR Green qPCR
SuperMix UDG (Invitrogen) according to the manufac-
turer's instructions.

Chromatin immunoprecipitation

Approximately 2 x 106 GS cells and ES cells cultured with-
out feeder cells were tripsinized and centrifused at 1000
rpm for 5 minutes. Cells were resuspended in 1 ml of ES
medium and fixed by the addition of 27 pl of 37% formal-
dehyde and rotation at room temperature for 8 minutes.
Cross-link reaction was stopped by the addition of 50 pl
of 2.5 M Glycine. Following to rinsing with PBS three
times, 200 pl of SDS Lysis Buffer (1%SDS, 10 mM EDTA,
50 mM Tris-HCl [pH8.0]) with 1x protease inhibitor
(Complete, Roche) was added and incubated on ice for 10
minutes. Cell lysates were sonicated for 30 seconds at 10
times with 1 minute intervals using a Bioruptor (Cosmo
Bio, Japan). After dilution with 1.8 ml of ChIP Dilution
Buffer (0.01% SDS, 1.1% Triron X-100, 1.2 mM EDTA,
16.7 mM Tris-HCI [pH8.0], 167 mM NacCl), 200 pl of
each cell lysates was collected as an input. Remaining cell
lysates were precleared with 2 pg of normal mouse IgG in
the presence of protein G-Sepharose bead slurry (60 pl of
50/50 slurry of beads in ChIP Dilution Buffer supple-

http://www.biomedcentral.com/1471-213X/6/34

mented with 1 mg/ml BSA and 200 pg/ml salmon sperm
DNA). Samples were rotated at 4 °C for 2 hours. Unbound
materials were collected by centrifugation at 15000 rpm
for 1 minute, and divided into three tubes. To precipitate
Oct3/4 and Sox2, 5 pg of anti-Oct3/4 antibody (C10,
Santa Cruz Biotechnology) and 1 pl of anti-Sox2 antise-
rum [37] were added respectively, and rotated at 4°C
overnight. Alternatively, 2 pg of normal rabbit IgG was
added as a negative control. On the next day, 20 pl of
blocked protein G slurry was added and rotated at 4°C for
2 hours. Beads were collected by centrifugation at 15000
rpm for 1 minute. Beads were washed once sequentially
with 1 ml of ice-cold Low Salt immune complex wash
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
Tris-HCl [pH7.6], 150 mM NaCl), High Salt immune
complex wash buffer (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20 mM Tris-HCI [pH8.0], 500 mM NaCl), LiCl
immune complex wash buffer (0.25 M LiCl, 1% Nonidet
P-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCI
[pH 8.0]), and then twice with TE buffer (10 mM Tris-
HCI, 1 mM EDTA, pH8.0). Bound materials were eluted
from the beads in 200 pl of elution buffer (1% SDS, 0.1 M
NaHCO3) with 8.5 ul of 5 M NaCl by rotation at room
temperature for 15 minutes. Cross-linking was reversed by
incubation at 65°C overnight. Stored input was also
treated for cross-link reversal with 8.5 pl of 5 M NaCl.
Eluted samples were diluted with 200 pl of 10 mM Tris-
HCI (pH8.0) and treated with 20 pg of RNase A at 37°C
for 30 minutes. Then samples were treated with 30 pg of
proteinase K at 55°C for 1 hour. Following to phonol-
chloroform extraction and ethanol precipitation, purified
DNA was dissolved in 30 pl of 10 mM Tris-HCI (pH8.0)
for ChIP products or 50 pl of 10 mM Tris-HCI (pH8.0) for
inputs. Semi-quantitative PCR was performed with
ExTaqHS (Takara, Japan). Specific primers are described
in the Additional files [see Additional file 3].

Western blot analyses

Cell lysates obtained during chromatin immunoprecipi-
taion procedure were separated on SDS-PAGE, and trans-
ferred to PVDF membrane (Immobilon-P, Millipore
Corporation). The membrane was blocked with 5% skim
milk and incubated with primary antibodies in TBST (20
mM Tris-HCI (pH 8.0), 300 mM NaCl, 0.15% Tween 20)
with 0.5% skim milk overnight at 4°C. Anti-bodies used
were anti-Oct3/4 antibody (1:600), anti-Sox2 antiserum
(1:1000), and anti-Bactin antibody (1:4000, Sigma). The
secondary antibodies used were anti-rabbit IgG HRP-
linked Antibody (1:5000, #7074; Cell Signaling Technol-
ogy) or anti-mouse IgG HRP-linked Antibody (1:3000,
#7076; Cell Signaling Technology). Signal was detected
with ECL Western blotting Detection Reagents (RPN2106;
Amersham Biosciences) using LAS3000 (Fuji film, Japan).
To reprobe, the membrane was gently shaken in pre-
warmed Stripping buffer (62.5 mM Tris-HCI [pH6.7], 100
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mM 2-mercaptoethanol, 2% SDS) at 50°C for 20 min-
utes.
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