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Abstract

Background: Heparan sulfate (HS) is an ubiquitous component of the extracellular matrix that
binds and modulates the activity of growth factors, cytokines and proteases. Animals with defective
HS biosynthesis display major developmental abnormalities however the processes that are
affected remain to be defined. D-glucuronyl-C5-epimerase (Glce) is a key HS chain modifying
enzyme that catalyses the conversion of glucuronic acid into iduronic acid, a biosynthetic step that
enhances HS biological activity. In this study the role of Glce during early zebrafish development
has been investigated.

Results: Two Glce-like proteins (Glce-A and -B) are expressed in zebrafish at all times. They are
the products of two distinct genes that, based on chromosomal mapping, are both orthologues of
the same single human gene. Transcripts for both proteins were detected in fertilized zebrafish
embryos prior to the onset of zygotic transcription indicating their maternal origin. At later
developmental stages the epimerases are expressed widely throughout gastrulation and then
become restricted to the hindbrain at 24 h post-fertilization. By monitoring the expression of well
characterized marker genes during gastrulation, we have found that misexpression of Glce causes
a dose-dependent expansion of the ventral structures, whereas protein knockdown using targeted
antisense morpholino oligonucleotides promotes axis dorsalization. The ventralizing activity of
Bmp2b is enhanced by Glce overexpression whereas Glce knockdown impairs Bmp2b activity.

Conclusion: Glce activity is an important determinant of of dorso-ventral axis formation and
patterning in zebrafish. In particular Glce acts during gastrulation by affecting Bmp-mediated cell
specification. The results obtained further corroborate the concept that HS encodes information
that affect morphogenesis during early vertebrate development.

Background chains covalently attached to a core protein [2]. The heter-
Heparan sulfate proteoglycans (HSPG) are macromole-  ogeneity of the HSPG is due to the variation of the core
cules found in all connective tissues, extracellular matrices ~ protein, as well as to the type and size of the HS chains.
and on the surface of cells [1]. Their most prominent fea-  Configuration variation in the disaccharide bonds and the

ture is the presence of one or more heparan sulfate (HS)  position of sulfation leads to increased diversity in the
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chemical and structural properties of these chains. HS is
composed of repeating disaccharide units of D-glucuronic
acid (GlcA) or L-iduronic acid (IdoA) both of which may
be 20-sulfated, and unsubstituted, N-acetylated, or N-,
30- or 60-sulfated glucosamine (Glc). Forty-eight differ-
ent disaccharides are possible but because of constraints
in the biosynthetic process, only 23 have been identified
in HS as biosynthetic intermediates [3]. Typical HS chains
contain relatively short segments of modified sequences
represented by IdoA-GIcNS derivatives of different sulfa-
tion content dispersed among large sections of unmodi-
fied (GlcA-GIcNAC) units.

The biosynthesis of HS occurs in the Golgi and involves
the sequential modification of the nascent polysaccharide
chain [4,5]. The conversion of GlcA into IdoA is a critical
modification mediated in mammals by a single enzyme:
D-glucuronyl-C5-epimerase (GLCE) [4,6]. Epimerization
of GlcA increases the flexibility of HS chain thereby
enhancing its ability to interact with proteins [2,7-9].
IdoA is the preferential substrate of the HS 2-O-sulfotrans-
ferase. Disaccharide units containing IdoA-2-O-S are
organized in clusters along the HS chain and are specifi-
cally recognized by growth factors and morphogens
[5,10]. The essential role played by Glce during develop-
ment is demonstrated by the fact that transgenic mice that
are Glce-null generally express highly abnormal HS struc-
tures and die neonatally [11,12]. C. elegans expressing
mutated Glce, display abnormal neuronal development
characterized by specific axonal and cellular guidance
defects [13].

Much of the information concerning the role of HS in
development has been obtained from studies in D. mela-
nogaster [14]. An important concept arising from those
studies is that the establishment of a morphogen gradient
necessary for early patterning requires HSPG. This func-
tion is likely to involve the polysaccharide chain since
morphogens such as Wingless (Wg) [15], Decapentaplegic
(the orthologe of the vertebrate bone morphogenetic pro-
tein 4, Bmp4) [16,17], Hedgehog (Hh) [18] and several
fibroblast growth factors (FGFs) [19] bind to HS. The spe-
cific role of HS in vertebrate development however
remains conjectural and the developmental mechanisms
that are affected have not been clearly identified. In
zebrafish, lack of uridine 5'-diphosphate glucose dehy-
drogenase [20], an enzyme required for the biosynthesis
of extracellular matrix glycosaminoglycans including HS,
affects bone and heart morphogenesis. In mice [21] and
zebrafish [22] the disruption of HS biosynthesis affects
the nervous system development that can be ascribed to
the effect HS has on the activity of multiple morphogens.
In this paper we report that Glce's activity affects the estab-
lishment of the embryonic dorso-ventral (D/V) axis
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through a mechanism involving the bone morphogenetic
proteins (Bmps).

Results

Cloning and chromosomal mapping of zebrafish glce
Zebrafish glce-A and glce-B genes both encode proteins of
585 amino acids. The gene products are homologous to
the human protein sequence (67% and 73% respectively)
(fig. 1a). Compared to the human, mouse and bovine
sequences, the zebrafish proteins lack part of the N-termi-
nus. The C-terminal domain is the most conserved region
of Glce. Analysis of the hydrophobicity index determined
utilizing the SOSUI [23] and the TMPRED [24] algo-
rithms, reveals the presence in both zebrafish proteins of
a conserved hydrophobic domain of ~20 amino acids
located between residue 10 and 30 at the N-terminus of
the proteins (fig. 1b). As the mammalian enzyme,
zebrafish epimerase is a "type-two" transmembrane pro-
tein with predicted localization in the Golgi apparatus [4].
The glce-A and the glce-B locus mapped to linkage group
LN25 between markers 224369 and Z20832 and to link-
age group 7 between markers Z21519 and Z9521, respec-
tively (fig. 1¢). Based on the mapping of neighbor genes,
both chromosomal regions are synthenic with human
chromosome 15q22, i.e. the region harboring the epime-
rase gene.

Glce is maternally and zygotically derived

glce transcript level was examined at different develop-
mental stages and compared to that of ext2-A, an HS
polymerase acting upstream the epimerization step [3].
The expression of shh which is activated during gastrula-
tion, and that of ef-1 which is expressed at similar level
throughout development, were also monitored. glce-A,
glce-B and ext2-A transcripts were present in fertilized
embryos at developmental stages prior to the onset of
zygotic transcription, indicating that these messages are
maternally derived. The expression of HS biosynthesis
enzymes reached a peak at the onset of gastrulation fol-
lowing midblastula transition (fig. 2a). Assay of epime-
rase activity in embryonic extracts at different
developmental stages, was consistent with the level of
mRNA encoding these proteins. In particular epimerase
activity at 10 hpf was twice that observed at the 64-cells
stage (fig. 2b).

Temporal and spatial expression of Glce

glce transcripts were localized in embryos at different
developmental stages by in-situ hybridization using gene-
specific antisense riboprobes (fig. 2c-1). During the early
stages a diffuse staining was observed throughout the
blastoderm. At the beginning of segmentation, staining
was detected along the entire dorsal axis (fig. 2i,j). At 24
hpf, however, gice expression was higher in the newly
forming brain (fig. 2k). At this site epimerase transcripts
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Cloning and structural analysis of zebrafish glce. (a) Alignment of Glce from zebrafish, human, mouse, and bovine. Con-
served AAs are dotted. (b) Hydrophobicity plot of zebrafish and human Glce. Values above the line represent positive hydro-
phobicity scores. (c) Chromosomal mapping of zebrafish glce-A and glce-B and homology to the human Glce locus.
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Figure 2

glce mMRNA expression pattern in developing embryos. (a) RT-PCR analysis of the transcript level. Thirty embryos were
collected in Tri-Reagent at different developmental stages as indicated. cDNA was generated from total RNA (I [ig) using Sen-
siscript reverse transcriptase primed with oligo-dT at 37°C for 2 h. PCR reactions (25 cycles) were performed in duplicate and
analyzed on 1% agarose gel. (b) Glce enzymatic activity in embryos at different developmental stage. At each time point 20
embryos were dechorionated and homogenized. For the enzymatic assay, a cell lysate was incubated (2 h at 28°C) with labeled
bacterial K5 heparosan substrate and the 3H,O liberated as result of the epimerization of GlcA into IdoA, measured. The bars
represent the mean + SD of the values from three independent determinations. (c-I) whole-mount in-situ hybridization of glce-a
in embryos at different stages of development. (c-j) Top row: lateral views. Bottom row: animal pole views. (c,d) blastoderm at
64 cells stage; (e,f) dome stage; (g,h) shield stage; (i,j) 3 somite stage. (k) 24 hpf embryo showing showing intense glce staining at
the perimeter of the forth ventricle as indicated by the arrow-heads. (I) enlargment of the embryo brain forth ventricle area.

were mostly detected at the perimeter of the forth ventricle
(fig. 21). The staining specificitity was confirmed through
the use of sense control riboprobes in which case only
background staining was seen. No significant differences
were detected in the expression pattern of the two glce
genes.

Overexpression of Glce causes ventralization and
potentiates Bmp activity

To investigate the functional significance of the epimerase
during zebrafish development the protein was ectopically
expressed by injecting embryos (1-2 cell stage) with
capped in vitro-transcribed mRNA. The majority of
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Table I: Effect of the ectopic expression of Glce on Bmp2b ventralizing activity. Capped gice and bmp2b mRNAs were generated by
reverse transcription from full length cDNA clones. After extraction in phenol/chloroform and precipitation in isopropanol, mMRNA
was dissolved in Danieau's buffer and the concentration assessed by UV reading (260 nm). Embryos at one or two cell stage were
injected with 1-3 nl of mMRNAs to achieve the indicated dose. Each injection session consisted of 2-3 treatment groups of 30 embryos
each and several experiments were performed to reach the sample number indicated. Embryos with increasing degree of
ventralization were ranked according to previously established criterias [40,41]. Ventralized VI embryos show reduced eye size and
shorter body. In addition to these abnormalities V2 embryos display abnormal notocord, reduced anterior somites, and enlarged
blood islands. Ventralized V3 embryos have little or no head structures and no notochord. V4 embryos display gross body

abnormalities and lack of anterior structures.

Injected mMRNA

Strength of Ventralization

No Wild Type \4! v2 V3 v4
(%) (%) (%) (%) (%)
Uninjected 120 100 0 0 0 0
glce-A (250 pg) 60 65 23 10 2 0
glce-B (250 pg) 60 54 16 28 2 0
glce-A (125 pg) 30 60 7 23 10 0
glce-B (125 pg)
glce-A (250 pg) 30 37 6 10 47 0
glce-B (250 pg)
glce-A (500 pg) 60 26 0 38 35 0
glce-B (500 pg)
bmp2b (20 pg) 50 0 26 37 26 I
bmp2b (20 pg) 60 0 0 I5 45 40
glce-A (250 pg)
bmp2b (20 pg) 30 0 0 26 44 30

glce-B (250 pg)

injected embryos displayed a ventralizing phenotype
whose severity correlated with the dose of mRNA injected
(250 to 1000 pg) (table 1). The affected embryos had
smaller head size, expanded blood islands, and abnormal
tail somites (fig. 3b,c,f). More strongly ventralized
embryos also lacked a notochord and developed somites
that were not chevron-shaped and were fused in the mid-
line below the neural tube (fig. 3g). Overexpression of
glce-B produced an identical spectrum of phenotypes as
the overexpression of glce-A. However, the highest fre-
quency of severely affected embryos was observed when
250 or 500 pg of glce-A and glce-B mRNA were adminis-
tered together in which case most of the animals failed to
form an anterior axis (fig. 3d). In this treatment group,
epimerase enzymatic activity at 10 hpf was 73% higher
the level detected in uninjected embryos (fig 3h).

In order to better characterize the phenotype of embryos
overexpressing Glce, the expression of dorsal and ventral
markers were analyzed by in situ hybridization [25,26].
The expression domain of evel, a marker of ventral and
lateral regions at early gastrula stages, was expanded at the
shield stage (fig. 3i,j). Likewise the range of expression of
bmp2b was greatly enlarged in embryos at the 70% epiboly
stage (fig. 3k1). In contrast expression of fkd3, a marker of

the presumptive neuroectoderm, was reduced by Glce
overexpression (fig. 3m,n). Similarly the expression
domain of chordin, a marker of the dorsal organizer, was
reduced (fig. 30,p). The fact that overexpression of the epi-
merase alters the pattern but does not prevent the expres-
sion of dorsal determinants, is consistent with the idea
that Glce acts on D/V axis formation downstream the
Wnt/B-catenin pathway that regulates chordin gene expres-
sion [27]. glce is also a target of the Wnt/-catenin transac-
tivation pathway [28] raising the possibility that zygotic
glce expression is coordinated with that of other D/V
determinants.

Because head size is affected following ectopic expression
of glce (fig 3b-d) the expression pattern of the neuroecto-
derm-specific markers krox 20 [29] and opl (zic1) [30] was
determined during somitogenesis. The expression of
myoD, a transcript specifically localized to somitic meso-
derm was also examined [31]. During somitogenesis, krox-
20 is normally expressed in hindbrain rhombomeres R3
and R5 both of which are dorsal ecdoderm derivatives. A
reduced area of krox-20 expression was detected at the 5
somite stage in most of the embryos injected with 250 pg
each of glce-A and glce-B mRNA whereas opl expression
was undetectable (fig. 3q,r). myoD expression in the cells
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Effect of Glce overexpression on embryo morphogenesis and HS composition. Embryos at |-2 cells stage were injected
with glce-A and/or glce-B mRNA and observed at 24 hpf. (a) wild type embryo. (b,c) mild and moderately ventralized embryos
showing enlarged blood sac (indicated by an arrow). (d) Severely ventralized embryos displaying dramatically reduced head and
trunk. (e-g) High-contrast images of the somites and the notocord (nt) structures in control (e), and in mildly and moderately
ventralized embryos (f,g). Note the loss of chevron-like structure of the somites and the narrowing or disappearance of the
notocord in embryos overexpressing glce (f,g). (h) Epimerase enzymatic activity at 10 hpf in controls (WT) and in embryos
injected with glce-A plus glce-B mRNA (250 pg each). The enzymatic assay was performed as described in Fig. 2b. (i-t) Whole
mount in-situ hybridization with D/V markers in embryos during gastrulation and at 5 somite stage. Top row: wild type
embryos. Bottom row: embryos injected with 250 pg each of glce-A and glce-B mRNA. (i,j) eve! staining viewed from the animal
pole at shield stage. The arrowheads point to the edges of the expression range of the marker; (k,) bmp2b, lateral view with
the dorsal side to the right at 70% epiboly; (m,n) fkd3, animal pole view at 70% epiboly; (o,p) chordino, dorsal view at 50% epi-
boly; (q,r) krox-20/opl double staining (head view) and (s,t) myo-D (dorsal view) in embryos at 5 somite stage. Note in (r) the
narrow expression domain of krox20 in embryos injected with gice mMRNA whereas opl transcript is undetectable.

adjacent to the axial mesoderm and in the somitic furrows
was also reduced implying a role of Glce in establishing
mesodermal cell fate (fig 3s,t).

Since both the phenotype and marker gene expression
pattern following ectopic expression of Glce is reminis-
cent of that of chordino [30,32-34], ogon [33,35,36] and
radar [37,38] mutants or of embryos misexpressing alk 8

[39] in which the ventralizing activity of Bmps is
enhanced, we examined whether Bmp2b activity is poten-
tiated by Glce. For this purpose we titrated the dose of
injected bmp2b mRNA to achieve a preponderance of par-
tially ventralized embryos displaying V2 and V3 pheno-
type severity [40,41] (table 1). This same dose (20 pg) was
then administered together with glce-A and/or glce-B
mRNA (250 pg). Following the treatment, the majority of
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embryos exhibited the most severe V4 class phenotype
consistent with Glce activity potentiating the effect of
Bmp2b.

Glce availability affects Bmp-mediated ventralization

The effect of Glce protein knockdown on D/V axis forma-
tion was next examined by administering antisense mor-
pholino oligonucleotides (MO) targeting glce-A and glce-
B transcripts. Most of the embryos after injection of 4 ng
of antisense MO, displayed a mild dorsalized phenotype
with reduced ventral tail fin (fig. 4b and table 2). At higher
dose (8 ng) about half of the morphants showed kinked
tail, enlarged heart cavity and in some animals the atriov-
entricular boundaries failed to form (fig. 4c). A dramatic
shortening and reduction of the body mass with tail coil-
ing similar to the phenotype associated with mutation of
Bmp2b, and Bmp7 [34,41] was observed in the majority
of the embryos receiving the highest dose (16 ng) of MO
(fig. 4d). In this group of morphants the epimerase enzy-
matic activity was significantly decreased (34% of the con-
trol at 8 hpf) (fig. 4e). The inability of the MOs to
completely abolish the Glce activity suggests that at this
time residual maternally derived enzyme is still active. In
spite of this, the effect of Glce knockdown on ventral cell
fate was already detectable in the mild morphants as
revealed by the faint staining of gatal expressing blood
islets (fig. 4g), a ventral tissue derivative [42]. In stronger
morphants, a broadening of the chordin expression
domain wasobserved (fig. 4i-1). In addition, consistent
with the axis dorsalization, the expression of bmp2b at
shield stage was severely reduced as also evidenced by its
undetectable expression in the tail during somitogenesis
(fig. 4m-p). The administration of human or zebrafish
glce mRNAs to embryos injected with MO rescued the
enzymatic activity and prevented the development of the
most severe dorsalized phenotypes (table 2).

In order to assess the dependency of Bmp activity on Glce
level, embryos were injected with either 50 pg of bmp2b
mRNA or 100 pg of bmp4 to generate a preponderance of
V3-V4 ventralized embryos (table 3). Following randomi-
zation, half of the injected embryos received a mix of MOs
targeting both glce-A and glce-B transcripts. About two-
third of the embryos receiving the MOs displayed a nor-
mal-to-mild (V1-V2) ventralized phenotype whereas few
developed the most severe V4 class phenotype. These
results are in stark contrast to the embryos that had only
received bmp2b and bmp4 mRNA supporting the concept
that Glce is required for Bmp-mediated ventralization.

Discussion

In mammals, HS plays a crucial role in a variety of impor-
tant biological processes including the regulation of
blood coagulation, cell adhesion and differentiation, ang-
iogenesis, and virus infection [1,3,43]. Most of the infor-
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mation concerning the role of HSPG in development has
been obtained in the invertebrate model organism D. mel-
anogaster and support the idea of a major functional role
for HS in the morphogen's gradient establishment
[3,14,44,45]. The fly mutants Sugarless [46], fringe connec-
tion [47], sulfateless 48], and tout-velu [49,50], display cuti-
cle abnormalities that are reminiscent of the phenotypes
exhibited by the mutations in Wg, Hh, or FGF and suggest
an involvement of HS in the activity of these morphogens.
In Drosophila the lack of HS also affects the body axis for-
mation, but this effect is evident only at later stages of
development [14]. Compared to the wealth of data gener-
ated in invertebrate species, the functional role of HSPG
in vertebrate development is still poorly investigated.
Transgenic mice carrying null-mutations in genes coding
for enzymes implicated in HS chain polymerization [51],
glucosamine N- or IdoA 20-sulfation [52,53], and GlcA
epimerization [11] are not viable leading to the conclu-
sion that HS encoding critical structural epitopes is
required for normal embryonic development [54]. The
developmental mechanisms affected by the lack or by
structurally aberrant HS, however remain to be assessed.

In this study the specific role of Glce has been investi-
gated. GlcA epimerization endows the nascent polysac-
charide HS with increased biological activity and is
necessary to direct further chain sulfation at specific sites
[3,6]. In mammals the enzyme is a single gene product
whereas in zebrafish two genes have been identified likely
arising from gene duplication. Transcripts for the two epi-
merases are already detected during the early cell divisions
indicating a maternal contribution to the zygotic pool.
The temporal expression pattern of glce closely resemble
that of ext2-A suggesting that HS chain elongation and
GIcA epimerization may be activated at the same time. Up
to 12 hpf glce expression is detected along the entire axis.
At 24 hpf however, the epimerase is highly expressed in
the hindbrain, most notably along the perimeter of the
fourth ventricle. In the hindbrain, at this developmental
stage, Glce may play a specialized role involving axonal
guidance as postulated based on observations made in C.
elegans with mutated glce [13]. It will be of interest in
future studies to compare the pattern of expression of glce
and ext2 with that of the other enzymes involved in
polysaccharide chain formation and sulfation to test the
hypothesis that HS structure is developmentally regu-
lated. For example zebrafish glucosamine 60-sulfotrans-
ferase which act downstream to the biosynthetic step
catalyzed by Glce, is not maternally derived [55] suggest-
ing that GlcA epimerization and glucosamine sulfation
represents two distinct pathways regulating HS structure
during development.

The fact that the expression of Glce is rather ubiquitous

throughout gastulation, has given us the opportunity to
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Figure 4

Effect of Glce knockdown on embryo morphogenesis. (a-d) Embryos at |-2 cells stage were injected with a mix (8 ng each)
of glce-A and glceB MO and the phenotype scored at 48 hpf. (a) wild type embryo. (b,c) mild phenotypes displaying reduced
head volume and ventral fin extension. (d) severe phenotype with shortened A/P axis and loss of ventral structures. (e) Epime-
rase enzymatic activity in 10 hpf embryos and effect of Glce knockdown. The enzymatic assay was performed as described in
Fig. 2b. (f-p) Whole mount in-situ hybridization with D/V markers of embryos at different developmental stages. (f) gatal
expression in wild-type embryos, (g) glce morphants, and (h) in embryos overexpressing glce at 24 hpf. (i-) chordino at 50% epi-
boly in wild type (top) and morphants (bottom). (i,j) animal pole view, (k,|) dorsal view. (m,n) bmp2b at 70% epiboly and (o,p)
at 3 somite stage in wild type (top) and morphants (bottom). Note the absence of bmp2b expression in the presumptive tail of

the morphants as indicated by the arrows.

investigate the role of this enzyme by globally perturbing
its level either by injecting capped mRNA or antisense
oligonucleotides. When misexpressed the protein pro-
duced a ventralized phenotype similar to that observed in
null-mutants for genes ogon [33,35,36], radar [37,38] and
chordino [25,36] that directly modulate the function of the
ventralizing agents Bmps albeit through different mecha-
nisms. This phenotypic similarity lead us to focus on the
role of Glce with respect to the activity of Bmps. During
development the cell fate in zebrafish depends on the
position within the embryo during blastula and gastrula
stages. Positional information to cells are provided
through the establishment of an activity gradient of Bmp
proteins that promotes ventral specification in a dose
dependent manner [40,56,57]. The idea that the specifica-

tion of cells fate along the D/V axis is mediated through
Bmp acting as terminal effectors, is supported by the fact
that activation of the Bmp signaling pathway is a rather
late event during embryogenesis and by the observation
that functional inactivation of the zebrafish genes Bmp2b
(swirl) [40] and Bmp7 (snailhouse) [34] both result in dra-
matic suppression of ventral fates and expansion of dorsal
structures. Bmp2b and Bmp4 interact with HS through a
cluster of positively charged aminoacids located at the N-
terminus outside the receptor-binding domain of the pro-
tein [17]. Additional studies indicate that the interaction
of Bmps with HS has important functional significance in
that mutations in the HS/heparin binding domain results
in an increase in the long-range activity of the morpho-
gens [58]. HS also potentiates the biological activity of
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Table 2: Effect on D/V axis formation of antisense targeting of gilce. Capped mRNA and glce-MOs were dissolved in Danieau's buffer
and injected as 1-3 nl bolus into the yolk of one- to two-cell embryos as described in Table |I. Capped human GLCE-mRNA was
generated from a full length cDNA clone. The embryos were classified according to the severity of the observed phenotype at 48 hpf
based on a classification of the dorsalization severity observed in embryos that had only received MOs. Mildly dorsalized embryos show
reduced ventral tail fin extension. Moderately dorsalized embryos display kinked tail, enlarged heart cavity and in some case the
absence of atrioventricular boundary. Severely affected morphants show dramatic shortening and reduction of the body mass with tail
coiling. For the rescue experiments, embryos were first injected with MO and after randomization half received the indicated amount

of mMRNA before reaching the 4-cell stage.

Treatment Phenotype Severity
No. Wild Mild Moderate Severe

(%) (%) (%) (%)
Uninjected 42 100 0 0 0
glce-A MO (4 ng) 62 35 46 19 0
glce-A MO (8 ng) 40 20 25 39 16
glce-A MO (16 ng) 28 12 19 31 38
glce-B MO (16 ng) 30 25 19 30 26
glce-A MO (8 ng) 30 15 10 30 45
glce-B MO (8 ng)
glce-B MO (16 ng) 68 28 38 22 12
glce-A mRNA (200 pg)
glce-B MO (16 ng) 30 32 45 15 8
glce-B mRNA (200 pg)
glce-A MO (16 ng) 35 21 41 29 9

Human GLCE mRNA (200 pg)

Bmps by serving the ligand to their receptor and/or by sta-
bilizing the biological activity of the morphogen by pre-
venting its proteolytic degradation [59]. Changes in IdoA
content affecting HS binding to Bmp can thus change
Bmp activity through different mechanisms. A spectrum
of D/V mutants ranging from strongly ventralized to dor-
salized embryos are generated when Glce activity is mod-
ulated suggesting that correct axial patterning requires
that the activity of the epimerase be maintained within a
critical range. An analysis of the structural domain in HS
responsible for binding to Bmps can further elucidate
what specific role IdoA residues play in this context.

Because HS ability to interact with proteins generally cor-
relates positively with the IdoA content [2], Glce may be
involved in the regulation of the activity of other heparin-
binding morphogens involved in D/V axis formation. Fgf-
8 has been demonstrated to play a key role is the establish-
ment of D/V axis by acting upstream of Bmp2 and Bmp4
[60] and interacts with IdoA-rich regions in HS [61]. In
zebrafish Fgf-8 inhibits the expression of Bmps in the ven-
tral part of the embryo leading to the expansion of dorso-
lateral derivatives at the expenses of ventral and posterior
domains [60,62]. Based on our results an activation of
Fgf-8 mediated pathway following ectopic Glce expres-
sion seems unlikely since an expansion rather than a
reduction of ventral structures has been observed in

embryos overexpressing the enzyme. It is possible that
Glce overexpression inhibits Fgf-8 mediated signaling.
This would occur if Fgf-8 is sequestered in the extracellular
matrix by HS enriched in FGF binding regions or if the
FGF receptor dimerization is negatively affected by HS
[19]. However Fgf-8 null mutants display rather mild D/V
abnormalities and similarly to fgf-8 morphants or mutant
embryos with disrupted Ras/MAPK-mediated FGF signal-
ing, do not form a midbrain-hindbrain boundary and do
not develop the cerebellum [62]. Both these brain struc-
tures are present in the glce morphants and in embryos
overexpressing glce unless, as a consequence of marked
dorsalization or ventralization, the entire body plan is
grossly altered. This finding is consistent with the observa-
tion that Glce-null mice have normal brain morphology
[11] as it would be expected if Fgf-8 function is not
affected [63]. Conceivably Fgf-8 mediated D/V patterning
is little influenced by perturbation in Glce activity point-
ing to a downstream mediator of axis formation as sensi-
tive to changes in HS IdoA content. A similar conclusion
can be reached with regard to the D/V patterning effect of
Wnt which acts upstream to Fgf-8, since activation of this
pathway would result in posteriorization of the neural
ectoderm affecting the eyes and the midbrain-hindbrain
boundary development [64,65].
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Table 3: Effect of antisense MO on the ventralizing activity of
Bmps. Capped mRNA and gice MOs were injected into the yolk
of one- to two-cell embryos as in the experiments of table I. The
resulting phenotypes were scored at 48 hpf. For the rescue
experiments, embryos were first injected with bmp2b or bmp4
mRNA and after randomization half received the indicated
amount of MO before reaching the 4-cell stage. Phenotype
severity was scored as in Table I.

Treatments Strength of Ventralization
No. Wild VI V2 V3 V4
@) @) &) *) &
Uninjected 40 100 0 0 0 0
bmp2b mRNA (50 pg) 62 0 0 6 18 76
bmp2b mRNA (50 pg) 60 15 15 31 25 16

glce-A MO (8 ng)
glce-B MO (8 ng)
bmp4 mRNA (100 pg) 60 0 0 0 I5 85
bmp4 mRNA (100 pg) 60 21 18 23 23 IS
glce-A MO (8 ng)
glce-B MO (8 ng)

Taken together our results identify the stage of D/V pat-
terning controlled by Bmp as sensitive to changes in HS
structure. Previously it has been shown that mutants of
the HSPG Dally have altered Dpp gradient formation
resulting in abnormal patterning of the wing imaginal
disc [16]. It was hypothesized that the HS chains of Dally
bind Dpp and promote the interaction of the morphogen
with the cognate cell surface receptor. Decreased interac-
tion with HS, as may occurs when Glce activity is lowered,
may reduce the concentration of Bmp available for inter-
action with the cognate receptors or the receptor-ligand
binding is affected. Conversely, as a result of enhanced
GlcA epimerization, HS affinity for Bmp may increase
enhancing the concentration of the ligand at the receptor
site and prolonging the morphogen activity [58,59,66].
The fact that Bmp is antagonized by proteins such as
Chordin, Noggin, and Follistatin that require HS for diffu-
sion and activation [67-69], represents an additional
potential mechanism of regulation of Bmp activity that is
dependent on HS. Chordin is required to dorsalize sur-
rounding neuroectoderm and mesoderm and its expres-
sion pattern is affected when Glce activity is altered. A
specific class of HSPG strongly potentiates the antagonism
of Bmp signaling by Chordin and is necessary for the
retention of Chordin by cells [69]. Likewise the interac-
tion of Noggin with HSPG in vivo regulate its diffusion
[67]. Conceivably in tissues rich of HS that binds with
high affinity to Chordin and Noggin, the range of action
of these Bmp antagonists is reduced and the ventralizing
effect of Bmps may prevail. Our results support the
hypothesis that correct D/V patterning depends upon the

http://www.biomedcentral.com/1471-213X/5/19

regulated expression of specific structural elements in HS
and provide the basis for the interpretation of the func-
tional role of Glce in vivo.

Conclusion

The results obtained corroborate the concept that HS
encodes information that directs morphogenesis during
early vertebrate development. In particular Glce emerges
from this study as an important modulator of vertebrate
morphogenesis that acts in a dose-dependent fashion on
D/V axis formation. Bmp-dependent cell fate specification
is the main target of Glce activity. Glce effect may be medi-
ated by potentiating the effect of Bmps or by restricting
the range of action of other HS-binding proteins such as
Chordin and Noggin that by antagonizing Bmps act as
indispensable dorsalizing agents.

Methods

Zebrdfish breeding and phenotype scoring

Embryos were obtained from natural mating of wild-type
(Oregon, AB) fish and breed, raised and staged according
to established criterias [70].

Cloning of zebrafish Glce cDNA

A query of the zebrafish dEST database identified a
number of putative clones whose translated sequence
matched the N- and C-terminus of the human protein.
Analysis of the predicted protein sequence of these clones
indicated that zebrafish have two highly homologous
Glce proteins. Cloning of the putative glce cDNAs was per-
formed by reverse transcription of adult male zebrafish
mRNA (Qiagen Sensiscript) primed with oligo-dT. cDNAs
were amplified by PCR by combining primers matching
the different possible cDNA terminal sequences. Forward
primers were 5'-ATGCGCTGTCTGGTGGCTCGAAT-
CAATC  ACAAGACT-3' and  5-ATGCGITGTCT-
GGCAGCCGGTGITCACTACAAGACC-3'. Reverse
primers were 5'-CTAGTTGTGCITAGCCCGACCTCCTT-
TCAGGTAAGT-3' and 5'-TTAATTGTGCITAGCCCTC-
CCTCCTTTCAGGTAGCT-3'. This strategy resulted in two
products of the expected size (~1.8 kb) from two of the
four possible primer combinations. The amplified prod-
ucts were named glce-A (GenBank AY388516) and gice-B
(AY388517), cloned into pcDNA3.1-TOPO (Invitrogen)
and sequenced.

The 5'-end translated region of the zebrafish homologue
of human exostosin 2 (EXT2) gene, was cloned using a
similar strategy. The existence of two zebrafish ext2 genes
were predicted from alignments of published EST
sequences. The 5'-end of the ext2-A coding sequence
including part of the UT region was cloned by RT-PCR
using forward and reverse primers of sequence 5'-CAT-
TCAACTTAAATATTCACCATA-3' and 5'-GGCGCTCAG-
CAGGTCATTGTATTC-3' respectively. Sequencing of an
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expected 528 bp fragment confirmed the identity of the
amplified cDNA.

Chromosomal mapping of zebrafish glce

In the human, the glce translational start site is located in
a 602 bp exon. Assuming that zebrafish glce genes main-
tain the same genomic organization as the human, PCR
primers were designed to amplify the exon containing the
translation initiation site for each each zebrafish ortho-
logue. PCR amplification with primers 5'-ATGCGCT-
GTCTGGTGGCTCGAATC-3' and 5'-
AGATGAAGGGCAGATACACCTCGC-3' for glce-A and 5'-
ATGCGITGTCTGGCAGCCGGTGTTCACTACAAG-3' and
5'-GACCTTTAATGGTGGCATCGTCATTGATCAGGC-3'
for glce-B using genomic male zebrafish DNA as template,
gave products of the expected size (420 bp and 261 bp for
glce-A and glce-B respectively) that were cloned in pGEM-
T vector and sequenced to confirm their identity. These
sets of primers were then used to determine the chromo-
somal location of each gene by radiation hybrid panel
(LN54) mapping.

Antisense targeting of the transcripts

Antisense Morpholino oligonucleotides (MOs) (Gene
Tools LLC) were designed to target the 5'-UT region of the
genes of interest. glce-A and glce-B MOs had sequence 5'-
AGCCATGAGGAACACGTCAGCAAAC-3' and 5'-TCCCT-
GCITACCTGCAATGCAAACA-3', respectively. MOs were
dissolved in water at a concentration of 4 mM and diluted
in Danieu's buffer before injection.

Generation of capped mRNA

Full-length glce cDNAs were subcloned in pT3TS vector at
the BglIl and EcoRV sites and in vitro-transcribed capped
mRNAs were synthesized (T3 mMESSAGE mMACHINE
kit, Ambion). mRNAs (1 pg) were tested prior to injection
for protein expression in vitro using a rabbit reticulocyte
lysate assay kit and 3>S-methionine. Labeled proteins were
separated on 9% SDS-PAGE gel followed by autoradiogra-
phy. Human glce mRNA was generated from a full length
c¢DNA clone in pcDNA 3.1 vector using T7 RNA polymer-
ase. The human clone (AY635582) was obtained by RT-
PCR using primers of sequence 5'-CTGCATATGCTGT-
GCITGGCA-3' and 5'-CTAGTTGTGCTTTGCCCTGCT-
GCCTTT-3' based on published coding sequences and on
cDNA 5'-end extension experiments we have performed
[28]. bmp2b and bmp4 capped mRNA were kindly pro-
vided by Dr M. Mullins (U.Penn).

Microinjection

MOs and mRNAs were injected (1-3 nl) into the yolk of
1-2 cell embryos [71]. Post-injection (6 h) embryos were
sorted, the unfertile/damaged removed and the rest
allowed to grow at 28°C for further observation.

http://www.biomedcentral.com/1471-213X/5/19

RNA in situ hybridization of zebrafish embryos

Antisense digoxigenin-labeled riboprobes were generated
using SP6 or T7 RNA polymerase-based labeling kit
(Roche). cDNA clones for glce-a, glce-b, chordino, krox-20,
opl, myoD, were generated by RT-PCR [see Additional file
1]. bmp2b, fkd3, and evel antisense riboprobes were gener-
ated by reverse transcription from ¢cDNA clones (cb670,
cb114, and cb872 respectively) obtained from the
Zebrafish International Resource Center (University of
Oregon). Whole embryo in situ hybridization was per-
formed as previously described [72].

Semi-quantitative RT-PCR

RNA was extracted and cDNA generated by reverse tran-
scriptase using oligo-dT primers. An aliquot of the reac-
tion was used as template for PCR amplification using
gene-specific primers (Appendix I). Reactions were per-
formed in duplicate and the product generated after 20
and 30 cycles analyzed by agarose electrophoresis to
ensure that the products were quantitated during the
exponential phase of the chain reaction.

Epimerase enzymatic activity assay

Embryos were collected at the indicated times, dechorion-
ated and washed in ice-cold 25 mM HEPES, pH 7.0 buffer
containing 0.1% Triton X-100. Embryos were then
homogenized in 200 pl of the same buffer with a pestle
that fits tightly into an Eppendorf tube and stored at -
70°C. The substrate for the epimerase enzymatic assay
consisted of radiolabeled modified bacterial N-acetyl-
heparosan prepared as described previously [28]. The
final N-sulfated heparosan product was purified by ion-
exchange chromatography and eluted at higher ionic
strength than the starting bacterial polysaccharide (0.66 M
vs. 0.40 M NaCl). The epimerase enzymatic assay was per-
formed as described by Crawford et al. [4]. Briefly,
reactions were set up by combining the homogenates
from 20 embryos with labeled substrate (1 nmole
~30,000 dpm) followed by 2 h incubation at 28°C. Reac-
tions were stopped by addition of DEAE-Sepharose (1 ml)
equilibrated in 50 mM Na-acetate, 50 mM NaCl pH 4.0
buffer (1:1 volume) followed by 15 min incubation at
4°C. Tritiated water generated as a result of the epimeriza-
tion of GIcA into IdoA was recovered in the supernatant
following centrifugation at 10,000 rpm. The sample and a
800-ul rinse of the DEAE slurry with buffer, were counted
for the associated radioactivity in a Wallac 1219 Rackbeta
liquid scintillation counter. Values were corrected for a
reaction blank obtained by adding the substrate to the
embryo homogenate just prior to the addition of DEAE-
Sepharose.
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