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Abstract

Background: Calcineurin, the Ca2*/calmodulin-dependent protein phosphatase, plays important
roles in various cellular processes in lower and higher eukaryotes. Here we analyze the role of
calcineurin in the development of Dictyostelium discoideum by RNAi-mediated manipulation of its
expression.

Results: The cnbA gene of Dictyostelium discoideum which encodes the regulatory B subunit (CNB)
of calcineurin was silenced by RNAi. We found a variety of silencing levels of CNB in different
recombinant cell lines. Reduction of CNB expression in a given cell line was correlated with
developmental aberrations. Cell lines with strongly reduced protein levels developed slower than
wild type cells and formed short stalks and spore heads with additional tips. Formation of short
stalks results from incomplete vacuolization of prestalk cells during terminal differentiation.
Expression of the stalk-specific gene ecmB was reduced in mutant cells. Aberrant stalk development
is a cell autonomous defect, whereas the breakdown of tip dominance can be prevented by the
presence of as low as 10% wild type cells in chimeras.

Conclusion: Silencing of calcineurin B in Dictyostelium by expression of RNAi reveals an
unexpected link between increased intracellular calcium levels, possibly triggered by the
morphogen DIF, activation of calcineurin, and the terminal stage of morphogenesis.

Background

Calcineurin (CN), the Ca?*/calmodulin-dependent pro-
tein phosphatase, is highly conserved from yeast to mam-
malian cells. It consists of a catalytic (CNA) and a
regulatory subunit (CNB) which form a heterodimer
upon Ca?+ binding to CNB. The enzyme has been shown
to play important roles in various cellular processes in

lower and higher eukaryotes. In mammals these include T
cell activation via dephosphorylation of the cytosolic
component of nuclear factor of activated T cells (NFAT)
[1], cardiac development and hypertrophy, learning and
memory, and axonal pathfinding [2]. In yeast calcineurin
is involved in the regulation of ion homeostasis and cell
cycle control [3]. Whereas most organisms have at least

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16512895
http://www.biomedcentral.com/1471-213X/6/12
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Developmental Biology 2006, 6:12

Primer1 or Primer3

—:% cnbA in pDrive

Primer2
Primer4
PCR |

> 437 bp

C——— > 538bp
}

P

T < cnbA-RNAI in pDNeoll

}

u]um]]]]o double stranded RNA with loop

Figure |

RNAI construct directed against cnbA. Fragments of cnbA
were generated by PCR using oligonucleotide primers
flanked by suitable restriction sites. The short and long frag-
ments were amplified with primers | and 2 or primers 3 and
4, respectively. They were then fused in opposite orientation
and cloned in pDNeoll. See Materials and Methods for fur-
ther details. P, actiné promotor.

two genes for the calcineurin subunits, the Dictyostelium
discoideum genome contains single copy genes for CNA
and CNB, whose expression changes during development
of the organism. As in higher organisms CNB is required
for high affinity binding of protein substrates by the
holoenzyme [4]. CNA is highest in vegetative cells and
after aggregation [4,5]. The coding mRNA for CNB is proc-
essed by an unorthodox mechanism starting during early
development to give rise to a shorter isoform encoding a
CNB protein with a truncated N terminus that does not
contain the N myristoylation consensus site found in the
full-length protein [4]. Several attempts to delete the sin-
gle gene for CNA (canA) in D. discoideum by insertion of
selectable markers or to reduce its expression by antisense-
mRNA failed (U. Kessen and R.M., unpublished results).
30-fold overexpression of the single cnbA gene which
encodes the regulatory B subunit resulted in moderately
accelerated multicellular development with recombinant
populations completing morphogenesis about 2-3 hours
earlier than wild type cells (F. Fouladi and B.W., unpub-
lished observation). Pharmacological inhibition of D. dis-
coideum CN using gossypol impaired growth and cellular
signaling [6]. Development of wild type cells treated with
25 uM gossypol was totally blocked for more than 24
hours. Studies using the classical inhibitors, Cyclosporin
A (CsA) and FK506, indicated that CN regulates Ca2*
stress-induced transcription activation of the Ca2+-ATPase
patA gene [7] as well as expression of the "calcium upreg-
ulated" (Cup) class of Ca2+-binding proteins [8]. In an in
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vitro differentiation assay CsA and FK506 strongly inhib-
ited stalk cell formation in the wild-type and spore forma-
tion in a sporogenous Dictyostelium strain [9]. These
agents also reduced the expression of prestalk and pre-
spore-specific transcripts, assigning a function for CN as a
general activator of differentiation

During development D. discoideum cells aggregate in
response to cAMP, form slugs and differentiate into two
major cell types, prespore and prestalk cells. These cells
organize in a spatial pattern with the prespore region
localizing to the posterior and the organizer, prestalk
region to the anterior of the slug. Development is com-
pleted by the formation of fruiting bodies consisting of a
stalk of dead cells and the spore head. Several lines of evi-
dence link the level of cytosolic Ca2+ (Ca2+)) to cell type
differentiation. Cells in S and early G2 cell cycle phases,
which show a tendency to become prestalk cells, have
high intracellular calcium [10]. At the slug stage, a gradi-
ent of Ca?+ along the anterior-posterior axis has been
found which is inversely correlated with the amount of
sequestered Ca2* and the calcium-sequestering activity in
high-capacity Ca2* stores [11]. High Ca2*; has been shown
to be necessary for induction of the prestalk-specific gene
ecmB by the morphogen, differentiation-inducing factor
(DIF), and a sustained increase in Ca?+; was proposed to
be responsible for prestalk-specific gene expression [12].
This work also showed that the increase in Ca2+;is brought
about by DIF. It is unclear how DIF increases Ca2+;, and
the mechanism by which Ca2+ ultimately leads to activa-
tion of ecmB expression has remained elusive.

RNA interference-mediated gene silencing was recently
established in Dictyostelium [13]. RNAi-mediated silencing
of gene expression is induced by double-stranded RNA
and its processing to 23 mers which cause the degradation
of endogenous target mRNAs [14,15]. The technique
appears to be well suited for the analysis of potentially
essential genes in the haploid Dictyostelium genome since
it can lead to different levels of silencing from almost wild
type to maximally reduced levels in individual cell lines.
This would allow to determine the repression level of a
given gene that is just tolerable for cell survival.

We show here that a hairpin RNA construct targeted
against cnbA effectively reduces the cellular CNB concen-
tration. Recombinant cell lines showed retardation of
multicellular development, culminating in fruiting bodies
with short stalks and the formation of additional tips on
the spore mass of developing fruiting bodies.

Results

Isolation of cnbA RNAi transgenic cell lines

It was previously shown that cnbA is a single-copy gene [4]
localized on chromosome 1 of D. discoideum [16]. In
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Figure 2

Expression of calcineurin B in wild type cells and cnbA RNAi
mutants. Total cell protein from 5 x 105 vegetative cells of
the cell lines indicated was separated on |5%polyacrylamide/
0.1% SDS gels, blotted onto nitrocellulose, and blots were
probed with 1:5000-diluted CNB-specific antibody.

order to silence cnbA we constructed a stem-loop RNA
directed against cnbA (fig. 1). Two fragments of cnbA were
amplified from the cDNA, both starting at nucleotide +20.
To obtain a loop, the fragments differ 100 bp in length.
The truncated cnbA gene fragments were fused in reverse
orientation relative to each other. The RNAi construct was
cloned into pDNeoll under the control of the actin 6 pro-
moter. The resulting plasmid pKB07 was transformed in
D. discoideum AX2 and clonal cell lines were further ana-
lysed.

Downregulation of calcineurin B

In order to analyze whether expression of the RNAi con-
struct leads to reduction of CNB, expression of the protein
was measured in vegetative cells of independent recom-
binant clones. Western blots with specific antibodies
against D. discoideum CNB revealed various levels of
reduction among individual cell lines (fig. 2). In a number
of cell lines (c.f., 01-4 or 01-5 in fig. 2) CNB was reduced
to barely detectable amounts, whereas others (c.f., 0-14 in
fig. 2) showed only slightly reduced CNB expression. At
later stages during development both CNB protein iso-

AX2 01-5

Q“Oat

13 h

AX2 01-5 AX2

01-5

CNB

24 h

Figure 3

Expression of calcineurin B in wild type and cnbA RNAI
mutant 01-5 at various time points. Total cell protein was
chromatographed on 15% polyacrylamide/0.1% SDS gels,
blotted onto nitrocellulose, and blots were probed with
[:5000-diluted CNB-specific antibody.
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Figure 4

Expression of cnbA mRNA in AX2 and 01-5 cells. Total RNA
was prepared from cells developed on HABP filters for 8 h,
separated on 0.9% agarose/6.6% formaldehyde gels, blotted
onto nylon membranes and hybridized with a DIG-labelled
probe for cnbA. To the left, the sizes of the endogenous
processed cnbA mRNA species in AX2 (0.7 kb) and of the
RNAi product in 01-5 (1.2 kb) are indicated.

forms were detected (not shown) suggesting that process-
ing of the residual cnbA mRNA is not affected by RNAi
expression. The expression level of CNB in the mutants
remained low throughout development (fig. 3).

Characterization of cnbA-RNAi mutant 01-5

Cell lines with slight reduction of CNB expression dis-
played no or only mild phenotypic aberrations which
were mainly manifest in the erection of fruiting bodies
with somewhat shorter stalks than observed with wild
type organisms (not shown). However, phenotypic alter-
ations were much more prominent in cell lines with pro-
nounced silencing of CNB. To characterize the phenotypic
consequences of silencing of cnbA mRNA 10 independent
transformants with drastically reduced expression of CNB
were further analyzed. The phenotypes of all these trans-
formants were very similar to cell line 01-5 which is
described in more detail below.
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Figure 5
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01-5

Fruiting body formation in AX2 and cnbA RNAi mutant cell line 01-5. Cells were washed twice with SP buffer, 2 x 107 cells
spread onto HABP filters and allowed to complete morphogenesis. A side view of the mature fruiting bodies is shown. Bar, |

mm.

We first compared expression of cnbA mRNA in cell line
01-5 and parental AX2 cells by Northern blotting. Figure
4 shows that the recombinant cell line had drastically
reduced amounts of endogenous cnbA mRNA (0.7 kb). A
strong signal corresponding to the size of the RNAi con-
struct (1.2 kb) indicates massive expression of the trans-
fected gene. Degradation of both RNAi and endogenous
cnbA mRNA is indicated by the smear detected in the
mRNA isolated from 01-5 cells.

The growth rate of mutant 01-5 in AX medium was very
similar to that of wild type cells, with doubling times of
about 9 hours. When these cells developed on non-nutri-
ent agar aggregation was delayed by about 3 hours as com-
pared to wild type cells. The mutant proceeded with
normal kinetics through further development, however,
01-5 populations formed longer, leaner slugs than popu-
lations of wild type cells (not shown). After termination
of development stalks were significantly (ca. 50%) shorter
than wild type fruiting bodies (fig. 5). Comparison of
mutant and wild type fruiting bodies did not indicate dif-
ferences in the size of their spore heads. To analyze
whether RNAi against cnbA indeed affected predomi-
nantly stalk size, we compared the numbers of fruiting
bodies formed on SP agar in the wells of microtiter plates
from 4 x 105 cells and counted the numbers of spores
which could germinate from the mature fruiting bodies.
Mutant 01-5 formed 46 + 20 fruiting bodies (n = 20).
From the spores of the fruiting bodies 3.1 x 103+ 7 x 102
(n = 5) clones could re-grow on a lawn of bacteria. Wild
type AX2 cells formed 61 + 36 fruiting bodies (n = 20).
From the spores of these fruiting bodies 3.1 x 103+ 103 (n
= 5) clones could re-grow on a lawn of bacteria.

In addition to the formation of short stalks, many of the
culminants of cell line 01-5 showed one or more addi-
tional, irregularly arranged tips protruding from the rising
spore heads (fig. 6). These ectopic tips were not observed
earlier during development, e.g. on first finger or slug
structures but only became visible during culmination.
Some of these extra tips (c.f,, fig. 6D, E, F, H) are reminis-
cent of the thicker part of stalks near their base. The tip
acts as an organizer region, effectively inhibiting the for-
mation of additional tips [17]. Obviously, dominance of
the tip in the RNAi mutant is much weaker than in wild
type organisms.

Expression of the prestalk-specific gene ecmB has previ-
ously been shown to depend on an increase in Ca2+;, mak-
ing this gene a candidate for transcriptional regulation via
CN. Analysis of ecmB expression in AX2 and 01-5 cells
revealed a significant inhibition of ecmB induction during
development in the RNAi mutant (fig. 7). In contrast to
these findings the expression kinetics of the prestalk-spe-
cific marker ecmA and of the prespore-specific marker pspA
were in 01-5 cells similar to wild type cells (data not
shown).

Cell-autonomous and non cell-autonomous effects of
RNAIi expression

To check whether short stalk formation and ectopic for-
mation of extra tips are cell-autonomous or non-autono-
mous defects, wild type and cnbA-RNAi mutant cells were
mixed in different ratios and allowed to develop. Stalk
size decreased proportionally to increasing content of
mutant cells (fig. 8A). This gradual decrease in stalk length
suggests that formation of short stalks is a cell-autono-
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Figure 6
Formation of ectopic tips in culminating fruiting bodies of cell line 01-5. Cells were allowed to develop on SP agar plates and

the spore heads photographed using a Nikon SMZ8000 microscope equipped with a Nikon DN 100 digital camera. As control
AX2 fruiting bodies are shown in A.
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Figure 7

Expression of ecmB mRNA in AX2 and 01-5 cells. Total
RNA was prepared from cells developed on HABP filters for
the times (in hours) indicated, separated on 0.9% agarose/
6.6% formaldehyde gels, blotted onto nylon membranes and
hybridized with a DIG-labelled probe for ecmB. A probe for
actinl 5 was used as loading control (signals in the lower
part). Note that expression of actin/5 decreases during
development.

mous defect. In contrast, ectopic formation of extra tips
on the rising sorophores appears to be at least partially
non-cell autonomous (fig. 8B). Only pure mutant popu-
lations formed extra tips at high frequencies. Even 10%
wild type cells could effectively establish nearly normal
tip dominance.

Analysis of aberrant stalks by light and electron
microscopy

The examination of sections from fruiting bodies could
give information about the origin and composition of the
ectopic tips of the cnbA-RNAi mutant. Fig. 9 shows a lon-
gitudinal section through a wild type fruiting body (A) in
comparison to a fruiting body from mutant 01-5 (B).
Staining allows a clear discrimination between spore and
stalk cells. The dark spore cells are small and condensed,
stalk cells are expanded and, because they are highly vac-
uolated, nearly unstained. In the mutant spore head a
channel-structure intruding from the periphery of the
spore head can be seen which represents a second stalk
arising from an ectopic tip. Since the stalk cells in the
mutant seemed to be rounder than wild type stalk cells,
electron microscopy examinations were performed. Stalk
cells of wild type fruiting bodies (fig. 10A) were clearly
larger than mutant stalk cells (fig. 10B). This appears due
to incomplete vacuolization of the mutant stalk cells.
Some of the mutant stalk cells seemed to be not vacu-
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olated at all. In contrast, the size and form of the spore
cells in the wild type and the mutant were closely similar.

Discussion

The defect in stalk formation which was observed in cell
lines with strongly reduced CNB expression occurs due to
smaller and incompletely vacuolated stalk cells and this
result points to an important role for CNB or the CN
holoenzyme in the regulation of stalk development in
Dictyostelium. DIF-1 induces the expression of prestalk-
specific genes via an increase in the intracellular free Ca2+
[12]. Based on our results we speculate that the effects of
increased Ca?+; are mediated by CN. In analogy to the
well-characterized role of CN in dephosphorylation of
transcription factor complexes of the NFAT type we pro-
pose that calcineurin, in response to an increase in
cytosolic Ca2+, dephosphorylates a cytosolic component
of a transcription complex, which is then translocated to
the nucleus and activates - in concert with nuclear com-
ponents of the active complex - the transcription of pre-
stalk genes. This hypothesis is directly supported by our
observation that RNAi mutant 01-5 failed to properly
induce expression of the prestalk-specific gene ecmB dur-
ing development.

The phenotypic defects which we report here complement
previous studies on the effects of mutations in the Dictyos-
telium glycogen synthase kinase-3 homolog GskA [18]
which has been shown to promote posterior cell pattern-
ing and inhibit anterior cell differentiation [reviewed in
[19]]. GskA is regulated through an intracellular protein
tyrosine kinase/phosphatase pathway mediated by the
cAMP receptors CAR1 and/or CAR3 and CAR4. GskA is
activated by CAR1- and/or CAR3-mediated activation of
the tyrosine kinase ZAK1 [20], and inactivated by CAR4-
mediated activation of a protein tyrosine phosphatase
[21]. GskA null cells show accelerated early development
and form only stalk cells during morphogenesis [18].
Both the gskA null and the cnbA RNAi phenotypes are cell
autonomous [18]; see above, fig. 8A. The direct link
between GskA and CN is supported by recent results that
come from analysis of the NFAT pathway. In T cells phos-
phorylation of NFAT by GSK3 represses NFAT-dependent
gene expression by inhibition of NFAT binding to DNA
[22]. Inhibition of re-export of NFAT to the cytosol when
GSK3 is inactivated, leads to increased NFAT-dependent
activation of gene expression [23].

Deletion of the Dictyostelium aarA gene, a homolog of
mammalian B-catenin, leads to a closely similar break-
down of tip dominance and to formation of ectopic tips
during late development as silencing of CNB. In both
cases, the defect is non-cell autonomous [24]; see above,
fig. 8B. It has been shown that AarA plays a necessary role
in the formation of adherence junctions at the neck of the
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Analysis of chimeras formed from mixtures of AX2 and 01-5 cells. Cell lines were mixed in the ratios indicated and allowed to

develop on HABP filters.

A. Gradual reduction of stalk size in chimeras containing increasing fractions of cells from line 01-5. A side view of the mature
fruiting bodies on HABP filters at low magnification shows that stalk length gradually decreases with increasing fractions of 01—

5 cells in chimeras.

B. Formation of ectopic tips in chimeras containing increasing fractions of cells from line 01-5. The fractions of fruiting bodies
with ectopic tips on an entire HABP filter were counted in a blinded manner. Average values + SEM from two independent

experiments are shown.

rising stalk [25]. B-catenin is also a transcriptional co-acti-
vator in the metazoan canonical Wnt pathway. In the con-
trol of dorsoventral axis formation in Xenopus by
extracellular signals, a CN-independent NFAT mutant
inhibited anterior development of the primary axis,
whereas a dominant negative NFAT mutation induced
ectopic dorsal axis formation and the expression of target
genes of the canonical Wnt pathway, suggesting that CN
and NFAT are part of the noncanonical Wnt/Ca2+ pathway
which leads to inhibition of the canonical Wnt pathway
upstream of B-catenin [26] (for a Wnt/Ca2+ pathway over-
view see [27]). It is therefore possible to propose a model
for Dictyostelium tip dominance where a pathway similar
to the canonical metazoan Wnt pathway is acting through
CAR1/CARS3 to activate GskA, and a noncanonical "Wnt/

Ca2+" pathway through CAR4 to activate CN via an intra-
cellular Ca?* signal. The postulated transcription factor
target for CN in Dictyostelium is so far unknown.

Calcineurin B is a homolog of members of the 4 EF hand
calcium sensor protein family which include, for example,
recoverin, the neuronal calcium sensor-1 (NCS-1), and
the plant calcineurin B-like proteins [(CBLs [28]]. It has
recently been demonstrated that N myristoylation, a com-
mon feature of CNB and the Ca2+ sensor protein family,
increases the cooperativity of Ca2+ binding to NCS-1 and
leads to larger conformational changes upon Ca?+binding
than in the nonmyristoylated protein [29]. If Ca2+* sensing
is indeed a major function of calcineurin B, the pheno-
typic defects observed in our cnbA RNAi mutants may be
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Figure 9
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Longitudinal section of wild type (A) and 01-5 mutant (B) fruiting bodies. Spore cells are dark colored, stalk cell bright. The
arrow points to an additional stalk-like structure intruding from an ectopic tip.

due to the failure to correctly sense the slow, sustained
increase in Ca2+; from ca. 50 to ca. 150 nM during a period
of about 8 hours [12], which was proposed to induce pre-
stalk gene expression. Starting during early development
D. discoideum cells express two CNB isoforms, one of them
lacking the myristoylation consensus site. Further work
has to show whether it is the myristoylated CNB isoform
which plays a crucial role in the mediation of DIF effects
on prestalk gene expression.

Conclusion

Dictyostelium calcineurin B knock down mutants pro-
duced smaller stalk cells and as a consequence smaller
stalks due to incomplete vacuolization of stalk cells. We
propose that calcineurin mediates the effects of a differen-
tiation-inducing factor (DIF)-elicited increase in free
intracellular calcium in prestalk cells via the dephosphor-
ylation of a cytosolic transcription complex component

which activates the expression of prestalk genes. Culmi-
nating fruiting bodies formed ectopic tips on the spore
heads which points to a link between calcineurin and the
wnt pathway in the social amoebae.

Methods

Growth and development of Dictyostelium discoideum
D. discoideum AX2 cells were grown at 22°C in AX
medium [30]. Development was induced by washing cells
twice with ice-cold Serensen phosphate (SP) buffer [17
mM (KH,/Na,H)PO,], pH 6.0 and spreading 2 x 107 cells
on HABP nitrocellulose filters (0.45 um, diameter 47 mm,
Millipore, Eschborn, Germany) supported by two paper
filters (diameter 47 mm) soaked with buffer.

Transformation of Dictyostelium discoideum
D. discoideum AX2 cells were grown in AX medium to a
density of 5 x 106 cells/ml, washed twice with ice-cold H-
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50 buffer, resuspended at 2 x 107 cells/ml, and 100 pl of
this suspension was electroporated with 10 pg of plasmid
DNA [31,32]. Transformed cells were grown on suitable
selective media and clonal populations were obtained by
serial dilution in microtiter plates. In initial experiments
we observed that the phenotypic aberrations which corre-
lated with RNAi expression became gradually weaker
upon serial passages of the cells. Therefore, immediately
after isolation, clones of recombinant cells were grown to
final numbers of approx. 1.5 x 10° (ca. 31 to 32 genera-
tions) and allowed to form spores on SP agar plates which
were harvested and kept in SP buffer at -70°C until used
to inoculate experimental cultures. These underwent addi-
tional 13 to 15 generations.

Construction of plasmids

cnbA cDNA was amplified by reverse transcription of total
RNA from vegetative D. discoideum using the primer pair
5'GGGCCATGGGGAATCAACATTCATTATTA3' and
5'TTATTCTGACCAATTITACGCTAAG3'. The product was
cloned into pDrive (Qiagen, Hilden, Germany) to obtain
plasmid pBW104. Construction of the RNAi-encoding
plasmid for cnbA was done in three steps. First, a fragment
of 437 bp amplified with primers
5'CCGGATCCAAGCTTAAAGAACAATTAGAACAAATGAS'
and
5'CCGTCGACTCACCTTCAATAATAGTITTATCAACAS3'
was cloned in sense orientation into BamHI/Sall-digested
pUC18 [33], yielding pKBO05. Second, pKB06 was gener-
ated by ligating a longer cnbA fragment of 538 bp, ampli-
fied with primers
5'CCCTGCAGAAAGAACAATTAGAACAAATGA3' and
5'CCGTCGACTTCTGACCAATTTACGCTAAGTTIT3!, in
reverse orientation into pKBO5 after digestion with PstI
and Sall. Finally the fused fragments were subcloned into
Pstl/BamHI-digested pDNeoll [34] to obtain pKB07 (see
below, fig. 1).

Northern blotting

Total RNA was isolated using the RNeasy Mini Kit (Qia-
gen, Hilden, Germany), chromatographed on 0.9% agar-
ose gels containing 6.6% formaldehyde and blotted onto
nylon membranes which were hybridized with DIG-
labelled cDNA probes and stained with CSPstar as recom-
mended by the manufacturer (all reagents from Roche
Molecular Diagnostics, Mannheim, Germany).

SDS/polyacrylamide gel electrophoresis and Western
blotting

Proteins were chromatographed on 15% polyacrylamide/
0.1% SDS gels [35], transferred to nitrocellulose mem-
branes and probed with 1:5000 diluted rabbit antiserum
against recombinant D. discoideum calcineurin B as
described [4].

http://www.biomedcentral.com/1471-213X/6/12

Analysis of developmental chimeras

AX2 wild type and mutant strain 01-5 were cultured in AX
medium. Cells were washed twice in SP buffer and resus-
pended at 2 x 107 cells/ml. The cells were mixed in differ-
ent ratios and 2 x 107 cells spread on HABP nitrocellulose
filters. Filters were incubated in the dark at 22°C for 30 h.

Analysis of fruiting body size and spore viability

Wild type and mutant strains were cultured in AX
medium. Cells were washed twice in SP buffer and resus-
pended to 4 x 10° cells/ml. 100 ul each were spread into
individual wells of a 96 well microtiter plate filled with
200 pl SP agar each. Organisms were allowed to develop
for 48 h, fruiting bodies were collected, resuspended in SP
buffer and frozen at -70°C. After one day spores were
spread on nutrient agar with Klebsiella planticola, incu-
bated for three days at 22°C and the numbers of clones
were counted.

Embedding of fruiting bodies

Dictyostelium fruiting bodies developed on HABP filters
were fixed for 3 days in a humid chamber with glutaralde-
hyde (2.5%) in 0.1 M Na/K phosphate buffer (pH 7.0),
using both fixative solution (completely absorbed by the
HABP filter) and the arising fixative vapour. The fruiting
bodies were then embedded in 1.5% low melting agarose
(LGT Agarose, Marine Colloids Inc., US) at 20°C. After
hardening the agarose by cooling down to 0°C, blocks
including fruiting bodies were prepared. The specimens
were then fixed a second time for 2 h at RT with glutaral-
dehyde in 0.1 M Na/K phosphate buffer (pH 7.0) contain-
ing paraformaldehyde (2%) and tannic acid (0.2%). After
washing 3 times with the same buffer for 20 min each a
third fixation with osmium tetroxyde (1% in 50 mM Na/
K phosphate buffer, pH 7.0) for 12 h at 20°C was per-
formed, followed by repeated washing with the same
buffer. The specimens were dehydrated in a graded series
of ethanol. They were incubated in propylene oxide, fol-
lowed by a mixture of propylene oxide/epoxide resin (v/
v) and pure epoxide resin ERL [36]. The resin was polym-
erized for 2 days at 60°C.

Light microscopy

Preparations for light microscopy were made by cutting
1.0 um sections using a Reichert-Jung Ultracut E ultrami-
crotome. The sections were fixed onto glass slides by heat-
ing for 10 min at 60°C. For histological analysis, sections
were stained for 2 min at 60°C with a mixture of Azur II
(1% in water) and methylene blue (1% in 1% tetraborate)
as described [37], washed in deionised water and dried.
Images were obtained with a Leitz Ortholux II microscope
using bright field and photographed with a Nikon Digital
Camera Cool PIX 990.
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Figure 10
Longitudinal sections of stalks analyzed by electron microscopy. Wild type stalk cells (A, bright cells) are larger than 01-5
mutant stalk cells (B). Note that some of the mutant stalk cells appear to be not vacuolated (arrow). The size of spore cells (S)
from wild type and mutant 01-5 (dark or grey cells outside the stalk) are similar.

http://www.biomedcentral.com/1471-213X/6/12

Transmission electron microscopy

Ultrathin sections of ca. 50-80 nm were prepared and
mounted on 400 mesh cupper grids. The samples were
contrasted with 2% w/v uranyl acetate for 10 min and
with 0.2% w/v lead citrate in 0.2 M NaOH for 2 min. Elec-
tron micrographs were obtained with a Zeiss EM 10
microscope using Scientia negative films. The negatives
were scanned with an Epson 1680 Pro scanner at a resolu-
tion of 1200 dpi.
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