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Abstract

Background: In a recent genomic study, Leung et al. used a factorial microarray analysis to identify Smarca4
(Brg1)-regulated genes in micro-dissected zebrafish retinas. Two hundred and fifty nine genes were grouped in
three-way ANOVA models which carried the most specific retinal change. To validate the microarray results and to
elucidate cellular expression patterns of the significant genes for further characterization, 32 known genes were
randomly selected from this group. In situ hybridization of these genes was performed on the same types of

samples (wild-type (WT) and smarca4®?**° (yng) mutant) at the same stages (36 and 52 hours post-fertilization
(hpf) as in the microarray study.

Results: Thirty out of 32 riboprobes showed a positive in situ staining signal. Twenty seven out of these 30 genes
were originally further classified as Smarca4-regulated retinal genes, while the remaining three as retinal-specific
expression independent of Smarca4 regulation. It was found that 90.32% of the significant microarray comparisons
that were used to identify Smarca4-regulated retinal genes had a corresponding qualitative expression change in
the in situ hybridization comparisons. This is highly concordant with the theoretical true discovery rate of 95%.
Hierarchical clustering was used to investigate the similarity of the cellular expression patterns of 25 out of the 27
Smarca4-regulated retinal genes that had a sufficiently high expression signal for an unambiguous identification of
retinal expression domains. Three broad groups of expression pattern were identified; including 1) photoreceptor
layer/outer nuclear layer specific expression at 52 hpf, 2) ganglion cell layer (GCL) and/or inner nuclear layer (INL)
specific expression at both 36 & 52 hpf, and 3) GCL and/or INL specific expression at 52 hpf only. Some of these
genes have recently been demonstrated to play key roles in retinal cell-type specification, differentiation and
lamination. For the remaining three retinal-specific genes that are independent of Smarca4 regulation, they all had
a subtle expression difference between WT and smarca4®*?**° retinas as detected by in situ hybridization. This
subtle expression difference was also detected by the original microarray analysis. However, the difference was
lower than the fold change cut-off used in that study and hence these genes were not inferred as Smarca4-
regulated retinal genes.

Conclusions: This study has successfully investigated the expression pattern of 32 genes identified from the
original factorial microarray analysis. The results have demonstrated that the true discovery rate for identifying
Smarca4-regulated retinal genes is 90.3%. Hence, the significant genes from the microarray study are good
candidates for cell-type specific markers and will aid further investigation of retinal differentiation.
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Background

The retina contains six neuronal cell types and one major
glial cell type, all of which originated from the same pro-
genitor cell. In vertebrate retinas, the early proliferation of
multipotent progenitors produces a sufficient number of
cells that will be specified as different retinal cell types at
around the time of their cell cycle withdrawal. The cell
types that can be specified at a particular stage of develop-
ment are controlled by both intrinsic and extrinsic signals;
and this temporal restriction on cell fate specification is
commonly referred to as the competence model [1]. In
general, ganglion cells (GCs) are the first cell type while
Muller cells (MCs) are the last cell type to be specified.
These reversibly specified cells then undergo irreversible
determination after which their cell fate can not be chan-
ged by external signals [2]. Specification and determina-
tion are collectively called commitment. Finally, these
committed cells undergo terminal differentiation during
which they send out neuronal processes and synapse with
each other.

Many intrinsic factors and extrinsic signals that control
retinal cell specification and differentiation have been
identified. For example, Atoh7 and Crx are transcription
factors that specify retinal ganglion cells [3] and photore-
ceptors [4,5] respectively. Research on zebrafish retina
has also identified key signalling molecules and processes
that regulate terminal differentiation and lamination.
These include Shh [6], cell polarity regulation [7], cell
adhesion [8] and chromatin remodelling [9]. For exam-
ple, in a retinal terminal differentiation mutant smar-
ca4*%’**% (young/yng), all retinal cell types could be
specified but failed to fully differentiate due to a null
mutation of a chromatin remodelling component
smarca4 (brgl) [9,10]. Nonetheless, the underlying
genetic circuitry that controls terminal differentiation is
still poorly understood [11].

In a recent microarray study of retinal development in
zebrafish, a factorial design was used to identify specifically
Smarca4-regulated retinal genes in micro-dissected wild-
type (WT) and smarcad®®”“* retinas [12]. Seven hundred
and thirty one genes were identified as regulated by
Smarca4 with different levels of retinal specificity, as
defined by the factorial ANOVA model used. In particular,
259 genes were grouped in the three-way ANOVA models
and considered to have the most specific retinal change.
To study the regulation of these genes during retinal
development, it is essential to validate their differential
expression and elucidate their cellular expression patterns.
The present study investigated the cellular expression pat-
terns of 32 randomly selected known genes from this
group of three-way ANOVA models by whole-mount
in situ hybridization. A comparative analysis of the results
with the original microarray findings was performed to
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evaluate the performance of the factorial microarray
analysis.

Results

In situ hybridization analysis of Smarca4-regulated genes
validates differential expression results obtained by
factorial microarray analysis

In a recent factorial microarray analysis that aimed at
identifying Smarca4-regulated retinal genes in micro-
dissected retinas [12], 259 genes were categorized in
three-way ANOVA models (see Methods for details).
These genes have the most specific gene expression
change in the smarca4“*”**° retinas at 52 hours post-
fertilization (hpf). Since the differentiating retinal cells
are beginning to organize themselves into three cellular
layers and synapse with each other at this stage, the cel-
lular expression analysis of these Smarca4-regulated ret-
inal genes would potentially assist further functional
characterization of retinal differentiation and lamination.

To facilitate performance evaluation of this microarray
analysis approach, 32 known genes were randomly
selected from these 259 genes and whole-mount in situ
hybridization performed on embryos collected at the
same stages that were used in the microarray analysis.
These include WT and smarca4**”**° embryos at 36 &
52 hpf. The corresponding retinal samples at the same
stages are WR36 & WR52 for WT, and YR36 & YR52
for smarcad”*?“*? respectively (former nomenclature
yng will be used in the sample abbreviations for smar-
ca4“>”*%° to aid comparison with the published data in
[12]). The factorial microarray analysis also further cate-
gorized these 259 genes into three functional groups: (i)
Smarca4-regulated retinal differentiation genes (194
genes), (ii) retinal-specific genes independent of Smarca4
regulation (35 genes), and (iii) Smarcad-regulated genes
outside retina (54 genes). Only genes in the first group
have a significant differential retinal gene expression in
smarcad®>”**° compared to WT (see Methods for the
statistical criteria).

Among the 32 randomly selected known genes for in
situ hybridization, 29 (olfm2, rlbpll, gukl, ndrgl, glra4b,
robo2, irx7, barhl2, vangll, dtnbpl, lmo4l, cdhll, elovl4,
ctbp2, irx4a, rho, id2a, sv2b, wntll, calb2l, ckmtl, kalla,
aanat2, pbxla, fzd8b, tfap2a, nme2l, rcvl and gnatl) are
in the functional group (i) as described above, three
(foxn4, six3a and bhlhe22) are in group (ii) and none is in
group (iii). Two (¢cdhl1 and wntll) out of the 29 genes
from group (i) showed no discernable signal in all retinal
samples in the in situ hybridization experiments. For
cdhll, there was considerable expression signal detected
outside the eye region (data not shown). This indicates
that the probe could detect gene expression. However,
there was no discernible expression signal in the eye. For
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wntll, since there was no signal in the whole embryo
(data not shown), an additional probe that is deposited in
the public domain (ZFIN ID: ZDB-GENE-990603-12;
probe cb748) was acquired and the in situ hybridization
repeated with smarcad®%*°° and their WT siblings, as
well as WT embryos collected from AB and TL strains.
In all conditions, the staining in the other reported
embryonic regions, including otic vesicles, lower jaw and
myoseptum, was clearly observed. However, there was no
positive staining in the retinas, even after an overnight
staining (Additional file 1, Figure S1 and data not
shown). Thus, the in situ hybridization results do not
support the expression of wnt11 and cdhll in the retinas
at 36 and 52 hpf.

The positive and negative expression results obtained by
in situ hybridization serve two purposes. First, they can be
used to validate the expression changes obtained by the
microarray analysis and in turn the significance inference
process. This helps evaluate the performance of the
approach. Second, the cellular expression patterns of these
candidate genes may shed light on their functions. To vali-
date the expression changes obtained by the microarray
analysis, the fold changes of the 29 Smarca4-regulated ret-
inal genes from group (i) in four comparisons of retinas
(YR36/WR36, YR52/WR52, WR52/WR36 and YR52/
YR36) were first plotted in a heatmap (Figure 1A; the fold
changes can be found in Additional file 2, Table S1).
These data were then compared with the corresponding
expression data obtained by in situ hybridization. Even
though all samples for each gene were stained for the
same period of time, since whole-mount in situ hybridiza-
tion is not a true quantitative analysis, it was decided that
the best way to interpret the data was to elucidate whether
the expression level was higher (1), lower (-1) or not chan-
ged (0) in the corresponding comparisons (Figure 1B;
Additional file 2, Table S1). First, the expression changes
in the in situ hybridization were highly similar to the cor-
responding fold changes in the microarray analysis (com-
pare Figure 1A & 1B). Furthermore, an identity matrix
was established to compare the observations for all four
retinal comparisons (YR36/WR36, YR52/WR52, WR52/
WR36 and YR52/YR36) obtained from the microarray
analysis with the in situ hybridization (Figure 1C). It can
be shown that in 83.6% (97/116 comparisons) of the cases,
when there was a significant change in the microarray
comparison (see Methods for a detailed definition of sta-
tistical significance); there was a noticeable corresponding
in situ hybridization expression change or vice versa (Fig-
ure 1C). Finally, since these genes were originally selected
by statistical criteria focused on the smarcad®”**° vs. W'T
comparisons, it can be further demonstrated that the iden-
tical rate of having a corresponding expression change in
the in situ hybridization with only these significant micro-
array comparisons is 90.3% (28 out of 31 comparisons;
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Additional file 2, Table S1A, bold-type observations in col-
umns 1 & 2 for microarray comparisons). To see if these
true positive observations and the theoretical true discov-
ery rate (>95%) for significance inference in the microar-
rays are concordant, a z test was conducted. The p-value
is 0.83, suggesting that there was no significant difference
between the theoretical true discovery rate [12] and
the actual observation. Together, these results suggest that
the original factorial microarray analysis can effectively
identify true differential expression in micro-dissected
zebrafish retinas.

Cellular expression patterns of Smarca4-regulated retinal
genes

The cellular expression patterns of the 27 Smarca4-regu-
lated genes with positive in situ hybridization signals in
the WT retinas were further analyzed as follows. First,
their expression domains in 36 and 52 hpf retinas were
recorded from both ventral and lateral views, defined as
follows (Additional file 3, Table S2): (A) For the 36 hpf
ventral view, three expression domains were defined: 1.
ganglion cell/basal region (GC/BR), 2. outer retina-basal
(OR-b) and 3. outer retina-apical (OR-a)(Figure 2A). The
basal region should contain differentiating ganglion cells
at this stage [13]; however since ganglion cell marker
staining were not performed in this study in conjunction
with the in situ hybridization, this region may contain
cells that belonged to other cell types. Thus it is more
appropriate to define the expression domain as GC/BR.
The remaining part of the retina has not yet differentiated
at this stage and was defined as OR-b and OR-a to reflect
the observed difference in expression pattern within this
area. (B) For the 52 hpf ventral view, five expression
regions were defined: 1. ganglion cell layer (GCL), 2. inner
nuclear layer-basal (INL-b), 3. inner nuclear layer-middle
(INL-m), 4. inner nuclear layer-apical (INL-a) and 5. outer
nuclear layer (ONL)(Figure 2B). Several cell types will ulti-
mately differentiate in the INL, including amacrine cells
(ACs), bipolar cells (BCs), horizontal cells (HCs) and MCs,
while photoreceptors will occupy the ONL. (C) For the lat-
eral view for both 36 and 52 hpf, five expression domains
were defined: 1. ventral patch (VP), 2. anterior-ventral
(AV), 3. anterior-dorsal (AD), 4. posterior-dorsal (PD) and
5. posterior-ventral (PV)(Figure 2C). The VP has been
used to refer to the location from which cells in GCL, INL
and ONL first differentiate [14,15]; and is used here to
generally refer to staining domain that is found in a very
restricted manner on the ventral side of the retina.

Then, the similarity of the cellular expression domains
from these views between different genes was investi-
gated by hierarchical clustering (Figure 2D). Dtnbpl and
fzd8b were excluded from this clustering analysis. This
is because dtnbpl’s expression was only intense enough
for discerning an over-expression in WT compared with
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Figure 1 A comparison of the microarray results with the corresponding in situ hybridization experiments. (A) A heatmap of the fold
changes of all retinal comparisons obtained by the original microarray analysis [12](Additional file 2, Table S1). The corresponding gene symbols
and AffylDs are shown on the right. All fold changes are plotted on the log, scale. Red colour indicates an over-expression in that comparison,
green indicates an under-expression and black indicates no change. YR36 and YR52: smarca4®”® retinal samples at 36 and 52 hpf respectively;
WR36 and WR52: WT retinal samples at 36 and 52 hpf respectively. Note that fold change was only one of the criteria for significance inference
in the original study; see (C) and Methods for details. (B) A heatmap of the corresponding retinal comparisons in the in situ hybridization
samples as in (A). Even though all samples for the same gene were stained for the same time, it was decided the best usage of the in situ
hybridization results was for a qualitative evaluation of differential expression. An over-expression was represented as red (1), no change as black
(0) and under-expression as green (-1). (C) An identity matrix of the microarray results compared with the in situ hybridization results. An
identical observation between the two studies is defined as either both the microarray comparison was significant and the in situ hybridization
comparison showed a corresponding differential expression, or both the microarray comparison was insignificant and the corresponding in situ
hybridization did not show a differential expression. A significant microarray result is defined as the specific contrast for that comparison was
significant and the corresponding fold change is > = 2 (See Methods and [12]). White colour indicates that the expressions are identical (Y: yes)
between microarray and in situ hybridization while black indicates otherwise (N: no).
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Figure 2 Hierarchical clustering of the cellular expression patterns of 25 Smarca4-regulated retinal genes in WT retinas. Twenty five out
of the 27 Smarca4-regulated retinal genes had a signal intensity that was sufficiently high for discerning their normal cellular expression domains
in WT retinas at 36 and 52 hpf unambiguously. The retinas at these stages were artificially divided into several domains (A, B & C) and positive
expression in that region scored. The resulting observations are plotted as a heatmap, with red colour representing a positive signal in a
particular retinal domain and black representing no discernible signal. The columns are arranged according to the expression domains as
defined in (A, B & C). A hierarchical clustering was conducted to elucidate the similarity of the cellular expression patterns of these genes (D).
The resulting dendrogram of the clustering is plotted on the left side of the heatmap and the rows of the heatmap are arranged accordingly.
The highly significant clades of the dendrogram are shown in red (p-value < 0.05) and green (p-value < 0.1).
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smarcad®*®**? retinas, but not for an unambiguous elu-

cidation of the cellular expression domains (Figure 3H).
While for fzd8b, it was only over-expressed in YR36 and
not in either of the WT conditions; thus it would not be
informative to include this gene in the clustering of WT
cellular expression patterns (see sub-section IV below).
The clustering analysis using the remaining 25 genes
revealed three general groups of expression patterns: 1)
photoreceptor layer/ONL specific expression at 52 hpf
(Figure 4), 2) GCL and/or INL specific expression at
both 36 & 52 hpf (Figure 5) and 3) GCL and/or INL
specific expression at 52 hpf only (Figure 3).

I. Photoreceptor layer/ONL specific expression at 52 hpf

A total of eight genes, including rho, gnatl, gukl, nme2l,
elovl4, revl, ndrgl and aanat2, were found to express
specifically in photoreceptor layer/ONL in the WT

retinas (Figure 4). Their expression was suppressed in
all smarcad®®**? retinas. Two sub-clusters were also
observed (Figure 4G). The genes in the first sub-cluster
only expressed in a ventral patch of cells in the retina
by 52 hpf (rho &gnatl, Figure 4A; nme2l &elovl4, Figure
4C). The genes in the second sub-cluster expressed to a
different degree in the other parts of the ONL at the
same stage in addition to the ventral patch of the retina
(gukl, Figure 4B; rcvl and aanat2, Figure 4D & 4F
respectively), except for ndrgl which did not express in
this domain (Figure 4E). Also, the expression patterns of
rho and gnatl, as well as nme2l and elovi4 were highly
similar and were tightly clustered with each other (p-
value <0.05; Figure 2D, red colour in the dendrogram).
Interestingly, rho, gnatl and rcvl, components of the
visual cycle, were also weakly expressed in the ventral
retina at 36 hpf (Figure 4A & 4D). This is earlier than
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Figure 3 Cellular expression patterns of Smarca4-regulated retinal genes specifically expressed in GCL and/or INL at 52 hpf only. A
total of 14 genes were clustered in a clade with a relatively significant p-value (< 0.1; Figure 2). Except for rlbp1/ and irx7 that expressed at both
36 and 52 hpf and are shown in Figure 5, all remaining 12 genes only expressed at 52 hpf in GCL and/or INL. There are eight types of cellular
expression pattern: (A) tfap2a, id2a, olfm2 & Imo4l, (B) glra4b, calb2l & vangl1, (C) robo2, (D) ckmtl, (E) kalla, (F) ctbp2, (G) sv2b and (H) dtnbp]. If
more than one gene has the same expression pattern, only one example is shown and its name is highlighted in blue. For each gene, the
ventral and the lateral views of WT and smarca4®”*° retinas are shown. In some cases, the embryo was slightly tilted from the lateral view to
facilitate a better observation of the expression domain. Some specific expression locations in the retina are highlighted by black arrows. The
corresponding clade of the dendrogram from Figure 2D is reproduced in (I). Refer to Figure 1 for sample abbreviations. Scale bar: 50 um.
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Figure 4 Cellular expression patterns of Smarca4-regulated retinal genes expressed specifically in photoreceptor layer/ONL at 52 hpf.
A total of eight genes were found to express in the photoreceptor layer/ONL. There are six types of cellular expression pattern: (A) rho & gnatl,
(B) guk1, (C) nme2l & elovl4, (D) rcvi, (E) ndrg! and (F) annat2. If more than one gene has the same expression pattern, only one example is
shown and its name highlighted in blue. For each gene, the ventral and the lateral views of WT and smarca4®?“*° retinas are shown. Some
specific expression locations in the retina are highlighted by black arrows. The corresponding clade of the dendrogram from Figure 2D is
reproduced in (G). Refer to Figure 1 for sample abbreviations. Scale bar: 50 pm.
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hpf. A total of five genes: (A) irx4a, (B) barhl2, (C) pbxla, (D) rlbp1l and (E) irx7 were found to express at both 36 and 52 hpf in GCL and/or INL
in the WT retinas. Each one of them has a unique cellular expression pattern. For each gene, the ventral and the lateral views of WT and

retinas are shown. In some cases, the embryo was slightly tilted from the lateral view to facilitate a better observation of the
expression domain. Some specific expression locations in the retina are highlighted by black arrows. The corresponding clade of the
dendrogram from Figure 2D is reproduced in (F). Refer to Figure 1 for sample abbreviations. Scale bar: 50 pm.
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the stage (~50-52 hpf) of the first rho expression pre-
viously reported [16], but is consistent with the public
in situ hybridization data (ZFIN ID: ZDB-GENE-
990415-271), which show the first expression of rko in
the same location at around the same stage (Prim-15 -
25; ~30-36 hpf).

Il. GCL and/or INL specific expression at both 36 & 52 hpf
A group of five genes, including irx4a, barhl2, pbxla,
ribpll and irx7, were expressed in WT retinas at both
36 and 52 hpf (Figure 2D). Their expressions were all
suppressed in smarcad®”“*° retinas at the correspond-
ing stages. These genes were segregated into two sub-

clusters because of their diverse expression patterns at
36 hpf (Figure 5F). The first sub-cluster contains irx4a,
barhl2 and pbxla (Figure 5A, B & 5C). This group of
genes expressed in the GC region at 36 hpf to a variable
degree (Figure 5, arrows). For example, barhi2 was
expressed in the VP, AV, AD and PD but not in the PV
domain from the ventral view (Figure 5B, arrows), sug-
gesting that it is a gene that may be regulated by the
neurogenic wave in the retina [13]. By 52 hpf, all of
these three genes were expressing in either the GCL or
both GCL and INL-b, which contains the presumptive
ACs. The second sub-cluster, containing rlbpll and irx7
(Figure 5D &5E), is clustered within a larger family of
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genes that only expressed at 52 hpf and will be dis-
cussed in the next section. Nonetheless, these two genes
have a slightly unique expression pattern: whereas they
were expressed on the ventral side of the 36 hpf retinas
(Figure 5D &5E, arrows), their expression domain was
restricted to the whole INL by 52 hpf.

lll. GCL and/or INL specific expression at 52 hpf only

A total of 14 genes (irx7, rlbpll, sv2b, ctbp2, kalla,
ckmtl, robo2, vangll, glra4b, calb2l, Imo4l, olfm2, id2a
and tfap2a) were clustered in a group with a p-value <
0.1 (Figure 2D, green colour part of the dendrogram).
Among them, only irx7 and rlbp1l started to express at
36 hpf and were discussed above (Figure 5D & 5E). For
the remaining 12 genes in the cluster, they only
expressed at 52 hpf (Figure 3). Interestingly, several genes
inside this cluster have a highly similar and unique
expression pattern in that they were tightly grouped in
two sub-clusters with a p-value < 0.05 (Figure 2D, red
colour part of the dendrogram). The first sub-cluster
consists of four genes - tfap2a, id2a, olfm2 and lmo4l
(Figure 3A) that exclusively expressed in the INL-b, and
three genes - calb2l, glra4b and vangll (Figure 3B) that
expressed in both GCL and INL-b. The second sub-clus-
ter consists of two genes - robo2 (Figure 3C) and ckmt1
(Figure 3D) that both expressed strongly in GCL. Also,
ckmtl had an addition expression domain in the INL-a.
There were three genes - kalla (Figure 3E), ctbp2 (Figure
3F) and sv2b (Figure 3G) that did not belong to these two
sub-clusters and formed a separate one. All of them had
broad expression domains in INL that at least spanned
the INL-m and INL-a. Sv2b further expressed in the GCL
as well. Interestingly, kalla was strongly expressed in a
subset of cells in the AC region that the neuronal pro-
cesses were intensely stained and highlighted the inner
plexiform layer (IPL) (Figure 3E, arrow).

IV. Fzd8b only expressed in smarca4°>”**° retinas at

36 hpf

Fzd8b is a gene that only expressed in smarca4*>%**°
retinas at 36 hpf at a very low level. Its expression
appeared to be restricted to the PV and the choroid fis-
sure area (Figure 6). Interestingly, it was not expressed
at a discernible level in other tissues and stages in both
the microarray and in situ hybridization experiments.
This suggests that there was a specific up-regulation of
f2d8b in the smarcad®”**° retinas at 36 hpf due to the
lack of a functional Smarca4-.

Cellular expression patterns of retinal-specific genes that
were not inferred to be regulated by Smarca4

Foxn4, bhlhe22 and six3a did not meet the original
microarray analysis criteria to be Smarca4-regulated
retinal genes (See Methods for details) and were
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fzd8b

ventral lateral

WR36

YR36

Figure 6 Cellular expression pattern of fzd8b which only
expressed in smarca4°>”**° retinas at 36 hpf. Fzd8b is the only
gene in the current study whose detectable expression was in the
smarca4®??* retinas at 36 hpf. The ventral and the lateral views of
these retinas are shown. The specific expression domains in the
smarca4®??* yetinas are highlighted by black arrows. Refer to
Figure 1 for sample abbreviations. Scale bar: 50 um.

classified in the functional group (ii) that were shown
to have a retinal specific expression at both 36 and 52
hpf (Additional file 4, Table S3). The in situ hybridiza-
tion analysis confirmed this retinal specific expression
compared to the whole body at all stages (Figure 7A, B
& 7C). However, it was also noticed that there was a
discernible expression difference between WT and
smarcad4®®”**? retinas in the in situ samples in several
instances. These include a slight increase of foxn4 (Fig-
ure 7A) in smarcad®*?“**° retinas at 36 & 52 hpf, a
slight increase and decrease of bhlhe22 in smarcad®”
430 retinas at 36 and 52 hpf respectively (Figure 7B),
and a slight decrease of six3a in smarcad®”*° retinas
at 52 hpf (Figure 7C). An inspection of the original
microarray results indicates that the sign of the fold
changes matched with the expression changes as deter-
mined by in situ hybridization and the average micro-
array expression values in all these comparisons were
considerably higher than the background. However,
the magnitude of the fold changes was not larger than
2 (foxn4: YR36/WR36 = 1.06, YR52/WR52 = 1.73;
bhlhe22: YR36/WR36 = 1.35, YR52/WR52 = - 1.17;
six3a: YR36/WR36 = 1.34, YR52/WR52 = -1.29). This
suggests that the selection criteria were stringent in
inferring Smarca4-regulated retinal genes, but might be
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Figure 7 Cellular expression patterns of retinal-specific genes that were not inferred to be Smarca4-regulated. A total of three genes:
(A) foxn4, (B) bhlhe22 and (C) six3a were not inferred by the original microarray analysis as Smarca4-regulated genes but were inferred to have a
retinal-specific expression. The lateral view of a whole WT and smarca4®”?*° embryo at 36 and 52 hpf is shown to illustrate the retinal specific
expression. Note that there were subtle differential expression changes in smarca4®%?* retinas, but they did not meet the fold change cut-off
criterion used in the microarray significance inference. See text for details. Scale bar: 100 um.

too stringent for detecting subtle changes. Alterna-
tively, in situ hybridization, despite being able to reveal
cellular expression patterns, is intrinsically not a quan-
titative method. The detection threshold varies and is
affected by a number of experimental factors. The

changes as observed may not be superior to the micro-
arrays measurements. Hence it would be wise to com-
bine both types of approach and stringent statistical
criteria for selecting candidates for further experimen-
tal investigations.
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Discussion

This study has successfully investigated the expression
of 32 genes identified from a microarray study of
Smarca4-regulated retinal genes from micro-dissected
zebrafish retinas and elucidated the cellular expression
patterns. The original microarray analysis has inferred
29 of these 32 genes as Smarca4-regulated retinal genes
and the remaining three as retinal specific genes whose
expression is independent of Smarca4 regulation. The
in situ hybridization analysis has demonstrated that the
sign of the expression changes matches with the micro-
array results well (Figure 1). In particular, 90.3% (28/31
cases) of the significant microarray expression compari-
sons have a corresponding differential expression
between WT and smarcad4®”“*? retinas in the in situ
hybridization experiments. This suggests strongly that
factorial microarray analysis, can efficiently detect true
biological differences among different types of micro-
dissected zebrafish retinas. Twenty seven out of the 29
Smarcad-regulated retinal genes have a positive in situ
hybridization signal in the retinas, and 25 of them have
the cellular expression domains that could be clearly
discerned. Three general groups of expression patterns
can be identified from these 25 genes (Figure 2D): 1)
photoreceptor layer/ONL specific expression at 52 hpf,
2) GCL and/or INL specific expression at both 36 &
52 hpf and 3) GCL and/or INL specific expression at
52 hpf only.

The acquisition of the cellular expression patterns and
the clustering of these genes can facilitate downstream
characterization, because genes that are expressed in the
same domain are likely to be regulated by the same
upstream factor(s) and/or are used to control development
and functions of specific cell type(s). For example, a group
of photoreceptor/ONL genes were expressed on the ven-
tral side of WT retinas at 52 hpf and were suppressed in
the smarca4**”**° retinas (Figure 4). This is the beginning
stage of photoreceptor generation in the ventronasal patch
of the retina [14], and many of these genes are related to
the visual cycle. Interestingly, rcvl and aanat2 are
expressed in virtually the whole ONL at 52 hpf in addition
to the ventronasal patch (Figure 4D & 4F), while ndrgl is
expressed in the whole ONL but not the ventronasal
patch at this stage (Figure 4E). This extensive expression
pattern is obviously different from the previously reported
expression patterns of cones and rods differentiation, as
indicated by the wave-like expression pattern of cone
opsin and sporadic expression of rod opsin respectively
starting from the ventronasal retina at around 52 hpf [16].
Since rcvl also participates in the visual cycle [17], the
extensive expression of rcvl, aanat2 and ndrgl in the
ONL at 52 hpf suggests that there may be a different regu-
latory circuit that controls their expression. Together with
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the detection of rho, gnatl and rcvl in the ventral retina at
36 hpf (Figure 4A & 4D), these observations also suggest
that the differentiation program of photoreceptors may
begin earlier than 50-52 hpf. In the second example, a few
genes including tfap2a, id2a, olfin2 and lmo4l (Figure 3A),
are expressed specifically on the basal side of the INL
which is the presumptive region of ACs. Their expression
domains were highly overlapped with each other that
these genes were grouped together in a highly significant
sub-cluster (p-value < 0.05; Figure 2D). This suggests that
they may play a role in ACs development. Indeed, a recent
perturbation experiment of id2a in zebrafish [18] have
demonstrated such a role. In addition, the knockout of an
orthologue of /mo4/, LMO4, in mice leads to a reduction
of amacrine cells [19]. In the third example, barhi2 is a
gene that has been demonstrated to regulate the develop-
ment of GCs and ACs in mice [20]. Its expression pattern
in the zebrafish correlates nicely with the development of
GCs and ACs (Figure 5B), suggesting that barhi2 is likely
to play a similar role in zebrafish retinal development.

One key objective of the original microarray study was
to identify Smarca4-regulated retinal genes because their
expression should either mediate terminal differentiation
and/or be a consequence of terminal differentiation. The
hallmarks of terminal differentiation of neurons include
neurite outgrowth and synaptogenesis, which would be
manifested as the formation of the retinal lamination. The
current in situ hybridization analysis of the candidate
genes, which are mostly differentially expressed at 52 hpf,
during which the retinal lamination is first observed, may
potentially provide new insights into the molecular control
of this process. There are at least two non-exclusive possi-
bilities: 1) these genes control the differentiation of a spe-
cific cell type which in turn orchestrates the formation of
the final neuronal connection and lamination and/or 2)
these genes control patterning and lamination of the retina
directly. In the microarray study, it was speculated that
tfap2, id2 and irx transcription factor families would play
a key role in retinal differentiation and lamination [12],
and this has been proven by studies of tfap2a knockout
mice [21], and id2a [18] and irx1a [22,23] knockdowns in
zebrafish. In fact, id2a has also been demonstrated to play
a role in the development of ACs as discussed above and
the knockdown of tfap2c in tfap2a zebrafish mutant
shows a very severe eye development phenotype, in which
the eye size becomes significantly smaller [24]. These
results together suggest that these transcription factor
families are integral components of retinal differentiation
and lamination, and that the remaining members of these
groups may play key roles in retinal development. Indeed,
our investigation has demonstrated that irx7, a gene that
has an expression pattern that spans the whole INL at
52 hpf, plays a role in the differentiation of both INL and
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photoreceptors, as well as lamination ([12] & manuscript
in prep). Also, in the original microarray study, Cdk5 and
activators were demonstrated to play a role in retinal dif-
ferentiation [12]. The execution of their functions likely
involves a subset of the genes presented in this study.
Thus, the knockdown of these key mediators of Smarca4-
network and subsequent in situ hybridization analysis of
the other Smarca4-regulated genes, which is currently in
progress, will likely further the understanding of retinal
differentiation.

While the microarray analysis accurately excluded genes
that did not meet all criteria to be Smarca4-regulated ret-
inal genes, some of these excluded genes might have a role
in subtle developmental change in retinas that are regu-
lated by Smarca4. For instance, the fold change of a key
transcription factor in a network can be less than two, and
yet it can play a substantial role in the developmental pro-
cess that it controls. Foxn4 was excluded by the original
microarray analysis as being a Smarca4-regulated retinal
gene because its fold change was below the two-fold cut-
off despite having a significant corresponding contrast.
Nonetheless, it was obvious that there was a discernible
difference in the expression level and cellular expression
pattern of this gene between WR52 and YR52 (Figure 7A).
The expression seemed to be relatively higher on the dor-
sal side of the WR52; while in YR52, the expression was
generally higher but there was no such regional difference.
In addition, the expression of foxn4 at 52 hpf is restricted
to the proliferative marginal zone region; while at 36 hpf,
it is primarily located in the proliferative part of the retinal
neuro-epithelium (Figure 7A and data not shown). These
results suggest that foxn4 may also play a role in the
Smarca4-regulated retinal differentiation through the reg-
ulation of the retinal progenitors. Indeed, foxn4 has been
demonstrated to express in retinal progenitor cells in mice
and the null mutant has retinal dysplasia [25]. While a
small and consistent fold change of a gene can be biologi-
cally significant, it is necessary to implement a cut-off to
ensure the false discovery rate is low. This is a necessary
trade-off to maximize the number of true positive genes,
especially in the first genomic study of micro-dissected
zebrafish retinas. It is obvious that while the original fac-
torial microarray analysis have efficiently identified true
Smarca4-regulated retinal expression, it is possible that
some genes that are subtly regulated by Smarca4 did not
meet the statistical cut-off and were excluded from this
category.

Conclusions

This study has investigated the expression of 32 genes
identified from a factorial microarray analysis that was
designed for searching Smarca4-regulated retinal genes.
Twenty nine of them were grouped in this category while
three were excluded by the original analysis. The in situ
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hybridization results have strongly supported that the ori-
ginal factorial microarray analysis can efficiently identify
true Smarcad-regulated retinal genes with a true positive
rate of 90.3%. Thus, this gene list is not only a rich source
for cell-type specific markers, but also may assist in formu-
lating new hypothesis to study the underlying genetic reg-
ulatory circuits that control retinal development.

Methods

Fish

Zebrafish (AB & TL wild-type (WT) and smarca4“°”*
(yng)[10]) were maintained according to standard proce-
dures [26]. All protocols were approved by the Harvard
Standing Committee on the Use of Animals in Research
and Teaching and Purdue Animal Care and Use
Committee.

Egg collection, embryo staging and collection

Wild-type (WT) and smarcad®”**° (yng) embryos were
collected at the same stages (i.e. 36 and 52 postfertilization
(hpf)) as in the microarray analysis [12]. To ensure all
embryos were at a similar stage during collection, embryos
were collected every 20 minutes in E3 medium [27].
Zebrafish embryo staging was performed as described
[28], with the following modifications. First, embryos from
each 20-minute collection were inspected at around 10-12
hpf, and any abnormal looking embryos were discarded.
Then a sample of embryos, typically 5-7 for each 20-min-
ute collection, was staged. This would be considered the
average stage for all the embryos collected during the
same period. The staged embryos were treated with
0.003% phenylthiourea (PTU) (Sigma; St. Louis, MO) in
E3 medium starting at 23 hpf to prevent melanization. At
least 10 embryos were set aside and kept in E3 as staging
reference. The embryos treated with PTU were staged
again at 36 and 52 hpf immediately before collection,
using the staging reference embryos that were not treated
with PTU. Standard staging criteria were used in conjunc-
tion with the eye size parameter for these stages [29].
Smarcad®*”“*° embryos were staged by using their WT
siblings collected from the same clutch at the same time.
Embryos were dechorionated by treating with 1 mg/mL
Pronase (Sigma; St. Louis, MO) for 1 to 2 minutes until
embryos started to come out from the chorion; then all
embryos were rinsed extensively with E3 medium. All
embryos were immediately fixed in 4% paraformaldhyde
(PFA)(Sigma; St. Louis, MO) in phosphate buffered saline
(PBS), dehydrated and stored in 100% methanol at -20°C
as described [27].

Complementary DNA library preparation

Total RNA was extracted and purified from 2-day old zeb-
rafish embryos as described [29]. Complementary DNA
(cDNA) library was prepared by reverse transcribing
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messenger RNAs from purified total RNA using Super-
script II reverse transcriptase (Invitrogen, Carlsbad, CA)
and an anchored primer 5’-dT20VN-3’ (Integrated DNA
Technologies, Coralville, IA).

Gene selection for in situ hybridization analysis

The factorial design in the original microarray analysis
[12] allowed for the modelling of the influence of three
biological changes: mutation (M; either wild-type or
smarcad®*”“*° (yng)), change in tissue (R; either whole
embryo or retina) and change in time (7 either 36 or
52 hpf) on gene expression level in a particular sample.
All genes were first fitted into one of the four most par-
simonious ANOVA models: insignificant, one, two or
three-way model. In the three-way model group, the
expression of a gene g (y,) was modelled as

Ve =Mtg+R+M+T+MR )
+T*"M + T*R+ T*M*R + &’
indicating that the expression of the gene was affected
by all three biological changes as well as their two-way
and three-way interactions; while in the two-way model
group, the expression of a gene g (y,) was modelled as

Ye=Hg+R+M+T+MR

. « , (2)
+T"M + T°R + ¢

indicating that the expression of the gene was affected
by all three biological changes as well as at least one of
their two-way interactions; while in the one-way model
group, the expression of a gene g (y,) was modelled as

Ve=ug+R+M+T+eg, (3)

indicating that the expression of the gene was affected
by at least one of the three biological changes but not
their interactions; while in the insignificant model
group, the expression of a gene g (y,) was modelled as

Vg = Mg+ &, (4)

indicating that the expression of the gene was not
affected by any of the three biological changes.

Genes that were categorized in the three-way model
group had the most specific regulation in the smarca4“>”
30 retinas, because the three-way interaction term
(T*M*R) indicates the presence of a mutation-specific
effect on gene expression in the retina at 52 hpf. Since
this is the stage when retinal lamination is first formed,
the first cellular expression investigation was focused on
this group of genes. Thirty two known genes were ran-
domly selected from 259 three-way models for further in
situ hybridization analysis. Also, in the same microarray
analysis study, these 259 models were further categorized
into three functional groups: (i) Smarca4-regulated
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retinal genes, (ii) Retina-specific genes independent of
Smarca4 regulation, and (iii) Smarca4-regulated genes
outside the retina. Note that a significant 3-way interac-
tion term does not necessarily translate to a final overall
significance, because that was inferred by two criteria
[12]: (1) a significant contrast (false discovery rate
p-value < 0.05), which is the specific comparison of two
biological conditions using the corresponding coefficients
from the ANOVA model and (2) fold change of the cor-
responding comparison > = 2. A comparison can be
insignificant because the T*M*R coefficient can cancel
out the effect on expression imposed by other terms,
even though the T*M*R coefficient is significant by itself.
To infer significant Smarca4-regulated retinal genes for
the functional group (i), the following contrasts were
used:

For YR36/WR36:

Hy M + M*R =0, Hy M + M*R = 0, and Hy: M = 0
for Eq. 1, 2 & 3 respectively;

while for YR52/WR52:

Hop: M + M*R + T*M + T*M*R = 0, Hyp: M + M*R +
T*M = 0, and Hyp: M + T = 0 for Eq. 1, 2 & 3
respectively.

Primers Design

The goal of the primers design was to select primers that
specifically flanked 500-850 bps of the candidate genes so
that the resulting amplicon will overlap with the target
sequence of the probesets of the Affymetrix zebrafish
whole genome array (Affymetrix, Santa Clara, CA) as
much as possible for riboprobe synthesis. Since this Gene-
Chip was used in the microarray study [12], designing a
riboprobe with maximal sequence overlap with the probe-
set sequence also allows for better expression validation of
the original microarray results. The primers were designed
using the following procedures until a pair of primers was
chosen for that particular gene. First, a computer script
(available upon request) was written to analyze and locate
the consensus sequence of a probeset from the Affymetrix
design file. Primers that flanked 500-850 bps including the
target region were then selected by Primer3 [30], using
default parameters except the option ‘Max Poly-X" was set
to 3. However, this approach was not always feasible, as
Affymetrix often selected the target region for their probe-
sets from the 3’ end or the untranslated region (UTR) of a
gene. The low complexity of the 3'UTR sometimes pre-
cluded an efficient primer design and/or PCR amplifica-
tion. In this case the target region of the Primer3 would
then be moved 5’ in 50 bps increments until a pair of pri-
mers was picked. Sometime the consensus sequence was
too short, i.e. shorter than 500 bps. In that case, the
ReqSeq sequence would be obtained by the respective
Genbank ID. The longer sequence would then be used for
primer design as described above. The specificity of the
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selected primers was checked by blasting NCBI’s zebrafish
nr and htgs databases. All primers selected by this exercise
are shown in Additional file 5, Table S4.

Whole-mount in situ hybridization

Specific DNA fragments were amplified from a 2-day old
zebrafish cDNA library and cloned into pGEM-T easy
vector (Promega, Madison, WI) for probe synthesis. All
constructs were sequenced verified. Riboprobe synthesis
and whole-mount in situ hybridization were performed
using procedures described [27]. The stringency washes
after probe hybridization and before signal detection were
performed using the Biolane semi-automated in situ hybri-
dization machine (INTAVIS Bioanalytical Instruments
AG, Koeln, Germany). The specific parameters of the
washing steps for the embryos are listed as follows:

» Twice in 50% formamide/2X SSCT (Saline-Sodium
Citrate with 0.1% Tween-20) for 20 minutes each at
65°C
» Once in 2X SSCT for 15 minutes at 65°C
» Twice in 0.2X SSCT for 20 minutes each at 65°C
» Twice in PBST (PBS with 0.1% Tween-20) for five
minutes each at room temperature
» Once in Block buffer (2 mg/mL Bovine Serum
Albumin, 2% normal sheep serum in PBST) for two
hours at room temperature
+ Once in 1:3000 Anti-dioxgenin-alkaline phospha-
tase antibody (Roche Applied Science; Indianapolis,
IN) in block for 12 hours at 4°C
> The antibody was pre-adsorpted at 1:1000 dilu-
tion in Block buffer with at least 400 fixed
embryos for an overnight at 4°C before used
> The pre-adsoprtion step slightly increases sig-
nal clarity, but not very substantial, so this can
be considered as an optional preparation
> The final working stock can be re-used for a
few times and should be stored at 4°C
« Six times in PBST at room temperature; the first one
for five minutes, the next four for 30 minutes each and
the final one is programmed for 12.5 hours, which can
be stopped at any time after the first 30 minutes.
o Three times in staining buffer (100 mM Tris
pH9.5, 50mM MgCl2, 100 mM NaCl, 0.1% Tween-
20 and 1 mM levamisol (Sigma; St. Louis, MO)) for
five minutes each at room temperature

At least 20 embryos were analyzed for each antisense
probe for each developmental stage and genotype. The
same number of WT embryos at the same developmental
stage was also collected and used for the sense probe con-
trol. All embryos used for the characterization of the same
gene were stained for the same period of time to maximize
comparability between conditions. The samples were
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destained by a 2:1 mixture of benzyl benzoate and benzyl
alcohol and stored in 4% PFA at 4°C.

Imaging

Embryos were mounted in 3% methylcellulose on a
depression slide for observation and imaging. All images
were taken by a Spot RT3 slider CCD camera (Diagnos-
tic Instruments, Sterling Heights, MI) mounted on an
Olympus SZX16 Stereomicroscope (Olympus, Center
Valley, PA). The images were subsequently merged
using Adobe Photoshop CS3 (Adobe Systems Incorpo-
rated, San Jose, CA).

Data analysis

Hierarchical clustering analysis of the expression
domains of the genes in different samples was con-
ducted as follows: First, the expression domain of the
genes, as defined in Figure 2A, B &2C, was visually
scored as O (absent) or 1 (present) (Additional file 3,
Table S2). Then the dissimilarity of these expression
domains between each gene was calculated by a binary
distance measure and hierarchical clustering conducted
using average group linkage agglomeration. Finally,
p-values of the clustering results were calculated by a
multi-scale bootstrap resampling method [31]. The
number of bootstrap replications was 10000. All data
analyses were conducted in the R statistical environment
version 2.11.1 http://www.r-project.org. Heatmaps were
generated using Multiexperiment Viewer (MeV) http://
www.tm4.org.

Additional material

<
Additional file 1: Figure S1. Cellular expression pattern of wnt11 as
identified by a previously reported riboprobe. The in situ
hybridization experiment of wnt11 was repeated using a probe (cb748)
that was obtained from ZIRC. (A) The ventral and the lateral views of WT
and smarca4®”#*? retinas. There is no discernable signal in the retinas at
52 hpf while a retinal expression was observed in the public in situ
hybridization data (ZFIN ID: ZDB-GENE-990603-12) that used this probe
on embryos collected from high-pec to long-pec (~42-48 hpf) stages.
Refer to Figure 1 for sample abbreviations. (B) The lateral view of a
whole WT and smarca4™?**° embryo at 36 and 52 hpf is shown to
illustrate that the cb748 probe can detect signals in other embryonic
regions as described in the public data. These include otic vesicle and
myoseptum at 36 hpf, and otic vesicle and lower jaw at 52 hpf (black
arrows). (C) The lateral view of the tail of a WT and smarca4®%@°
embryo to show the signal in the myoseptum (black arrow). Scale bar:
50 pm for (A & C), 100 um for (B).

Additional file 2: Table S1. A summary of the microarray and the
corresponding in situ hybridization results for the 27 Smarca4-
regulated retinal genes with a positive in situ hybridization
expression signal. The fold changes of the four retinal comparisons:
YR36/WR36, YR52/WR52, WR52/WR36 and YR52/YR36 from the original
microarray analysis are shown here and used to generate the heatmap in
Figure 1A. The significant comparisons are highlighted in bold-type font
(See Methods and [12] for details). The same four retinal comparisons
were conducted using the in situ hybridization samples. In these cases,
the expression results were scored as over-expressed (1), no change (0)
or under-expressed (-1). These observations are plotted in Figure 1B. If a
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significant microarray comparison does not have a corresponding
change in the in situ hybridization or vice versa, the observation is
highlighted by yellow in both microarray and in situ hybridization
comparisons. The resulting identity matrix is plotted in Figure 1C.

Additional file 3: Table S2. A summary of the cellular expression
patterns of the 25 Smarca4-regulated retinal genes. The in situ
hybridization signal of 25 genes was intense enough for discerning
cellular expression domains unambiguously, which were scored as
present (1) or absent (0) as defined in Figure 2A, B &2C. For 36 hpf
ventral view: GC/BR - ganglion cell region or basal side of retina, OR-b -
outer retina - basal, OR-a - outer retinal - apical. For 52 hpf ventral view:
GC - ganglion cells, INL-b - inner nuclear layer - basal side, INL-m - inner
nuclear layer - middle, INL-a - inner nuclear layer - apical side, ONL -
outer nuclear layer. For 36 & 52 hpf lateral view: VP - ventral patch, AV -
anterior ventral, AD - anterior dorsal, PD - posterior dorsal, PV - posterior
ventral. The resulting matrix was used for the hierarchical clustering and
generation of the heatmap in Figure 2D.

Additional file 4: Table S3. A summary of the cellular expression
patterns of the three retinal-specific genes that are inferred to be
independent of Smarca4 regulation. Three genes were not inferred by
the original factorial microarray analysis as Smarca4-regulated (see text
for further discussion) and were inferred as genes that had a retinal-
specific expression at both 36 and 52 hpf. Significance was defined by
the g-value of the corresponding retinal specific expression contrast <
0.05 and the fold change > = 2 [12]. The fold changes of retina/whole
embryo comparison at 36 and 52 hpf are shown here. The experimental
results obtained from the in situ hybridization comparison were scored
the same way as described in Figure 2. All corresponding in situ
hybridization comparisons show the same qualitative change as in the
microarray analysis, i.e. over-expression.

Additional file 5: Table S4. The PCR primers used for generation of
riboprobes for in situ hybridization. The primers were designed by
Primer3 using the approach as described in the Materials and Methods
section. The symbol, name, Affy ID, Genbank accession number of their
corresponding genes are listed. The primer sequences and the size of
the PCR product, as amplified by the specific pair of primers, are also

shown here.
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