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Abstract

upstream promoter region of the TaC gene.

Background: Appropriate transcriptional regulation is required for cone photoreceptor development and integrity.
To date, only a few cis-regulatory elements that control cone photoreceptor-specific expression have been
characterised. The alpha-subunit of cone transducin (Ta.C) is specifically expressed in cone photoreceptors and is
required for colour vision. In order to better understand the molecular genetics controlling the initiation of cone
photoreceptor-specific expression in vivo, we have utilised zebrafish to identify cis-regulatory elements in the

Results: A 0.5 kb Ta.C promoter fragment is sufficient to direct cone-specific expression in transgenic larvae. Within
this minimal promoter, we identify photoreceptor regulatory element-1 (PRE-1), a unique 41 bp sequence. PRE-1
specifically binds nuclear factors expressed in ocular tissue. PRE-1 is not required for cone-specific expression
directed from a 2.5 kb TaC promoter. However, PRE-1-like sequences, with potential functional redundancy, are
located in this 2.5 kb promoter. PRE-1-rho which has the highest sequence and structural homology to PRE-1 is
located in the rhodopsin promoter. Surprisingly, PRE-1 and PRE-1-rho are functionally distinct. We demonstrate that
PRE-1, but not PRE-1-rho, is sufficient to enhance expression from a heterologous UV cone promoter. PRE-1 is also
sufficient to enhance expression from a heterologous rhodopsin promoter without altering its rod photoreceptor
specificity. Finally, mutations in consensus E-box and Otx sites prevent PRE-1 from forming complexes with eye
nuclear protein and enhancing photoreceptor expression.

Conclusions: PRE-1 is a novel cis-regulatory module that is sufficient to enhance the initiation of photoreceptor-
specific gene expression in differentiating rod and cone photoreceptors.

Background

Photoreceptors are specialised sensory neurons that
enable images of the external environment to be cap-
tured. Structurally, cone and rod photoreceptors appear
grossly similar. Both have outer segments rich in photo-
sensitive membranes, inner segments rich in transport
and metabolic machinery, and synaptic termini that che-
mically transmit light signals to downstream neurons
[1]. However, cone and rod photoreceptors function dis-
tinctly. Rods are specialised to function in low-light,
whereas cones enable colour vision and visual acuity [2].
These functional differences are partly explained by the
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distinct morphological specialisations of outer segments
and synaptic termini present in rods or cones [1]. In
addition, unique transcripts encode rod- or cone-specific
components of the G-protein coupled receptor photo-
transduction pathway. This includes the a-subunit of
the heterotrimeric G-protein transducin (Ta) encoded
by gnatl in rods and by gnat2 in cones. Underlining
these molecular differences, these photoreceptor-specific
isoforms associate with distinct forms of blindness.
Mutations in the gene encoding rod transducin alpha
(TaR) cause inherited night blindness whereas muta-
tions in the gene encoding cone transducin alpha (Ta.C)
cause achromatopsia, or total colour blindness [3,4].
During retinal neurogenesis, rod and cone photorecep-
tors differentiate from a population of retinal progenitor
cells [5]. In 2 day post-fertilisation (dpf) zebrafish,
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post-mitotic cells that will differentiate into photorecep-
tors are visible, and transcripts for phototransduction
genes can be detected [6,7]. Outer segments and synap-
tic ribbons, unique morphological specialisations of dif-
ferentiated photoreceptors, are apparent by 2 dpf [8]. In
zebrafish, visual behaviour assays indicate that func-
tional photoreceptors are present in some larvae at 3
dpf, and that robust responses have developed in all
wildtype larvae by 4-5 dpf [9,10]. Electroretinography
reveals that cones are the primary functional photore-
ceptors at 6 dpf and that rods become functional later
at 15-21 dpf [11].

Underpinning the morphological and functional devel-
opment of photoreceptors is a programme of regulated
gene transcription. However, relatively little is known
about the cis transcriptional regulators that initiate cone
photoreceptor-specific expression in vivo. In the canine
retina, a 2.1 kb promoter fragment from the human red
opsin gene directs reporter expression in long and med-
ium (L/M) wavelength cones and has been applied in
proof-of-principle gene therapy studies for inherited
achromatopsia [12,13]. Although a shorter 0.5 kb frag-
ment is inactive, the addition of 3 copies of a 35 bp red/
green locus control region (LCR) is sufficient to result
in weak L/M cone-specific expression in vivo [12]. In
the murine retina, a 277-bp promoter fragment from
the human TaC gene, coupled with a 214-bp IRBP
enhancer, directs cone-specific expression [14]. In Xeno-
pus, 0.5 kb of the red opsin promoter is sufficient to
drive expression in cone photoreceptors [15,16]. Within
this proximal promoter, conserved sequences required
for high-level and cone-specific expression were identi-
fied, including a 13 bp ROP2 element that restricts
expression to Xenopus cones [16]. Similarly, in heterolo-
gous analyses, a proximal 215 bp of the mouse cone
arrestin promoter is sufficient to drive expression in
Xenopus cone photoreceptors, whereas a shorter 147 bp
cone arrestin promoter fragment directs expression in
cone and rod photoreceptors [17]. Consenus TATA and
CRX-binding elements are required for this photorecep-
tor-specific expression [17].

More recently, cis-regulators of cone-specific expres-
sion have been identified using transgenic approaches in
the cone-abundant zebrafish [18,19]. A 4.8 kb promoter
fragment of the single-copy UV opsin gene directs
expression specifically to zebrafish UV cones [20,21]. A
105 bp proximal subsequence within this UV opsin pro-
moter is sufficient to alter the specificity of a rhodopsin
promoter such that it directs reporter expression in rods
and UV cones [20]. In the quadruplicated array of green
opsin genes, a 500 bp LCR, located ~15 kb upstream, is
necessary for the activity of the four green opsin promo-
ters in vivo, and is sufficient to override the cell-type
specificity of a UV opsin promoter fragment by directing
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it to drive expression in green opsin-expressing cones
[22]. Cis-elements repressing blue opsin expression in
zebrafish UV cones and pineal cells have also been iden-
tified [23].

Using the zebrafish gnat2 gene encoding TaC, we are
exploring the mechanisms controlling the initiation of
cone photoreceptor-specific expression in vivo. Pre-
viously, we identified ~3.2 and ~2.5 kb promoter frag-
ments from the zebrafish TaC gene that initiate robust
EGEFP expression in the four morphological subtypes of
differentiating cones at 3 dpf [24,25]. Subsequently, we
characterised cone photoreceptor regulatory element
1 (CPRE-1), a 20 bp enhancer element ~ 2.5 kb
upstream of the TaC promoter [25]. CPRE-1 is neces-
sary for cone-specific expression from TaC promoter
fragments, but is not sufficient to enhance activity from
a heterologous UV opsin promoter [25]. Here, we char-
acterise regulatory elements in the proximal TaC pro-
moter. We identify 0.7 and 0.5 kb promoter fragments
of the TaC gene that are sufficient to initiate cone-spe-
cific expression. We then identify photoreceptor regula-
tory element 1 (PRE-1), a 41 bp sequence located in the
0.5 kb construct, that specifically binds eye nuclear pro-
tein. In contrast to CPRE-1, PRE-1 is not necessary for
cone-specific expression from large To.C gene promoter
fragments, but is sufficient to enhance the transcrip-
tional activity of heterologous UV opsin and rhodopsin
promoters in differentiating photoreceptor cells.

Results

Identification of Minimal Cone-Specific Promoters

We identify minimal zebrafish TaC/gnat2 promoter
fragments that direct cone-specific expression in larval
retinae using transient transgenic assays (Figure 1). As
expected, constructs with large 3173 and 2521 bp pro-
moter fragments drive robust EGFP expression in differ-
entiating retinal cone photoreceptors and in the pineal
[25]. However, constructs with only 717 or 489 bp of
TaC promoter are sufficient to direct weak, cone-
specific expression in ~1% of larvae (Figure la and data
not shown). The absence of detectable pineal expression
with the shorter constructs indicates that enhancer ele-
ments required to initiate pineal expression are located
between -2521 and -717 bp.

PRE-1 Specifically Binds Eye Nuclear Factors

To identify cis-elements in the proximal promoter
region that bind nuclear factors, we performed electro-
phoretic mobility shift assays (Figure 2). Four probes,
corresponding to sequences within the proximal 0.7 kb
of the zebrafish Ta.C promoter, were incubated with
nuclear extracts isolated from adult zebrafish eyes
(Figure 2). No specific complexes were detected with
probes 1-3 (data not shown). However, probe 4 forms a
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Figure 1 A ~0.5 kb 5’ promoter fragment of zebrafish TaC is sufficient to initiate photoreceptor specific expression in differentiating
cones. A. Schematic of the promoter-reporter portion of the zebrafish Ta.C promoter constructs and graphs of their corresponding activity in
transgenic zebrafish larvae at 5 dpf. The number of transgenic fish scored for each construct is indicated at the right of the histograms. B.
Examples of transient transgenic zebrafish eyes showing the activity levels used to determine the activity of the constructs.
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complex with nuclear factors contained in zebrafish
ocular tissue (Figure 2B). When probe 4 is incubated
with increasing concentrations of eye nuclear extract,
there is a dose-dependent increase in the intensity of
the shifted complex. In contrast, probe 4 does not form
a complex with nuclear extract isolated from mid-body
tissue. The specificity of the interaction between probe
4 and eye nuclear factors was confirmed in competition
assays. Whereas complex formation between radio-
labelled probe 4 and eye nuclear factors was completely
abolished by competition with 100 or 200 M excess of
unlabeled probe 4, complex formation was not inhibited
with 200 M excess of a non-related competitor probe
(Figure 2C). These results suggest that the observed
probe 4 complexes are tissue- and sequence-specific.
Interestingly, probe 4, which was subsequently named
photoreceptor regulatory element 1 (PRE-1), is located
~150 bp upstream of the predicted zebrafish To.C tran-
scription start site, and adjacent to the 5’ border of the
minimal 489 bp construct that drives cone-specific
expression.

Multiple PRE-1 Sequences are Required for Complex
Formation with Eye Nuclear Factors

Bioinformatic analyses reveal that probe 4/PRE-1 has
sequence homology to known or predicted cis-regulators
of photoreceptor expression (Figure 2 and Additional
file 1, Figure S1), including an E-box (6 of 6 bp), an Otx
element (6 of 6 bp), Ret 3 (18 of 28 bp), NRE (10 of 12
bp), PCE-II (9 of 12 bp), rhodopsin enhancer element
(24 of 40 bp) and the 5" end of the zebrafish green
opsin LCR (29 of 46 bp) [22,26-30]. To refine the PRE-1
sequences required for complex formation with eye
nuclear protein, and to evaluate the significance of the

homologous cis-sequences, probes containing deletions
or mutations were tested in electrophoretic mobility
shift assays (Figure 3). PRE-1 probes with a 9 bp dele-
tion at the 5’ end, a 7 bp deletion at the 3’ end or both
deletions, fail to form complexes with eye nuclear pro-
tein (Figure 3A, B). However, when added as 50 or
150 M excess cold competitor, the three deletion probes
prevent eye nuclear protein forming complexes with
radio-labelled wildtype PRE-1 (Figure 3A). This compe-
titive inhibition is specific, as 50 or 150 M excess of a
non-related probe does not prevent complex formation
(Figure 3A). Thus, 7 and 9 bp terminal sequences are
essential for ocular trans-factors to form a DNA-protein
complex with PRE-1 (Figure 3B). Five mutant probes
with 3 bp mutations distributed throughout PRE-1 were
also analysed (Figure 3C, D). Four of the mutant probes
(PAMA-D) fail to form complexes with eye nuclear pro-
tein. In contrast, mutant probe PAME forms an equiva-
lent complex as the wildtype PRE-1 probe. In summary,
the mutant analyses identify four distinct 3 bp
sequences, distributed across the majority of PRE-1, that
are required for complex formation with eye nuclear
factors (Figure 3D).

PRE-1 is Not Required for Activity from a 2.5 kb TaC
promoter construct

To determine if PRE-1 is required for initiation of trans-
gene expression in cone photoreceptors, we tested the
in vivo activity of a reporter construct containing an
internal PRE-1 deletion (Figure 4A). In comparison to
the wildtype 2521-bp TaC promoter construct, no sig-
nificant differences in the pattern of expression is
observed when PRE-1 is deleted. Both constructs are
expressed in 42-44% of injected embryos and there is no
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Figure 2 Identification of PRE-1 in TaCP. A. Annotated zebrafish TaC proximal promoter sequence. The sequence of probes 1-4 used in
electrophoretic mobility shift assays are highlighted by rounded boxes. The PRE-1 (probe 4) sequence is highlighted in pink. The most 5-end of
zebrafish Ta.C ESTs (accession numbers DY550630, BG307391) are indicated by asterisks and underlined. The translation start codon is indicated
by a box and methionine (Met). Putative trans-factor binding sites for Ret 3, NRE, PCE-1, PCE-Il, Otx, CBE, Nr2e3 and E-boxes, based on homology
to known cis-elements are indicated by boxes [26-29,33,36,51,52]. NRE, Nrl Response Element. PCE, photoreceptor conserved element. CBE, Crx-
binding element. B. PRE-1 specifically binds nuclear factors expressed in ocular tissue. Electrophoretic mobility shift assay of radiolabelled PRE-1
(TaC probe 4) incubated with increasing concentrations of zebrafish eye or body nuclear protein. PRE-1 binds nuclear protein isolated from adult
zebrafish eyes but not body nuclear protein. C. Competition analyses indicate that binding of trans-factor(s) is specific because unlabelled PRE-1
at 100 or 200-fold molar excess is able to compete away binding of eye nuclear protein to labelled PRE-1, whereas an unlabelled non-related
competitor at 200-fold molar excess is not. Nuclear protein (NP), non-related (NR), probe 4 (P4 or PRE-1), free probe (FP). Asterisks indicate
radiolabelled probe and arrow indicates the DNA-protein complex of interest.

significant difference in the number of EGFP-expressing
cells observed in the retina with these constructs. This

photoreceptor gene regulation is questionable as
sequences with >60% identity to PRE-1 are also found

may reflect functional redundancy with additional PRE-
1-like sequences. Indeed, bioinformatic alignments to
the 2521-bp TaC promoter reveals 3 sequences with
>60% identity to PRE-1 (Figure 4B). Additional searches
of zebrafish genes with enriched expression in zebrafish
rod or cone photoreceptors reveals the presence of mul-
tiple sequences in the upstream promoter region with
>60% identity to PRE-1 (Figure 4B). However, whether
these PRE-1-/ike sequences have unique roles in

in the upstream promoter regions of the -actin and
gapdh encoding housekeeping genes (Figure 4B). In
addition, although one PRE-1-l/ike sequence is typically
found within 10 kb promoter regions of genes encoding
TaC orthologues, there is no evidence of evolutionary
pressure to retain a homologous PRE-1 sequence in a
conserved location (Additional file 2, Figure S2). By
selecting PRE-1-like sequences whose identity score is
greater than those in the housekeeping genes, we
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Figure 3 The majority of the 41 bp PRE-1 sequence is required for binding of nuclear factors in vitro. Large deletions and 3 bp
mutations of PRE-1 eliminate trans-factor(s) binding. A. Electrophoretic mobility shift assay demonstrates that PRE-1 deletion probes P4.1-3 are
unable to form a complex with eye nuclear protein but are sufficient to compete away factors from binding to full length P4 at the indicated
molar excess of unlabelled probe. C. Electrophoretic mobility shift assay demonstrates that mutant PRE-1 probes PAMA-D are unable to bind eye
nuclear protein but PAME is, indicating that 3 bp sequences mutated in A-D are necessary for trans-factor(s) binding to PRE-1. B, D. Sequence of
PRE-1 deletion and mutant probes. Nucleotides required for binding are indicated by boxes and 3 bp mutated sequences are in lowercase and
underlined. Nuclear protein (NP), non-related (NR), probe 4 (P4 or PRE-1), free probe (FP). Asterisks indicate radiolabelled probe and arrow indicates

the DNA-protein complex of interest.
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Figure 4 PRE-1 is not required for ~2.5 kb TaC promoter activity in vivo. A. Schematic of the 2521 bp TaC wildtype and PRE-1 deletion
constructs and graph of their activity in transient transgenics at 5 dpf. Deletion of PRE-1 has no significant effect on the activity levels of the
fragment. The number of transgenic fish scored for each construct is indicated at the right of the histograms. A red box highlights the PRE-1
element. B. Schematic showing the location of PRE-1-like sequences in 10 kb promoter fragments of zebrafish photoreceptor and housekeeping
genes with common gene name to the right and gene symbol in brackets. Bioinformatic alignments reveal several PRE-1-like sequences in the
~2.5 kb TaC promoter suggesting redundancy. PRE-1-like sequences are also located in promoter fragments of housekeeping genes. However,
the highest sequence similarity was found in the proximal rhodopsin promoter. C. Clustal W pairwise alignment of PRE-1 and PRE-1-rho with
mismatched sequences highlighted in boxes.

discovered that the zebrafish rhodopsin gene has distal
and proximal PRE-1-/ike sequence with 71% and 72%
identity, respectively (Figure 4B, C). Notably, compared
to PRE-1, the proximal rhodopsin PRE-1 is present at
an equivalent spatial location and orientation relative to
the gene transcription initiation site, and is designated
PRE-1-rho.

PRE-1 Is Sufficient To Enhance Photoreceptor-Specific
Promoters

To circumvent potential functional redundancy issues in
the deletion constructs, the ability of multiple PRE-1
and PRE-1-rko modules to enhance the in vivo activity

of heterologous promoters was tested instead (Figure 5).
Chimeric constructs comprising of 3 copies of PRE-1 or
PRE-1-rho upstream of the previously described zebra-
fish UV opsin or rhodopsin promoters were tested in
transient transgenesis assays [25,31]. A 0.8 kb zebrafish
UV opsin promoter fragment directs weak, but tissue-
specific expression in differentiating UV cone photore-
ceptors (Figure 5A). PRE-1 functionality is unmasked in
this assay, as three copies of PRE-1 are sufficient to sig-
nificantly enhance the reporter activity from the UV
opsin promoter (Figure 5A). Surprisingly, a chimera
with three copies of PRE-1-rho, which has high
sequence identity to PRE-1, is unable to enhance activity
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Figure 5 PRE-1 is sufficient to enhance reporter expression from photoreceptor-specific promoters. A. Schematic of the promoter-
reporter regions of chimeric constructs. Three copies of PRE-1 (red boxes) are sufficient to enhance expression from both cone and rod
promoter fragments, whereas three copies of PRE-1-rho (navy boxes) are unable to enhance expression from the cone promoter fragment. Blue
and purple rectangles represent zebrafish UV opsin and rhodopsin promoter fragments respectively, upstream of EGFP. B-E. Confocal
micrographs of retinal sections from 5 dpf embryos injected with 1.2 kb ZOP-EGFP or (3x PRE-1)-1.2 kb ZOP-EGFP constructs and stained with
4C12 and zpr-1 antibodies. EGFP-positive cells co localize (arrows) with rod photoreceptors (4C12 antibody), but not with cone photoreceptors
(zpr-1 antibody). Nuclei are counter-stained with DAPI.
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of the UV-promoter (Figure 5A). PRE-1 is also able to
enhance the in vivo activity of a rod photoreceptor-specific
promoter. A 1.2 kb zebrafish rhodopsin promoter frag-
ment drives moderate reporter expression, specifically in
differentiating rod photoreceptors (Figure 5A). In chimeric
constructs, three copies of PRE-1 are also sufficient to
significantly enhance reporter expression from this rod-
specific promoter (Figure 5A). Analysis of retinal sections
from zebrafish injected with the rod chimeric construct
indicates that PRE-1 increases the number of rod photore-
ceptor cells expressing the EGFP reporter, without altering
rod photoreceptor-specificity (Table 1). The 1.2 kb zebra-
fish rhodopsin promoter fragment on its own (Figure 5B,
C) or with three copies of PRE-1 upstream (Figure 5D, E)
drives expression in EGFP-positive cells that co-localise
with 4C12, a marker for rod photoreceptors (Figure 5B,
D), but not with zpr-1, a marker for cone photoreceptors
(Figure 5C, E).

Discussion

In order to better understand the molecular genetics
initiating cone photoreceptor-specific expression in vivo,
we have utilised the zebrafish model to identify cis-
regulatory elements in the upstream promoter region of
the TaC gene. During phototransduction, TaC is
required for cone opsins to activate phosphodiesterase.
Mutations in the human TaC gene cause total colour
blindness, and mutations in the zebrafish orthologue
also result in cone-based blindness [4,32].

The zebrafish TaC gene is specifically expressed in all
cone photoreceptor types by 2.5 dpf and therefore, con-
tains the cis-regulatory elements to direct transgene
expression in all differentiating and mature cones. Pre-
viously, we demonstrated that a 3.2 kb promoter fragment
of the Ta.C gene initiates robust transgene expression in
differentiating cones and identified CPRE-1, a 20 bp distal
enhancer [24,25]. Here, we characterise the proximal pro-
moter of the zebrafish TaC gene and demonstrate that a
0.5 kb fragment is sufficient to initiate cone-specific
expression. In this proximal 0.5 kb promoter fragment, we
identify a photoreceptor regulatory element, PRE-1. This
41 bp sequence is specifically bound by nuclear factors
expressed in ocular tissue. PRE-1 is sufficient to enhance
photoreceptor-specific expression from heterologous UV

Table 1 PRE-1 is Not Sufficient to Alter the Specificity of
a Rod-Specific Promoter

Colocalization Colocalization
4C12 (rods)
10 (12)

9 (9)

Parentheses indicate the number of EGFP-positive cells and the number that
also labelled with cone or rod photoreceptor antibodies is highlighted in bold.

Construct Injected:
1.2kb-ZOP-EGFP
(3x PRE-1)(1.2kb-ZOP)-EGFP

Zpr-1 (cones)
0 (5
0(7)
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cone opsin and rhodopsin promoters. Typical of classical
enhancers, PRE-1 is spatially independent, enhancing
expression when upstream of a 0.8 kb UV opsin or a 1.2
kb rhodopsin promoter. The combined activity of two dis-
tal enhancers, an uncharacterised enhancer dependent
region at -~2.5/0.8 kb and the proximal PRE-1 charac-
terised here, likely contribute significantly to the robust
tissue-specific expression of Ta.C in cones (Figure 6) [25].

In comparison to cis-regulators of photoreceptor
expression previously described in zebrafish, PRE-1 has
unique characteristics. Cone photoreceptor regulatory
element 1 (CPRE-1), a short distal enhancer of TaC, is
necessary for high levels of promoter activity in cones,
but is not sufficient to enhance expression from hetero-
logous promoters [25]. A 500 bp distal LCR in the
green opsin array or a 105 bp sequence in the proximal
UV opsin promoter are sufficient to enhance expression
levels and to override specificity of heterologous promo-
ters [20,22]. In contrast to these, PRE-1 is sufficient to
enhance the transcriptional activity of heterologous pro-
moters, but not to override rod photoreceptor specifi-
city. Despite these functional differences, a unifying
feature of the RH2-LCR, the UV opsin enhancer, a blue
opsin regulatory element and PRE-1, is the presence of
consensus sites for Otx [20,22,23]. Overall, this indicates
that PRE-1 binding factors, which enhance basal promo-
ter activity, are expressed in both rod and cone photore-
ceptors, but that additional cis-elements dictate tissue
specificity.

Although PRE-1 is sufficient to enhance photorecep-
tor-specific expression, PRE-1 is not required to direct
cone-specific expression from a 2.521 kb Ta.C promoter
fragment. The difference is likely to result from func-
tionally redundant cis-elements. Indeed, three sequences
homologous to PRE-1 are present in the 2.521 kb pro-
moter fragment. However, caution is necessary when
associating sequence homology with functional equiva-
lency. This is best exemplified by PRE-1-rko which has
the highest sequence identity to PRE-1, but which is
unable to enhance activity from a heterologous promo-
ter, and thus is functionally distinct.

PRE-1 has consensus sites for known cis-regulators of
photoreceptor expression including E-box, Otx, NRE,
PCE-II and Ret 3 elements. E-box motifs, bound by
basic helix-loop-helix transcription factors, have been
reported in the promoter regions of several photorecep-
tor expressed genes and PCE-II is sufficient to drive
photoreceptor-specific expression in Xenopus [29,33,34].
Ret 3 is a DNasel protected site in the distal rhodopsin
enhancer region (RER) and forms a complex with fac-
tors expressed specifically in retinal tissue [27]. The
transcription factor, neural retina-specific leucine zipper
(Nrl), is expressed in rods, and the presence of an Nrl
response element (NRE) in this enhancer of rod and
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CPRE-1
Cone-Specific

Pineal enhancer element(s)
Enhancer Enhancer Promoter

Region 2 Region 1 & CPRE-1-dependent region

H ] ATG

-3.2kb -28kb  -25kb -0.5kb NJSS 0kb

B. AA G AA
PRE-1rho GATCCTTCTCCTCTCAGACACTCTGCAGTATTCACACTGGACC 722
E-box, Otx _ T--TAATCA 100%

Figure 6 Transcriptional Regulation of Zebrafish TaC. A. Schematic showing the location of PRE-1 and other upstream promoter regions
known to regulate zebrafish Ta.C transcription. A green bar indicates the minimal cone-specific promoter and PRE-1 is represented by a red
square. Upstream enhancer regions are indicated by red and orange rectangles, and CPRE-1 by a blue box. The region containing pineal
enhancer(s) and CPRE-1 -dependent regions are indicated by a black rectangle. ATG is the translation start site and TSS is the predicted
transcription start site. B. Schematic of the DNA bases in PRE-1 critical for complex formation with nuclear protein or for enhancement of
reporter activity. The size of each letter is proportional to the importance of the nucleotide in in vitro EMSA and in vivo reporter assays. The

alignment of critical PRE-1 residues to consensus E-box and Otx sites and to PRE-1-rho is also shown.

cone photoreceptor expression is a little unexpected. In
conjunction with the cone-rod homeobox (Crx) tran-
scription factor, Nrl promotes rod opsin expression in
rods, and by regulating expression of the nuclear recep-
tor Nr2e3, Nrl suppresses the expression of cone genes
in rods [28,35]. This suggests that a factor other than
Nrl binds PRE-1, that the activity of Nrl alters depend-
ing on the presence of adjacent cis-elements, or that the
consensus NRE in PRE-1 is non-functional. In contrast,
the presence of an Otx element, a binding site for the
CRX transcription factor is unsurprising, as Crx regu-
lates expression of rod and cone genes in mice, zebrafish
and Xenopus [26,36-38]. PRE-1 also shows homology
with the LCR regulating expression of the zebrafish
green opsin genes and the bovine rhodopsin enhancer
region [22,30]. Of all these putative regulatory
sequences, functional analyses indicate that the consen-
sus Otx and E-box sites are most important (Figure 6).
It is likely that PRE-1 is bound by Crx at the Otx site
and a basic helix-loop-helix factor at the E-box site. This
is supported by the requirement of consensus Otx and E-
box sites for complex formation of ocular nuclear factors
with PRE-1. Furthermore, the consensus Otx and E-box
sites are mutated in PRE-1-rho which shows high
sequence conservation, but no functional conservation,
with the PRE-1 identified in the TaC promoter (Figure 6).
Crx is expressed in rod and cone photoreceptors and regu-
lates gene expression in conjunction with co-expressed

transcription factors including Nrl, Nr2e3, Sp4, Sp1 and
Qrx [39-41]. Crx is known to bind in the vicinity of the
mouse Ta.C gene [42]. In addition, reducing or eliminating
Crx expression in zebrafish morphants and mouse knock-
outs, results in a significant down-regulation of TaC
expression [36,43]. Crx also recruits histone acetyltrans-
ferases [44]. However, it is unlikely that PRE-1 functions
via histone modifications in our transient assays where the
majority of the episomal DNA is predicted not to be
bound by chromatin [45]. A basic helix-loop-helix factor
that potentially binds PRE-1 is Zashla, an achaete-scute
complex-like 1 (Ascll) orthologue. This speculation is
supported by the known binding of the Mash-1 ortholo-
gue to an E-box in the rodent rhodopsin promoter, the
ability of Mash-1 to induce retinal progenitors to a photo-
receptor cell fate and the robust expression of zashla in
the developing zebrafish eye [33,46,47].

Conclusions

Deciphering the genomic DNA sequences that control
tissue-specific gene expression provides fundamental
insights into the molecular mechanisms enabling com-
plex systems to develop and function. Downstream
translations include engineering of cis-sequences to
appropriately control gene expression for emerging gene
therapies. In this study, we identify and characterise
photoreceptor regulatory element-1 (PRE-1), a proximal
41 bp sequence, sufficient to enhance photoreceptor-
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specific gene expression in differentiating rods and
cones. Future studies will aim to identify the cis-
sequences and trans-factors that co-operate with PRE-1
to regulate cone-specific expression.

Methods

Animals

All studies using animals were approved by the UCD
Animal Research Ethics Committee (AREC-P-07-75).

Generation of Reporter Constructs

The plasmid templates for all constructs were previously
published; -1.2-kbp ZOP-EGFP-1 [31], -2521-bp
zTaCP-EGFP-1 and -897-bp zUVOP-EGFP-1 [25]. The
internal mutant deleting PRE-1 was constructed by
introducing PCR fragments into -2521-bp zTaCP-
EGFP-1 digested with BamHI and Ndel. For the chi-
meric constructs, 3 copies of PRE-1 and PRE-1-rko were
synthesised (MWG) and subcloned immediately
upstream of the -897-bp UV opsin minimal promoter
digested with EcoRI and PstI or -1.2 kb rhodopsin pro-
moter digested with Xhol and EcoRI. All constructs
were confirmed by DNA sequencing.

Generation of Transient Transgenic Zebrafish

To generate transient transgenics, ~7.5 pg of covalently
closed circular plasmid was injected into zebrafish
embryos at the 1- to 2-cell development stage. These
reporter constructs were made up to a final concentra-
tion of 25 ng/ul labelled with 0.1% phenol red in 0.1 M
Tris (pH 7.9) as tracer dye for injection into embryos
positioned on agarose chambers using a pneumatic
Pico-injector system [48]. Borosilicate microcapillaries
(1.0/0.58 outer/inner diameter) were pulled using a ver-
tical needle puller (Narishige PC-10). Embryos were
reared until 5 dpf in water containing 0.003% 1-phenyl-
2-thiourea that was changed daily to inhibit melanin
production [48].

Quantification of EGFP Expression Directed by Reporter
Constructs

Fish at 5 dpf were anesthetized with tricaine (MS-222),
placed in a depression slide and analysed to score con-
struct activity using a Zeiss Axioplan 2 fluorescence
microscope under a 10X objective. True EGFP signal
and autofluorescence was distinguished by comparing
the FITC and rhodamine filter sets. One of three ordinal
activity levels was assigned; >50 EGFP-positive cells in
the eye assigned “+++"; 5-50 EGFP-positive cells
assigned “++"; 1-5 EGFP-positive cells assigned “+” and
no EGFP-positive cells assigned an activity level of “-”
[20,25]. Statistical analysis was performed using a two-
tailed Student’s t-test and p-values <0.05 considered
significant.
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Retinal Section Immunolabelling

Fish screened for EGFP expression were fixed overnight
in 4% paraformaldehyde at 4°C. For cryoprotection,
samples were washed in increasing concentration of
sucrose in 0.1 M phosphate buffer (up to 20%) and
placed in 20% sucrose overnight at 4°C. For embedding,
samples were incubated for 30 minutes with increasing
ratios (1:2, 1:1, 2:1) of OCT embedding medium
(Tissue-Tek) to 20% sucrose and finally snap-frozen in
100% Tissue-Tek OCT [49]. 12-um sections cut on a
HM 550 cryostat were mounted onto Superfrost slides
and dried at room temperature. Sections were rehydrated
in 0.1 M phosphate buffer (pH 7.4), placed for one hour
in blocking buffer (5% goat serum, 1% bovine serum
albumin, 1% Triton X-100 in 0.1 M phosphate buffer)
and incubated overnight with primary antibodies in
blocking buffer at 4°C. Primary antibodies used were zpr-1
(dilution 1:200, Oregon Monoclonal Bank) and 4C12
(dilution 1:200, courtesy of JM Fadool). Sections were
washed three times for 5 minutes with 0.1% Tween in
0.1 M phosphate buffer and were incubated for one hour
with secondary antibodies in blocking buffer. Sections
were rinsed three times in 0.1 M phosphate buffer, incu-
bated for 5 minutes with 300 nM DAPI, rinsed again and
finally mounted in Aqua-Poly/Mount medium. Sections
were analysed by an LSM510 Zeiss confocal microscope.

Electrophoretic Mobility Shift Assay

Nuclear protein extracts were prepared from adult zeb-
rafish eyes and mid body in the presence of protease
inhibitors as previously described [25]. Probes were gen-
erated by annealing complementary oligonucleotides
designed with 5 overhangs. Probes were radiolabelled
with 2-P using Klenow Exo- (Strategene) and purified
on Sephadex G-50 columns. For gel shift analysis,
nuclear protein was incubated on ice with 2 pg of
non-specific competitor poly[dI-dC] and appropriate
unlabelled competitor for 10 minutes at 4°C prior to
incubation with the labelled probe for 30 minutes with
increasing concentrations of nuclear protein. For com-
petition assays, cold competitor was added prior to the
addition of labelled probe in 50, 100, 150 or 200 fold
molar excess. The reactions were electrophoresed on
4-8% non-denaturing polacrylamide gels followed by
autoradiography.

DNA Sequence Analysis

10 kb 5’ promoter sequences of zebrafish photoreceptor
phototransduction genes (gnat2 ENSDARG00000042529,
opnlswl ENSDARG00000045677, opnlsw2 ENSDARG-
00000017274, rho ENSDARGO00000002193, gnatl
ENSDARGO00000044199 and pde6a ENSDARG-
00000075911) and housekeeping genes (Bactinl ENS-
DARGO00000037746 and gapdh ENSDARG-00000043457),
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and gnat2 orthologues (human ENSG-00000134183, gor-
illa ENSGGOG00000013316, bovine ENSBTAG0000001
3017, rat ENSRNOG00000019296, mouse ENSMUSG00
000009108, cat ENSFCAG-00000015596, dog ENSCAFG
00000019823 and fugu ENSTRUG00000005471) were
obtained from the ENSEMBL database. These 10 kb
sequences were aligned with the 41 bp PRE-1 sequence in
both orientations using Clustal W and of the top 20 align-
ments identified by Clustal W [50], only sequences with a
pairwise alignment score greater than 0.60 were consid-
ered significant. Previously reported photoreceptor ele-
ments were also aligned with the PRE-1 sequence using
Clustal W and those with a pairwise alignment score
greater than 0.60 were considered significant.

Additional material

Additional file 1: Figure S1 - Alignment of PRE-1 Sequence to
Known Photoreceptor Regulatory Elements. Schematic showing
regions of homology of PRE-1 to known photoreceptor cis-elements.

Additional file 2: Figure S2 - Location of PRE-1-Like Sequences in
GNAT2 Orthologues. Schematic showing the location of PRE-1-like
sequences in 10 kb promoter fragments of gnat2 orthologues from
human, gorilla, cow, rat, mouse, cat, dog and fugu.

List of abbreviations used

CBE: Crx-binding element; CPRE-1: cone photoreceptor regulatory element 2;
dpf: days post fertilization; EGFP: enhanced green fluorescent protein; IRBP:
interphotoreceptor retinoid binding protein; LCR: locus control region; NRE:
Nrl response element; PRE-1: photoreceptor regulatory element 1; PCE:
photoreceptor conserved element; TBS: Tris-buffered saline; TaC: cone
transducin a subunit; TaR: rod transducin a subunit; ZOP: zebrafish rod opsin
promoter; zZUVOP: zebrafish UV opsin promoter
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