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Abstract

Background: It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of
spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to
spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis
process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after
the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation.

Results: We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes.
The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical

c-kit transcript and the 3" end short transcript. Short transcripts include the 3.4 kb short transcript and several
truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons

10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained
in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and
spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA
stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease
afterwards) during the induction process are similar to that of the in vivo male germ cell development process.

Conclusions: There are dynamic transcription and translation changes of c-kit before and after SSCs' anticipated
differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression.
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Background

Spermatogenesis starts from diploid spermatogonial stem
cells (SSCs). The SSCs, also known as type A single (Ay)
Spg, are located on the basement membrane of the semin-
iferous tubules. The A Spg can self-renew or produce the
type A paired (A,) Spg. After successive divisions, A, Spg
differentiates, forms chains of 4, 8 or 16 aligned Spg (Ay)
and migrates along the basement membrane. A, Spg dif-
ferentiates into A1 Spg that further divides and differenti-
ates into A2, A3, Adintermediates and B Spg, which
undergoes meiosis after a final mitosis stage [1]. The
“undifferentiated” (A, A, and A,) and the “differentiating”
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(A1, A2, A3, A4, intermediate and B) Spg differ in the ex-
pression profiles of c-k t [2]. c-kit is allelic to the W locus
on mouse chromosome 5 [3]. The 21-exon gene encodes
for a 5150 bp transcript, which is translated into a product
of 145 kDa protein with 979 amino acid residues. This
product is known as Kit [4]. Kit transduces growth regula-
tory signals across the plasma membrane and has three
main functional regions, the extracellular, the transmem-
brane and the intracellular domains [5,6]. Its transcription
process is only activated after binding with Kitl expressed
by the Sertoli cells. The Kit/Kitl pathway is considered to
be crucial for the proliferation, migration, survival and
maturation of the germ cells [7-18]. In spite of the 5.1 Kb
full-length canonical transcript, two alternative mRNAs of
c-kit, 3.2 and 2.3 kb in length, exist in the haploid cells of
the mouse testis [19]. With an Open Reading Frame (ORF)
that starts in the intron 16 of the mouse c-kit, an alterna-
tive spermatid-specific c-kit transcript contains all of the
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downstream exons (including 12 hydrophobic amino acids
followed by the last 190 carboxyl terminal residues), en-
codes for Tr-Kit (~30 kDa) [7,20,21]. The 30 kDa Tr-Kit is
found in the residual sperm cytoplasm and it has evident
functions in the activation of oocyte during fertilization
in mice [21,22].

c-kit has been a marker for SSCs pluripotency lost and
its expression continues until meiosis is initiated [2,18].
The expression of protein Kit in the male germ cells is
contradictory to those of gene c-kit. In early studies, Kit
expression is detected in type A (A1-A4), intermediate,
type B spermatogonia, as well as preleptotene spermato-
cytes, but not in the undifferentiated spermatogonia
[2,18]. More recent studies demonstrate that Kit is also
expressed Ay, A, and A,. Therefore, whether Kit is
expressed in spermatogonia and whether Kit/Kitl activa-
tion is a prerequisite for differentiation or not remain to
be a question [23-28]. Even though the inactivation of c-kit
by its specific inhibitor Imatinib results in Spg self-
renewal impairment [29], both Kit" and Kit" spermato-
gonia have exhibited stem cell activities as evaluated by intra-
seminiferous transplantation [1,24,30]. The POU5F1"/Kit"
subset of mouse SSCs can differentiate into several lines of
somatic cells except for sperm cells [31].

We hypothesize that the expression profiles of c-kit in
the male germ cells during spermatogenesis are dynam-
ically changed before and after the expected differenti-
ation, and these changes are important for their functional
responses to the spermatogenesis-related genes. In this
study, we have investigated the expression of c-kit in the
immortal cell lines representing the SSCs, the differentia-
ting spermatogonia and spermatocytes in hopes of under-
standing its natural expression patterns. We have also
compared the c-kit expression patterns in those cell
lines with their corresponding stage testes. The cell line
c18-4 and 5 dpp mouse testes (before the initiation of
spermatogonia differentiation) represent the undifferen-
tiated spermatogonia. CRL-2053 and 10 dpp mouse testes
(after the initiation of spermatogonia differentiation) rep-
resent the differentiating spermatogonia. CRL-2196 cells
represent primary spermatocytes. The 60 dpp testes repre-
sent a mixture of the undifferentiated, the differentiating,
the maturing and the matured germ cells.

RA, an active metabolite of vitamin A, is a vital signa-
ling molecule for normal fetal development, pattern for-
mation, cell proliferation, differentiation and apoptosis
[32,33]. RA is considered to be crucial for germ cells to
undergo meiosis in both male and female [34,35]. Testes
of adult vitamin A-deficient mice/rat have seminiferous
tubules that only contain Sertoli cells, type A spermato-
gonia and few preleptotene spermatocytes. With a re-
duced c-kit expression or without Stra8 expression, the
type A spermatogonia will arrest before differentiation
(before Al stage spermatogonia) [36]. Administration of
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vitamin A to these animals results in a synchronized
spermatogenesis emerging from type A spermatogonia
and an enhanced expression of c-kit [37]. Therefore, RA
is a key regulatory factor for c-kit expression.

Methods

Cell lines and animals

The c18-4 cell line represents the mouse SSCs [38]. CRL-
2053 (ATCC) is a type B spermatogonia cell line [39].
CRL-2196 (GC-2spd(ts), ATCC) is a spermatocyte cell line
[40,41]. C57/BL6 mice at different ages were purchased
from laboratory animal service center (LASEC), The
Chinese University of Hong Kong. All procedures were
approved by the Animal Research Ethics Committee of
the University.

Cell culture

All cells were cultured in the Dubecco modified eagle
medium/F12 (DMEM/F12, Invitrogen, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (FBS, Invitro-
gen, Carlsbad, CA, USA). A subcultivation ratio of 1:6 to
1:10 was applied. Media were renewed 1 to 2 times per
week. The cells were frozen in complete growth medium
supplemented with 5% (v/v) DMSO and stored in liquid
nitrogen.

Mouse testes collection

Mice at 5 days post partum (dpp), 10 dpp and 60 dpp
were sacrificed by cervical dislocation. For RNA extrac-
tion, testes were washed twice with phosphate buffered sa-
line (PBS) and then immersed in “RNA-later” stabilization
reagent (Qiagen, Valencia, CA, USA). Before protein ex-
traction, testes were washed twice with PBS, transported
in iceboxes and stored in —80°C. Three batches of animals
were used for each experiment.

In vitro tissue culture and RA induction

In vitro tissue culture was carried out according to the
methods described by previous study [42]. Testes from
5 dpp, 10 dpp and 60 dpp mice were detunicated, cut
into small pieces per testis, placed on Millicell CM fil-
ters (Millipore, Bedford, MA, USA) floating on the sur-
face of medium and covered with drops of medium
(DMEM/F12 + 10% FBS). RA (Sigma-Aldrich Co., Saint
Louis, MO, USA) diluted in ethanol was added to the cul-
ture medium to make a final a concentration of 0.7 uM or
2 uM. Tissues were harvested after 24 hours of RA treat-
ment. Total RNA was isolated using the RNeasy mini kit
(Qiagen, Valencia, CA, USA).

In vitro cultured germ cells and RA induction

For germ cell exclusive induction assay, 2 x 10° c18-4 or
CRL-2063 cells were pre-seeded into T25 cell culture
flasks separately (2 flasks each group) overnight before



Zhang et al. BMC Developmental Biology 2013, 13:38
http://www.biomedcentral.com/1471-213X/13/38

the treatment in full medium (DMEM/F12 + 10% FBS).
Induction media (DMEM/F12 + 10% FBS) with a final
concentration of 2 uM RA dissolved in ethanol were
used in the treatment (induction) group. The same
amount of ethanol without RA medium was set up as
the control group. After 24 hours of induction, the in-
duction media was removed, cells were washed with PBS
twice, and cells were collected and stored at —80°C until
analysis. Three independent replications were carried
out for each experiment.

Methods for RNA preparation, electrophoresis and
Northern blot

Total RNA from cells and testes was isolated using the
RNeasy mini kit (Qiagen, Valencia, CA, USA) following
the manufacturer’s instructions. Sizes of RNA were esti-
mated by comparing with 2 pug RNA Millennium size
markers (Ambion, Austin, TX, USA) by measuring the
distance from each band to the loading well.

DNA fragments corresponding to exons 10-12 and
exons 18-20 of the full-length c-kit transcript were ob-
tained by PCR with c-kit specific primers using the 60 dpp
mouse testis cDNA as the template. Primers sequences
are shown in Table 1. Amplified DNA fragments were
inserted into the Topo-TA vector (Invitrogen, Carlsbad,
CA, USA). The plasmids were then extracted by QIAprep
spin miniprep kit (Qiagen, Valencia, CA, USA) and were
sent to commercial company for sequencing.

RNA probes were prepared by MAXIscript kit (Ambion,
Austin, TX, USA) following the manufacturer’s instruc-
tions. mRNA-complementary (antisense) transcripts were
synthesized in a 20 pl in vitro transcription system con-
taining 1 pg DNA template, 2 pl 10 x transcription buffer,
1l 10 mM ATP, 1 pl 10 mM CTPR, 1 pl 10 mM GTP, 5 ul
800 Ci/mmol [a-32P] UTP at a concentration of 10 mCi/mL
(Perkinelmer, San Jose, CA, USA) and 2 pl T3 enzyme
mix. After purification with NucAway Spin columns
(Ambion, Austin, TX, USA), the RNA probes were hy-
bridized with the blots with RNA samples in the
ULTRAhyb ultrasensitive hybridization buffer (Ambion,
Austin, TX, USA) at 68°C overnight. The same blot was
stripped and re-probed with o®?P-labeled beta-actin
RNA probe as internal control. Northern hybridization
was performed twice with probes and membranes that
were made independently. The sequences of PCR
primers and RNA probes are shown in Table 1.

Rapid amplification of cDNA ends (RACE), cloning and
sequencing

The number and size of c-kit mRNA expressed in mice
cell lines and testis were determined by the Northern
blot, the existence of these transcripts were further con-
firmed by RACE and sequencing. We used the BD-
Smarter RACE protocol from BD Biosciences Clontech
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Table 1 PCR primers, real-time PCR primers and RNA
probe sequence of mouse c-kit gene

Probe name Probe sequence (5'— 3)

PCR primers

Exons 10-12 Sense 5' -TGGGGATCATTGTGATGGT-3'
Anti-sense 5'-ATGGCAGCATCCGACTTAAT-3'

Exons 18-20 Sense 5' - CCTCTGGGAGCTCTTCTCCT-3'

Anti-sense 5'- GCTGTCCGAGATCTGCTTCT-3'

Real-time PCR primers

Exon 7-8 AACGTTTACGT GAACACAAAACCAG
Exon 20-21 GCACCAAGCACATTTACTCCAACTT
Exon 21+ CTGATATGTTGTCCAACTGTTGACA

ATGGCAGCATCCGACTTAATCAAGCCA
TATGCAGTGGCCTCAACGACC

TTCCCGAAGGCACCAGCTCCCAATGTC
TTTCCAAAACTCAGCCTGTTTC

TGGGAAACTCCCATTTGTGATCATAAGG
AAGTTGCGTCGGGTCTATGT

AAACATAATTGTTTCCATTTATCTCCTCG
ACAACCTTCCATTGTACTTC

ATACATGGGTTTCTGCAAATATTTGTAGG
TGAGCAC CATCACAATG

ATCCCCAT

GCTGTCCGAGATCTGCTTCTCAATAAGTT
GGACAACCTGCTTGAATGT

TGGC(C CAAGGGGTCAGCGTCCCAG
CAAGTCTTCATGAC

GTCATACATTTCGGCAGGCG CGTGCTCCGG
GCTGACCATC

CGGAAGCCTTCCTTGATCATCTTGTAGAACTT
GGAGTCGACCGGCATC

CCTGGGTAGGGGCTGCTTCCTAAGGAGAAG
AGCTCCCAGAGG

Exons 10-12 probe hybridizes to c-kit extracellular domain coding area. Exons
18-20 probe hybridizes to c-kit intracellular domain coding area.

Exons 10-12 probe
(extracellular domain)

Exons 18-20 probe
(intracellular domain)

(Paloalto, CA, USA) in RACE analysis. The full-length
c¢DNAs was made by joint action of the SMARTer II A
Oligonucleotide and SMART Scribe Reverse Transcriptase
(a variant of MMLV RT) in reverse transcription reactions.
The first strand of cDNA synthesis was obtained from
1 ug total RNA. PCR amplification was done with specific
primers hit exons 10-12 and exons 18-21 on the full-
length c-kit transcript (Table 2) in conjunction with uni-
versal primers that were provided in the kit. Advantage 2
PCR kit (Clontech, Paloalto, CA, USA) was used for the
5" and 3" PCR amplification. Nested PCR and touchdown
PCR were used to safeguard the specificity of the amplifi-
cation. Electrophoresis of the PCR products, bands cutting
and gel extraction (QIAquick gel extraction kit; QIAGEN,
Valencia, CA, USA) were performed. All of the clear
RACE PCR product gel extractions were cloned to TA
vector (TOPO TA cloning kit for sequencing, Invitrogen,
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Table 2 RACE primers

Name 5'or 3’ Sequence (5'—3) No.of Exons Position on
bases hitting NM_021099

ells5 5 CAGCCTGTTTCTGGG 27 Exon 11 1825-1798
AAACTCCCATTTG

el25 5 GCAACTGTCATGGC 26 Exon 12 1920-1895
AGCATCCGACTT

el85 5 TGCTCTCTGGTGCCA 25 Exon 18 2552-2756
TCCACTTCAC

e20 5'A 5’ GGTCAGCGTCCCAG 25 Exon 20 2786-2762
CAAGTCTTCAT

e205'B 5 AAGGGGTCAGCGTC 25 Exon 20 2790-2766
CCAGCAAGTCT

e205'C 5 TGCTTGGTGCTGTCC 25 Exon 20 2856-2832
GAGATCTGCT

e215 5 GGGGTTGCAGTTTG 25 Exon 21 2887-2863
CCAAGTTGGAG

el03 3 AAATCCAGGCCCAC 26 Exon 10 1602-1627
ACTCTGTTCACG

el13 3 TGGGAGTTTCCCAG 26 Exon 11 1802-1827
AAACAGGCTGAG

el83 3 CCGTGAAGTGGATG 25 Exon 18 2550-2574
GCACCAGAGAG

e193'A 3 AGGAAGCAGCCCCT 25 Exon 19 2650-2674
ACCCAGGGATG

el93B 3 GGGATGCCGGTCGA 25 Exon 19 2669-2693
CTCCAAGTTCT

e203'A 3 TGACCCCTTGAAAA 26 Exon 20 2782-2807
GGCCAACATTCA

e203'B 3 GCAGATCTCGGACA 25 Exon 20 2833-2857
GCACCAAGCAC

Requirement of a good gene specific primer for RACE: It should be 23-28 nt,
has 50-70% GC and Tm > 70°C, and does not complement to the 3’ of the
Universal Primer Mix.

Carlsbad, CA, USA) and sent to commercial company for
sequencing. 5" and 3" RACE results were combined to ob-
tain the full-length c¢-kit transcripts sequence information.

Quantitative real-time RT-PCR

Total RNA (2 pg) was treated with DNase I (Sigma,
Saint Louis, USA) for 15 minutes at room temperature
and then reversely transcribed by High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA).

Real-time RT-PCR analysis of c-kit was performed with
Tagman universal PCR master mix and Tagman gene ex-
pression assays on the ABI Prism 7900HT Real Time PCR
System, according to the manufacturer’s instructions
(Applied Biosystems, Foster City, CA, USA). The rela-
tive expression level of each target gene was calculated by
the comparative CT method and was normalized to gly-
ceraldehyde 3-phosphate dehydrogenase (GAPDH) ex-
pression. Three c-kit gene-specific probes that hit different
parts of the full-length transcript (exon 7-8, exon 20-21
and exon 21%) were used.
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Real-time RT-PCR analysis for other genes were per-
formed with Power SYBR PCR master mix and gene spe-
cific primers on the ABI Prism 7900HT Real Time PCR
System, according to the manufacturer’s instructions
(Applied Biosystems, Foster City, CA, USA). The relative
expression level of each target gene was calculated by the
comparative CT method and was normalized to GAPDH
expression. The primers of the candidate genes are list in
Table 3.

Each RT-PCR analysis was repeated 3 times after
GAPDH normalization.

Western blot

Cells and testis tissues were lysed on ice in RIPA buffer
containing 1% freshly added protease inhibitors. Protein
electrophoresis and gel bolting were performed with
NuPAGE electrophoresis system (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s instructions.
The blotted PCDF membranes were blocked with 5%
(wt/vol) non-fat dry milk (RT, 60 minutes) and probed
for Kit at 4°C overnight, using either 1 pg/ml of a mono-
clonal antibody (rat anti-mouse; NOVUS, Littleton, CO,
USA) directed against the extracellular domain of the
Kit or a polyclonal antibody (rabbit anti-human, mouse,
rat; NOVUS, Littleton, CO, USA) directed against the
amino acid near S715 of the human Kit (1 pg/ml)
followed by the HRP-conjugated secondary antibodies
(Santa Cruz, Santa Cruz, CA, USA) staining.

Protein lysate from Kit expressed in human megakar-
yoblast cell lines (ATCC no. CRL-2021) was set up as
positive control and protein lysate from Kit negative
mouse myoblast cell line (ATCC no. CRL-1772) was set
up as negative control. The same blot was stripped and
re-probed with mouse beta-actin primary antibody
(Santa Cruz, Santa Cruz, CA, USA) as internal control.

Immunofluorescence staining of cells

The cover slips with the cells were washed 3 times with
PBS again and were incubated with 5% normal goat
serum (Santa Cruz, Santa Cruz, CA, USA) in PBS for

Table 3 Gene specific primers of the candidate genes

Name Forward Reverse

BMP4 TTCCTGGTAACCGAATGCTGA  CCTGAATCTCGGCGACTTTTT

Cyp26b1  GCAAGATCCTACTGGGCGAAC  TTGGGCAGGTAGCTCTCAAGT

DAZL GTCCTTACATGTACCATTC GACTCCAACAAAACAGC
TGTGAC AGACAA

EGR 3 AGCTGAACTGGGCTGTGTCT AATGGGGAGTGGGTATGTGA

Kitl TCTGCGGGAATCCTGTGACT TGGAAGATTTGCCACCAGTTT

PLZF GCAAGAACAGCGTCAAGACA  TGGGATCACGTGAAGCTATG

RARa TCCGAAGAGATAGTACCCAGC  AAAGCAAGGCTTGTAGATGCG

Stra8 GTTTCCTGCGTGTTCCACAAG  CACCCGAGGCTCAAGCTTC
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30 minutes before being incubated with the primary anti-
body overnight at 4°C. The cells were then incubated with
the secondary antibody and mounted with UltraCruz™
Mounting Medium with DAPI (SantaCruz, Santa Cruz,
CA, USA). The following antibodies were used in this
study: the FITC monoclonal rat-anti-mouse Kit extracellu-
lar domain (1:200, 105805, BioLegend, San Diego, CA,
USA), the monoclonal rat-anti-mouse Kit extracellular
domain (1:200, NBP1-43359, NOVUS, Littleton, CO,
USA), the monoclonal rat-anti-mouse Kit extracellular
domain (1:100, KJ-14, Santa Cruz, Santa Cruz, CA,
USA); the polyclonal rabbit-anti-human/mouse/rat Kit
intracellular domain (1:200, NBP1-19865, NOVUS, Lit-
tleton, CO, USA), the polyclonal goat-anti-mouse Kit
C-terminus (1:100, M14, Santa Cruz, USA) and the
polyclonal rabbit-anti-human/mouse Kit C-terminus
(1:100, C19, Santa Cruz, Santa Cruz, CA, USA). The
secondary antibodies used in this study included: the
Alexa 488-conjugated goat-anti-rat [gG (1:500; Invitro-
gen, Carlsbad, CA, USA); the Alexa 594-conjugated
goat-anti-rabbit IgG (1:500; Invitrogen, Carlsbad, CA,
USA) and the Texas red-conjugated donkey-anti-goat
IgG (1:100; Santa Cruz, Santa Cruz, CA, USA).

Statistical analysis

Statistical analysis was performed by unpaired two-tail
student t test using SPSS software (Version 17.0). All ex-
periments were performed for at least three independent
times and a P value of less than 0.05 was considered
statistically significant.

Results

Transcription of c-kit in cell lines and testes

Northern blots revealed at least 4 transcripts in the cells
and testes (Figure 1B and C). Even more c-kit transcripts
expressed in ¢18-4, CRL-2053 and 5 dpp, 10 dpp and
60 dpp testes were assayed by RACE (Figure 2A, B, C, D).
The 1.5 kb transcript expressed in the c18-4 cells was not
shown by RACE (Figure 1C). Four representative tran-
scripts (Type A, B, C and D) were illustrated in Figure 3
and a multiple blast of their sequences was shown in
Additional file 1. Quantitative expression discrepancies
(either in the 5" end or in the 3" end) of c-kit among
the cell lines and testes of different stages existed. Mul-
tiple blast assays demonstrated that exons 17-21 region
was highly conserved in the c-kit transcripts. The four
representative transcripts included the full-length ca-
nonical transcript (transcript A, 5.1 kb, expressed in 10
and 60 dpp testes), the 3" end short transcript (tran-
script B, 3.9 kb, expressed in c18-4, CRL-2053, 5 and
10 dpp testes), the short transcript (transcript C, 3.4 kb,
expressed in CRL-2053) and the truncated transcripts
(transcripts D, 1.9-3.2 kb, no expression detected by
Northern blot analysis) respectively (Figure 3).

Page 5 of 14

Figure 1 c-kit northern hybridization. (A) RNA electrophoresis.

10 pg total RNA from different samples were loaded. RNA sizes were
marked with 2 pug (2 pl) RNA Millennium size markers (Ambion). All
RNA samples were in good qualities. (B) Northern hybridization with
c-kit probe hit exons 10-12. Short transcripts (purple arrowhead) with
a size between 4 and 5 kb could be observed in c18-4, CRL-2053
and different aged testes. Long transcripts (blue arrowhead) with a
size between 5 and 6 kb were seen in 10 dpp and 60 dpp testes.
(C) Northern hybridization with c-kit probe hit exons 18-20. A 1.5 kb
short transcript (red arrowhead) was observed in c18-4 and a 2.7 kb
short transcript (green arrowhead) was observed in CRL-2053. Short
transcripts (purple arrowhead) with a size between 4 and 5 kb could
be observed in 5 dpp, 10 dpp and 60 dpp testes. Long transcripts
(blue arrowhead) with a size between 5 and 6 kb were seen in

10 dpp and 60 dpp testes. (D) Northern hybridization of beta-actin
(internal control).

Quantitative analysis of different transcript expressions in
testes and germ cell lines

Three sets of specific primers for RT-PCR were designed to
detect c-kit transcripts (e7-8, €20-21 and e21" as indicated
by triangles in Figure 3). Products from the €7-8 primers
represented the long transcripts (transcripts A + B). Pro-
ducts from the e20-21primers represented the total tran-
scripts (transcripts A + B+ C+ D). The ratio of the long
transcripts could be calculated as (e7-8/€20-21) x 100%.
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Figure 2 RACE PCR products gel electrophoresis. (A) 5' and 3' RACE with primer sets hit exons 10-12. c18-4 had two 5" ends (1.8 kb and

1.4 kb). CRL-2053 and 60 dpp testes had one 5" end (1.8 kb). c18-4 had one 3 kb 3" end (3 kb). CRL-2053 and 60 dpp testes had two 3" end

(3 kb and 1.8 kb). (B) 5" and 3' RACE with primer sets hit exons 10-12. 5 dpp and 10 dpp testis had one 5 ends (2 kb). 5 dpp and 10 dpp testes
had two 3" end (3 kb and 2.1 kb). CRL-2053 and 60 dpp testes had two 3" end (3 kb and 1.8 kb). (C) 5" and 3" RACE with primer sets hit exons
18-21. c18-4 had two 5" ends (2.9 kb and 1.5 kb). CRL-2053 had three 5" ends (2.9 kb, 1.4 kb and 1.6 kb). 5 dpp, 10 dpp and 60 dpp testes had the

(D) Summary of c-kit RACE PCR fragments from cell lines and testis.

same one 5" end (2.9 kb); c18-4 had one 3" end (2.9 kb). CRL-2053 5 dpp and 10 dpp and 60 dpp testes had two 3" end (3 kb and 1.8 kb).

The ratio of the short transcripts (Transcript C+ D) was
consequently (1-ratiOjong transeripts) X 100%. Those produced
by e21" primers represented all transcripts with a long
3" end except for transcript B (Transcripts A + C + D).
The ratio of the long 3" UTR transcripts was (e21"/e20-
21) x 100%. The ratio of the short 3" UTR transcripts was
(l'ratiolong 3" UTR transcripts) x 100%.

From 5 dpp to 10 dpp, expressions of both transcripts
A +B and transcripts C+D increased significantly
(Figure 4A, B). The ratios of long and short transcripts
remained constant (22.47% in 5 dpp and 22.45% in 10 dpp,
Figure 4B). The ratio of long 3" transcripts jumped

from 2.8% to 4.01% (Figure 4C). From 10 dpp to 60 dpp,
transcripts A + B + C+ D increased moderately but tran-
scripts A + C + D decreased. Hence, it can be deduced that
transcript B must have been enhanced significantly
(Figure 4A). Consequently, since the relative amount of
transcripts A + B did not change, the quantity of tran-
script A must have declined dramatically. The ratio of
short transcripts progressed from 22.45% in 10 dpp to
54.91% in 60 dpp (Figure 4B). Long 3" transcripts dropped
from 4.01% (10 dpp) to 0.60% (60 dpp) (Figure 4C).
Primers 21" did not detect any bands in all three types
of cell lines. As a result, all transcripts in these cell lines
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transcript (4 kb). This transcript was composed of 21 exons with 966 bp long 3" UTR. (C) Short transcript (2.7 kb) started from intron 9 of the full-
length transcript. (D) The truncated transcript (1.5 kb). It represented a group of transcripts that started from different intron or exon of c-kit gene,
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the c-kit gene respectively. All these truncated transcripts we found containing a conserved domain from exon 17 to exon 21.

lacked of the 3" UTR ends. The relative quantity of tran-
script A was equivalent with transcript B in the cell lines.
The expression of type A +B multiplied significantly in
CRL-2053 (about 20 folds of that in c18-4) and then di-
minished (about 5 folds of that in c18-4) in CRL-2196
(Figure 5A). The ratio of type A + B transcripts was 65%,
92.9% and 56.4% in c-18-4, CRL-2053 and CRL-2196
respectively (Figure 5B).

Translation of c-kit in the testes and male germ cell lines

It was shown that full-length Kit (145 KDa) was
expressed in CRL-2053 cells and testes except in c18-4
cells (Figure 6A). With an anti-intracellular antibody, a 50
KDa Kit was expressed in the c18-4, CRL-2053 and all tes-
tes (Figure 6B). From 5 dpp to 60 dpp, the 145 KDa Kit in-
creased, but the 50 KDa Kit remained homogenous in the
testes (Figure 6). Both the c18-4 and CRL-2053 cells
expressed the intracellular domain of Kit (nuclear region)
(Figure 7B and D). Unlike the CRL-2053 cells, the c18-4
cells did not express the extracelluar domain (membrane
region) (Figure 7A). In the 5 ddp testes, expression of the
extracellular domain was very minimal in the germ cells
(Figure 8A). In the 10 dpp testes, a portion of the germ
cells adjacent to the basement membrane of the seminifer-
ous tubules began to express the membrane domain

(Figure 8B). In the 60 dpp testes, some spermatogonia and
spermatocytes were tested positive for membrane domain
(Figure 8C). In contrast, the nuclear domain was
expressed in all stages (5 dpp, 10 dpp and 60 dpp) in the
spermatogonia, spermatocyte and spermatids, but not in
the mature spermatozoon (Figure 8D, E and F). Leydig
cells highly expressed the nuclear domain of Kit in the
60 dpp testes (Figure 8F).

Expression changes of c-kit and other differentiation-
related genes in the testes after RA stimulation

5 dpp, 10 dpp and 60 dpp mouse testes were treated
with either 0.7 uM or 2 uM RA in vitro for 24 h. Quan-
titative expression of c-kit and SSCs differentiation re-
lated genes were determined by Real-time PCR using
three pairs of primers (e7-8, e20-21 and e21" as indi-
cated by arrow heads in Figure 3). The total c-kit mRNA
level increased following the RA treatment and exhibited
a concentration-dependent pattern in 5 dpp and 10 dpp
testes (Figure 9A, C). After RA stimulation, the 60 dpp
testes did not display concentration-dependent increases
any more (Figure 9E). In 5 dpp and 10 dpp testes, ex-
pressions of Cyp26b1 and Stra8 were significantly up-
regulated (Figure 9B, D). Expressions of Dazl and Kitl
were enhanced moderately in 5 dpp and 60 dpp testes
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(Figure 9B, F). Bmp4 had a different response to RA
treatment in testes of different ages (Figure 9B, D, F).
The effects of RA on the expressions of Bmp4, Cyp26b1
and Stra8 were more significant in the 5 dpp testes than
that in the 10 dpp testes. Expressions of RARa and Egr3
were not altered in either stage (Figure 9B, D, F).

Expression dynamics of c-kit and differentiation-related
genes in germ cell lines after RA stimulation

c-kit and other differentiation-related genes changes
were analyzed in C18-4 and CRL-2053 cells after RA
treatment (2 pM RA for 24 hours). Unlike in the testes,
the expressions of all transcripts declined in the c18-4
cells after RA stimulation (Figure 10A). In CRL-2053 cells,
the amount of the long transcripts (e7-8 in Figure 10B)
declined to about 50% but the quantity of total transcripts
(e20-21 in Figure 10B) escalated to approximately 2 folds,

Oc-kite7-8
250 W kit £20-21
& P
g mo
A - o 150
23 |
e 2 100
1 © ;
L N |
00 L sndhan —
c184 CRL-2053  CRL-2196

B B Long transcripts
B Short transcripts

T71%

c18-4 CRL-2053 CRL-2196

Figure 5 c-kit transcripts profile in germ cell lines. (A) Relative
c-kit mRNA expression level in the c18-4, CRL-2053 and CRL-2196 germ
cell lines. Error bars represent S.EM. c-kit e7-8 represent full-length c-kit
transcripts. c-kit e20-21 represent total c-kit mRNA. Differences between
each two groups were significant (P<0.05). (B) The ratios of Full-length
and truncated c-kit transcripts in c18-4, CRL-2053 and CRL-2196 germ
cell lines. The ratio of truncated c-kit transcripts were calculated by the
formula (“’raﬂofull-length transcmpts) % 100%.

indicating that the short transcripts must have in-
creased even more significantly (Figure 10B). Expres-
sions of Cyp26b1 and Stra8 increased significantly in both
c18-4 and CRL-2053 cells (P <0.01) (Figure 10C, 10D).
The two germ cell marker genes, Dazl and Pou5fI had
distinctive responses to RA. Dazl was boosted in 5 dpp
and 60 dpp testis (Figure 9B, F), but not in either cell lines
(Figure 10C, D). Pou5f1 diminished in c18-4 cells but did

L2 » (9
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extracellular m
domain —102kDa

beta-actin | — ----—
—38kDa

B & oF S F S
& & & $° & &
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Figure 6 Western blot analysis of c-kit protein expression in
germ cell lines and testes. (A) c-kit protein expression assayed by
an anti-mouse Kit extracellular domain monoclonal antibody in
germ cell lines and testes. (B) c-kit protein expression assayed by an
anti-mouse Kit intracellular domain monoclonal antibody in germ
cell lines and testes.
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not change in CRL-2053 cells (Figure 10C and D). Egr3
(an early growth response gene) was suppressed in c18-4
and CRL-2053 cells (Figure 10C, 10D), but it was not
altered in the testes (Figure 9B, D, F). Rara (an RA recep-
tor gene) did not respond to RA stimulation.

Discussion

A. c-kit transcripts during spermatogenesis

In addition of the conventional full-length c¢-kit and Tr-kit
discovered, we also found more than 3c-kit mRNA tran-
scripts in the SSCs and spermatogonia. CRL-2053 had the
highest amount of transcript A (Figure 5A). Though its
quantity increased, the percentages of Transcript A de-
clined in CRL-2196 and 60 dpp testes when compared
with that in ¢18-4 cells and testes at 5 dpp (Figure 4A, B,
Figure 5A, B). The 145 KDa Kit was also absent in c18-4
cells (Figure 6A). On this basis, acquisition of this tran-
script marked the start of the transition from SSCs to
spermatogonia. The percentage of this transcript de-
creased in CRL-2196 cells and 60 dpp testes. This was
caused by the emergence of new short transcripts, which
were important for later stage spermatogenesis.

Expression of transcript B was the highest in the 10 dpp
testis (Figure 4A). The 3.9 kb short 3" UTR transcript was
composed of 21 exons, identical to the full-length tran-
script. The only difference was that the 3.9 kb short 3’
UTR transcript had a 1.2 kb shorter 3" UTR than the full-
length transcript. Combining its abundance in the testes
(95.9% ~ 99.4%, Figure 4C) with the strong positive stain-
ing of Leydig cells in the 60 dpp testes (Figure 8F), it could
be inferred that this transcript might be a somatic form.
Functions of 3" UTR included supplying binding sites for
microRNAs and post-transcriptional regulation. Absence
of the 3" end UTR in all transcripts in the immortal germ
cells (Figure 5A) indicated that the 3" UTR modification
was lost during immortalization and it might be controlled
by testicular somatic factors.

Transcript C, encoding the 50 KDa Kit, was stably
expressed in the testes (Figure 6B). The percentage of
the short transcripts (Transcript C + D) was the highest
in the 60 dpp testes (54.91%) (Figure 4B) and CRL-2196
(43.6%) (Figure 5B). Consequently, these transcripts
might have significant roles in later stage spermatoge-
nesis beginning from spermatocytes. Multiple sequence
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Fluo 594 labeled anti-Kit intracellular domain in 60 dpp mouse testes.

alignment of c-kit tranascripts was shown in Additional
file 1.

B. Kit profile during spermatogenesis

Two forms of Kit were discovered in this study: the
145 kDa and 50 kDa Kit. The 145 kDa Kit was located
in the cytoplasm/membrane domain in CRL-2053 cells
(Figure 7C) but not in c18-4 cells. Its expression esca-
lated accordingly in the 5 dpp, 10 dpp, 15 dpp, 40 dpp
and 60 dpp testes (Figure 6A). Unlike the 145 kDa full-
length Kit, the 50 kDa Kit, possibly the product of tran-
script C, was expressed in both nuclear and cytoplasm/
membrane domains in CRL-2053 cells (Figure 6). The

50 kDa Kit was stably expressed in the testes (Figure 6B).
Therefore, the 145 kDa was indeed the marker for
spermatogonia [43]. We highlighted here that its loca-
tion shifted from the nucleus to the cytoplasm and then
to the membrane domain. This might be vital for the ini-
tiation of spermatogenesis in SSCs. Expression of the
extracellular full-length Kit on membranes, not in the
nucleus or in the cytoplasm, endorsed the cells the abi-
lity to correspond with Kitl signals. Hence, this expres-
sion played important roles in differentiation initiation.
We also demonstrated here that SSCs did not have full-
length transcript (transcript A), nor the full-length Kit
(145 kDa), which agreed with other studies indicating
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Figure 9 Expression of c-kit and other germ cell differentiation-related genes in the 5 dpp, 10 dpp and 60 dpp mouse testes
stimulated by RA. 5 dpp, 10 dpp and 60 dpp testes were treated with 2 uM RA diluted in ethanol for 24 h in vitro. Testes treated with the same
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c-kit and its potential regulatory genes (BMP4, Cyp26b1, DAZL, EGR3, Kitl, RARa and Stra8). Values of the vertical axis represented the expression
fold change comparing with the control group. The results were normalized to GAPDH values. Error bars represent the S.EM. Values with

** represented a significance with a P<0.01 whereas values with * represented a significance with a P<0.05 comparing with the control group.
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that the activation of the Kit/Kitl signaling pathway was
not required for SSCs” self-renewal [23,24]. Kit was ini-
tially expressed in the nucleus, and then ventured out to
the cytoplasm and then to the membrane domain when
SSCs became spermatogonia. ORF finder comparison of

the c-kit putative proteins sequences were shown in
Additional file 2.

C. RA responses in germ cells and testes

Some studies showed that RA directly acts on spermato-
genic cells by stimulating Stra8 and c-kit gene expres-
sion, whereas some studies testified that exogenous RA

could not stimulate c-kit expression [16,42,44]. We de-
monstrated that RA enhanced c-kit expression (Figure 9A,
C and E) in testes. Stra8 (gene stimulated by RA) was also
significantly amplified in both cell lines and 5 dpp/10 dpp
testes (Figure 9B, D). However, the expression pattern
of c-kit in the cell lines was different from that in the
testes (Figure 10 vs Figure 9). Both long and short tran-
scripts were reduced in c18-4 cells after RA stimulation
(Figure 10A). On the other hand, the long transcripts
were reduced whereas the short transcripts were pro-
moted in CRL-2053 cells (Figure 10B). We concluded
that RA indirectly impacted upon c-kit expression in
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Figure 10 Expression of c-kit and other germ cell differentiation-related genes in the c18-4 and CRL-2053 cells stimulated by RA.
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without RA were the control group. Realtime PCR was carried out for quantitative determination of the expression of c-kit and its potential
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male germ cells, while some unknown factors from the
testes somatic cells might be involved. It agreed with
previous works that RA indirectly controlled the timing
of meiosis by juxtacrine of Sertoli cells [45].
Suppression of Bmp4 by RA was obvious. RA reduced
Bmp4 (a SSCs pluripotential maintenance gene) expres-
sion in 5 dpp testes (Figure 9B) and did not alter Bmp4
expression in 10 dpp and 60 dpp testes (Figure 9D, F).
BMP4 was also reduced in c18-4 cells after RA stimula-
tion (Figure 10C). Excessive exogenous RA would push
SSCs into abnormal differentiation and finally apop-
tosis [16]. Our results validified that after 24 hours of
2 uM RA treatment, expression of Cyp26b1 (a RA deg-
radation gene) was stimulated. This would degrade ex-
cessive RA into the inactive form in both cell lines and
testes (Figure 9B, C, Figure 10C, D). Cyp26b1 was not
altered in 60 dpp testes (Figure 9F). The increase of
the protective gene also varied in CRL-2053 cells (~20
folds increase of Cyp26b1) and in c18-4 cells (~6 folds
increase of Cyp26b1). We confirmed here, again, that
Stra8 was the most immediate responsive gene after
RA stimulation. The germ cell marker genes (Dazl and
Pou5fl), early growth response gene (Egr3), and the

RA receptor gene (Rara) did not respond to RA, espe-
cially not when RA was added to testes tissue culture.

Conclusions

There are dynamic transcription and translation changes
of c¢-kit before and after SSCs’ anticipated differentiation.
These changes differ between in the cell lines and in
the testis. The responses to RA stimulation are different
between the cell lines and testis too. As a significant up-
stream regulatory factor for c-kit expression, RA might
play with other unknown factors to precisely regulate the
expression profiles of c-kit in order to regulate normal
spermatogenesis.

Additional files

Additional file 1: Multiple sequence alignment of c-kit transcripts.

Additional file 2: Multiple sequence alignment of ORF finder
predicted c-kit proteins.
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