
BioMed CentralBMC Developmental Biology
BMC Developmental Biology 2001, 1 :15Research article
The functional genomic response of developing embryonic 
submandibular glands to NF-kappaB inhibition
Michael Melnick*, Haiming Chen, Yan Min Zhou and Tina Jaskoll

Address: Laboratory for Developmental Genetics, University of Southern California Los Angeles, CA, USA

E-mail: Michael Melnick* - mmelnick@hsc.usc.edu; Haiming Chen - haimingc@hsc.usc.edu; Yan Min Zhou - zhou@hsc.usc.edu; 
Tina Jaskoll - tjaskoll@hsc.usc.edu

*Corresponding author

Abstract
Background: The proper balance between epithelial cell proliferation, quiescence, and apoptosis
during development is mediated by the specific temporal and spatial appearance of transcription
factors, growth factors, cytokines, caspases, etc. Since our prior studies suggest the importance of
transcription factor NF-κB during embryonic submandibular salivary gland (SMG) development, we
attempted to delineate the emergent dynamics of a cognate signaling network by studying the
molecular patterns and phenotypic outcomes of interrupted NF-κB signaling in embryonic SMG
explants.

Results: SN50-mediated inhibition of NF-κB nuclear translocation in E15 SMG explants cultured
for 2 days results in a highly significant increase in apoptosis and decrease in cell proliferation.
Probabilistic Neural Network (PNN) analyses of transcriptomic and proteomic assays identify
specific transcripts and proteins with altered expression that best discriminate control from SN50-
treated SMGs. These include PCNA, GR, BMP1, BMP3b, Chk1, Caspase 6, E2F1, c-Raf, ERK1/2 and
JNK-1, as well as several others of lesser importance. Increased expression of signaling pathway
components is not necessarily probative of pathway activity; however, as confirmation we found a
significant increase in activated (phosphorylated/cleaved) ERK 1/2, Caspase 3, and PARP in SN50-
treated explants. This increased activity of proapoptotic (caspase3/PARP) and compensatory
antiapoptotic (ERK1/2) pathways is consistent with the dramatic cell death seen in SN50-treated
SMGs.

Conclusions: Our morphological and functional genomic analyses indicate that the primary and
secondary effects of NF-κB-mediated transcription are critical to embryonic SMG developmental
homeostasis. Relative to understanding complex genetic networks and organogenesis, our results
illustrate the importance of evaluating the gene, protein, and activated protein expression of
multiple components from multiple pathways within broad functional categories.

Background
Following a classic epithelial-mesenchymal interaction

developmental program, the mouse neonatal sub-

mandibular salivary gland (SMG) is comprised of large

and small ducts which terminate in lumen-containing,

presumptive acini that express embryonic mucin [1–8].
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Progressive prenatal morphogenesis begins as a solid

outgrowth from the oral epithelium around E11.5, and is

best conceptualized in stages [9]: Initial Bud, Pseudog-

landular, Canalicular, and Terminal Bud. Epithelial cell
proliferation is found in all stages, even after well-de-

fined lumen formation in the Terminal Bud Stage. Epi-

thelial cell apoptosis begins with the onset of lumen

formation in the Canalicular Stage.

The proper balance between SMG epithelial cell prolifer-

ation, quiescence, and apoptosis is mediated by the ap-

pearance of transcription factors, growth factors,

cytokines, caspases, etc. at specific times and places [10–

14]. These SMG cellular and extracellular components

may be visualized as a Connections Map which details

the functional relationships within and between path-

ways (Fig. 1).

Complex networks of biological signaling pathways (Fig.

1) emerge from the interconnections of simple pathways

under local control [15–17]. As such, these cellular path-

ways are more analogous to the mostly redundant, over-

lapping neural network of the brain than to traffic grids

of intersecting streets and interacting vehicles. There are

two general, not mutually exclusive, classes of intercon-

nections: (1) junctions which serve as signal integrators

and (2) nodes which split the signal and route them to

multiple outputs [18]. Understanding the nonlinear dy-

namics of these interconnections is intrinsic to under-
standing the regulation of SMG morphogenesis. This

requires the integration of transcriptomic, proteomic,

phenomic, and bioinformatic approaches, not least be-

cause development, in its most basic sense, is genes plus

context [19–22].

With the present experiments, we sought a glimpse of the

extraordinarily complex behaviors of a focused signaling

network (Fig. 1). To this end, we studied the molecular

patterns and phenotypic outcomes of a nodal "short cir-

cuit", i.e., the inhibition of NF-κB activation and translo-
cation to the nucleus to bind to NF-κB response genes. In
most cell types, the NF-κB p50/p65 heterodimer is

maintained as an inactive form in the cytoplasm bound

to the inhibitory protein IκB. Exposure of cells to stimuli

of NF-κB induces the rapid phosphorylation and subse-
quent degradation of IκB proteins. Released NF-κB dim-

ers then translocate to the nucleus, bind to its cognate

DNA elements, and induce the expression of target genes

[23–25]. Activated, nuclear translocated, NF-κB tran-
scription factor has been documented in the mouse em-

bryo from the 1-cell stage onward [26,27]. Activated NF-

κB translocation into the nucleus, directly or indirectly,
effects the transcriptional control of over 150 target

genes [28]. NF-κB enhances cell proliferation by stimu-
lating the expression of cytokines such as TNF, IL-1, IL-

2, IL-6, and IL-8, among others [28,29]; NF-κB inhibits
apoptosis by inducing TRAF and clAP expression which

suppresses Caspase 8 activation [30], and by inhibition

of p53 transactivation [31,32].

We interrupted the NF-κB signal in embryonic SMG ex-

plants using the cell-permeable peptide SN50, a potent

inhibitor of NF-κB nuclear translocation [25,26], [33–
35]. SN50-mediated inhibition of NF-κB nuclear trans-
location in SMG explants results in extensive apoptosis

and a very substantial decline in cell proliferation. Func-

tional genomic analyses demonstrate that inhibition of

NF-κB signaling is associated with the altered expression
of numerous components of the genetic network of relat-

ed signaling pathways. This modified expression of

genes and proteins associated with the inhibition of the

cell cycle and the induction of apoptosis, as well as the in-

creased activation of proapoptotic and compensatory an-

tiapoptotic pathways, provides a "snapshot" of the broad

primary and secondary effects of NF-κB signaling during
SMG development.

Results and discussion
NF-κB is well visualized in embryonic SMGs. In the

Pseudoglandular Stage (~E14), NF-κB is primarily im-

munodetected in SMG branching epithelia, and, to a

much lesser extent, in the mesenchyme (Fig. 2A). At the

Canalicular Stage (~E15–16), NF-κB is primarily immu-

nolocalized in the central regions of the terminal buds,
and to a lesser extent, in the ductal cells facing the lumi-

na (Fig. 2B, double arrows). By the Terminal Bud Stage

(~E17–19), NF-κB is diffusely distributed throughout
ductal and terminal bud epithelia (Fig. 2B, double arrow-

heads), with the intensity of immunostain being marked-

ly diminished compared to the Canalicular Stage.

NF-κB inhibition and SMG phenotype
E15 SMG primordia were cultured for 2 days in the pres-

ence or absence of the cell-permeable peptide SN50, a

potent inhibitor of NF-κB nuclear translocation [33–35].
SN50 is composed of a nuclear localization sequence

(NLS) for NF-κB p50 linked to a cell-permeable carrier

[33–35]. SN50 blocks the intracellular recognition

mechanism for the NLS on NF-κB, thus inhibiting NF-

κB's translocation through the nuclear pore. After 2 days
in culture, SN50-treated explants exhibit a substantial

decrease in gland size and branching morphogenesis

compared to controls (compare Fig. 3A to 3B). These 2-

day SN50-treated explants demonstrate a highly signifi-

cant 81% decline (t4 = 26.25; p < 0.001) in cell prolifera-

tion (Fig. 3A, B; Fig. 4A) and a significant 10-fold

increase (t4 = 7.98; p < 0.001) in apoptosis (Fig. 3C, D;

Fig. 4B). This substantial increase in apoptosis is associ-

ated with a highly significant > 4-fold increase (t4 =
22.66; p < 0.001) in activated (phosphorylated) p53
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Figure 1
Connections Map. This signaling map reflects the pathways investigated in SMGs. Known and putative connections are based on
references [6], [11], [23], [36], [76]-[108].
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(Fig. 5). This result is not surprising, given that NF-κB
inactivates p53 [32].

To demonstrate that this SN50 phenotype is consequent

to SN50-mediated inhibition of NF-κB nuclear translo-
cation and not the nonspecific effect of exogenous pep-

tide, we compared E15 + 2 SMG phenotypes in explants

cultured in control media, 100 µg/ml SN50 peptide, or

100 µg/ml mutant SN50 (mSN50) peptide. As expected,

we found a marked difference between control and

SN50-treated SMGs but none between control and mu-

tant peptide-treated explants (data not shown). In addi-

tion, since TNF/TNFR1 signaling has been shown to

induce embryonic SMG cell proliferation and inhibit ap-

optosis in vitro [13] and TNF/TNFR1 signal transduction

primarily signals by induction of NF-κB nuclear translo-
cation [36], we postulated that TNF supplementation
should have no inductive effect on SN50-treated SMGs.

Figure 2
NF-κB immunolocalization during embryonic SMG develop-
ment. A. Pseudoglandular Stage. B. Canalicular and Terminal
Bud Stages. During embryonic mouse SMG development, the
SMG primordium branches by repeated furcation at the dis-
tal ends of successive buds to produce a bush-like structure
comprised of a network of elongated epithelial branches and
terminal epithelial buds surrounded by loosely packed mes-
enchyme in the Pseudoglandular Stage. We evaluated the spa-
tial distribution of NF-κB (p65) protein in the Pseudoglandular
Stage (A) and demonstrated that NF-κB is diffusely distrib-
uted throughout the branching epithelia, and to a lesser
degree, in the mesenchyme. As development continues, the
SMG epithelia branches and buds hollow out by epithelial cell
apoptosis during the Canalicular and Terminal Bud Stages to
form the ductal system and presumptive acini. Because the
embryonic SMG develops by repeated epithelial end bud
branching, the morphogenetic state of terminal bud clusters
differs between SMG regions, dependent on the time of
branch formation. Thus both the Canalicular (double arrows)
and the Terminal Bud (double arrowheads) Stages can be seen
in B. In the Canalicular Stage (B, double arrows), NF-κB p65 is
primarily immunodetected in the central region of the termi-
nal buds. By contrast, NF-κB p65 is diffusely distributed in
Early Terminal Bud Stage (B, double arrowheads) epithelia in
terminal buds which exhibit lumina. Similar localization pat-
terns were immunodetected for NF-κB p50 protein (not
shown). Bar: 50 µm.

Figure 3
Cell proliferation and apoptosis. E15 SMG primordia were
cultured in the presence or absence of 100 µg/ml SN50 pep-
tide for 2 days (E15 + 2) and cell proliferation and apoptosis
was determined. A., B. Cell proliferation. There is a marked
decrease in cell proliferation (PCNA positive/brown color)
with SN50 treatment (B) compared to control (A). Note that
these sections were counterstained in hematoxylin; thus the
cytoplasm in non PCNA-positive cells appears blue. C., D.
Apoptosis. SN50 treatment (D) induced a notable increase in
apoptotic positive nuclei (dark brown color) in ductal and
terminal bud epithelia compared to control (C). Note that
since these sections were not counterstained; thus the cyto-
plasm appears light brown. Bar: 50 µm.

Figure 4
Quantitation of cell proliferation and apoptosis in control
and SN50-treated E15 + 2 SMG explants. The data presented
here is the results of 3 independent samples. Mean ± SEM
percent positive epithelium: each bar is the mean of 3 inde-
pendent samples, each sample representing counts in 3 ran-
domly selected regions of that sample; percents were arcsin
transformed for analysis. A. SN50-treated SMG explants have
an 81% decline in cell proliferation. B. SN50-treated SMG
explants have a 10-fold increase in apoptosis.
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Thus, we cultured E15 control, SN50-treated, and

mSN50-treated explants in the presence of TNF (rTNF,

10 U/ml) supplementation for 4 or more days. In this set

of experiments, we extended the culture period to pro-

vide sufficient time to allow for possible TNF-mediated

recovery. TNF supplementation induced NF-κB (p50
and p65) translocation (Fig. 6A), a marked increase in

explant size, and a notable increase in cell proliferation

(not shown); similar results were seen in TNF+ mSN50-

treated explants (not shown). By contrast, NF-κB redis-
tribution was not found in explants cultured in TNF +

SN50 (Fig. 6B); rather, NF-κB was absent from epithelial

cell nuclei and exhibited a very weak, diffuse cytoplasmic

distribution. Moreover, TNF supplementation was una-

ble to rescue the abnormal SN50 phenotype. Finally, the

identical response of control and mSN50-treated SMG

explants to TNF supplementation provides further evi-

dence that this mutant peptide had no effect on NF-κB
activation.

Transcriptomic analysis
To investigate transcriptional responses to NF-κB inhi-
bition, we analyzed control and SN50-treated E15 + 2

SMG explants using cDNA arrays. Of the 1176 transcripts

assayed on these arrays (including transcription factors,

cell cycle regulators, growth factors, etc.), 691 (~60%)

demonstrated a 1.5-fold or greater increase or decrease

in expression with SN50-induced NF-κB inhibition (Fig.
7). Of these, we focused our attention on those signal

transduction, cell cycle, and apoptosis transcripts related

to the Connections Map (Fig. 1). With inhibition of NF-
κB translocation into the nucleus, 53 Connections Map

Figure 5
SN50 treatment induces a significant increase in activated
(phosphorylated) p53. We detect a notable increase in acti-
vated p53 (brown color) in E15 + 2 SN50-treated (100 µg/ml)
explants (B) compared to control (A). Bar: 50 µm. C. Quan-
titation of activated p53 in control (CONT) and SN50-
treated E15 + 2 explants. The data presented here repre-
sents 3 independent samples. Mean ± SEM percent positive
epithelium: each bar is the mean of 3 independent samples,
each sample representing counts in 3 randomly selected
regions of that sample; percents were arcsin transformed for
analysis. A highly significant greater than 4-fold increase in
activated p53 is seen between control and SN50-treated
explants.

Figure 6
TNF-induced NF-κB nuclear translocation is inhibited by
SN50 treatment. We evaluated the pattern of NF-κB p65
distribution in E15 SMG primordia cultured for 7 days in 10
U/ml rTNF (A) or 100 µg/ml SN50 + 10 U/ml rTNF (B) sup-
plementation. In TNF-supplemented explants (A), NF-κB is
detected in SMG terminal bud cell nuclei (arrow heads). By
contrast, NF-κB is absent from cell nuclei (arrows) in TNF +
SN50-supplemented explants (B). Rather, a weak, diffuse pat-
tern of NF-κB immunolocalization in the cytoplasm is seen.
Similar results were observed for NF-κB p50 immunolocali-
zation (not shown). Bar, 100 µm.



BMC Developmental Biology 2001, 1:15 http://www.biomedcentral.com/1471-213X/1/15
transcripts exhibit altered expression (Table 1). We used

Probabilistic Neural Network (PNN) analyses to deter-

mine which transcript changes best discriminate control

from SN50-treated explants. These analyses identified

those transcripts with significant changes which are rel-

atively more important in defining the SMG phenotype,

regardless of the direction (up or down) of change.

Among the cell cycle transcripts with altered expression

(Fig. 8A), PNN analysis shows that the increased expres-

sion of cyclin D2, p57, and Cdc25a, as well as decreased

expression of PCNA, best discriminate control from

SN50-treated explants. Cyclin D2, Cdc25a, and PCNA

promote cell division; p57 inhibits cell division (Fig. 1).

The significant decline in PCNA transcript (Table 1) is

consistent with the highly significant (p < 0.001) decline

in PCNA-defined cell proliferation (Fig. 4A).

Among apoptosis transcripts with altered expression

(Fig. 8B), PNN analysis demonstrates that downregulat-

ed Caspase 1 transcript, almost alone, best discriminates

control from SN50-treated explants. Caspase 1 activates

Caspase 3 and appears to promote production of the cy-

tokine IL-1β, which upregulates the transcription of both
Caspases 1 and 3, additionally potentiating apoptosis

[37,38]. Thus, this regulatory mechanism of caspase

Figure 7
Comparison view of composite cDNA Expression Arrays. We analyzed differences in the relative abundance of transcript lev-
els in control and 100 µg/ml SN50-treated E15 + 2 explants. This composite represents the changes in 3 independent experi-
ments. It consists an array of boxes, each of which represents a specific gene. For a complete list of the genes and their
position on this Expression Array, as well as the GenBank accession numbers, please see  [atlas.clontech.com] . The color of
each half-box reflects the calculated values for Gene Expression Ratio (top) and Gene Expression Differences (bottom): Red =
upregulation; Blue = downregulation; Green = equal expression; Black = background level. Comparison is made between two
composite arrays, each of which is a mean of 3 independent arrays. The signals of the composite SN50-treated SMG array is
analyzed with respect to the composite control SMG array. In this comparison view, boxes which are black in the upper half
indicate an "undefined" ratio because the signal for the SN50-treated SMG array is at the background level (i.e. signal intensity
is less than the signal threshold, namely no evidence of gene expression).

atlas.clontech.com
atlas.clontech.com


BMC Developmental Biology 2001, 1:15 http://www.biomedcentral.com/1471-213X/1/15
gene expression would likely be diminished in SN50-

treated explants were they allowed to develop further in

culture. Contemporaneous proteome analysis provides a

very different profile (see Table 2 and text below).

Although many "Ras/Raf" growth factor pathway tran-

scripts were upregulated (Table 1), as a group they were

poor predictors of SMG phenotype (control v. SN50-
treated). PNN analysis (Fig. 9A) shows that only IGF2,

IGF2R, and IGFBP3 are best at discriminating control

from SN50-treated explants.

TGF-β1 and TGF-β2 show a 2-fold increase (Table 1)
which is not unexpected given that TGF-β and NF-κB are
found to be inversely proportional to one another [39].

Nevertheless, among the TGF-β family transcripts and

others related to their expression and signal transduc-
tion (Fig. 9B), BMP1, BMP3b, BMP8a, Smad7, and GR

Figure 8
Relative importance of cell cycle and apoptosis transcripts with altered expression. The PNN analyses among cell cycle and
apoptosis transcripts with altered expression identifies those transcripts which best discriminate control from SN50-treated
E15 + 2 explants. Refer to Table 1 for the direction and magnitude of change for each transcript.
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best discriminate control from SN50-treated explants.
BMPs inhibit cell proliferation via downstream Smad1/

5/8 proteins whereas Smad7 inhibits TGF-β and activin
signaling (Fig. 1). This inhibition of TGF-β/activin sign-
aling is modulated through NF-κB-dependent inhibition
of Smad7 [40]. In addition, there is a negative feedback

between NF-κB and Smad7; activated NF-κB inhibits

Smad7 promotor activity [41] whereas Smad7 inhibits
NF-κB activation and potentiates apoptosis [42]. Curi-
ously, the relative importance of increased Smad7 ex-

pression is 20 times greater than that of Smad1/5 vis.

defining the NF-κB-inhibited explants. It is likely that, in
the absence of NF-κB's negative regulation, Smad7 sign-

aling is upregulated, thereby sensitizing cells to apopto-

Figure 9
Relative importance of Ras/Raf family and "TGF-β-family" transcripts with altered expression. The PNN analyses among Ras/
Raf family and "TGF-β-family" transcripts with altered expression identifies those transcripts which best discriminate control
from SN50-treated E15 + 2 explants. Refer to Table 1 for the direction and magnitude of change for each transcript.
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sis. Finally, the nearly 2-fold decrease in glucocorticoid

receptor (GR) is also of high relative importance in defin-

ing the SN50-treated phenotype (Table 1). Glucocorti-
coids (CORT) function through the GR to both activate

specific gene expression as well as transrepress NF-κB
[41]. Since GR confers this latter effect by associating

through protein-protein interactions with NF-κB bound
at κB response elements [43–47], it is important to also

evaluate changes in GR protein levels (see below).

Further, we utilized PNN analysis to determine the iter-

ated composite relative importance among Connections

Map (Fig. 1) transcripts which have altered expression as

a consequence of inhibition of NF-κB translocation into
the nucleus (Fig. 10). That is, we then subjected those

transcripts with altered expression in each group (cell cy-

cle, apoptosis, Ras/Raf, TGF-β family) previously shown

in Figures 7 and 8 to be relatively important in defining

the SN50 SMG phenotype to further PNN analysis. This

transciptomic analysis is a time-bound "snapshot" in

which gene expression is indicative of possible future

protein expression. It is instructive that, of the 53 Con-
nections Map transcripts with altered expression (Table

1), 4 genes of diverse pathways but overlapping function

best discriminate control from SN50-treated explants:

PCNA, GR, BMP1, BMP3b. The declining PCNA and GR

reflect the sharp decline in cell proliferation and branch-

ing; the increasing BMP1 and BMP3b similarly reflects

inhibition of cell proliferation (Fig. 1).

Proteomic analysis
Our cDNA array analysis provides a good first approxi-

mation of likely protein differences. However, one can-

not extrapolate from mRNA abundance to relevant

protein levels [48]. A recent study by Aebersole and cow-

orkers [48] analyzing yeast protein and mRNA abun-

dance clearly showed that mRNA transcript levels are

poor predictors of protein expression. They demonstrate

Table 1: Transcripts With Significant Changes In Expression After Inhibition Of NF-κB Nuclear Translocation*

Function (Fig. 1) Protein Fold-Change Function 
(Fig. 1)

Protein Fold-Change

Cell Cycle PCNA 1.69↓ Cell Cycle CyclinG1 1.99↑
E2F3 1.86↑ CyclinG2 2.06↑
CyclinA2 1.89↑ Cdk4 1.86↑
CyclinB1 2.13↑ Cdc25a 2.00↑
CyclinB2 1.91↑ Bub1 1.58↓
CyclinD1 1.64↑ Bub1b 2.33↑
CyclinD2 2.45↑ wee1 2.11↑
CyclinE1 1.64↑ p57 2.05↑

Apoptosis p53 1.54↑ Apoptosis Bad 2.00↓
Fas 1.79↑ Bax 1.82↑
FasL 3.17↓ Bc12 1.58↑
FAF 2.01↑ Bclx 1.58↑
TRAIL 3.50↓ Caspase1 2.03↓

Caspase7 1.90↓
Signal Transduction IGF1 1.83↑ Signal Trans-

duction
CREB1 1.91↑

IGF2 2.33↑ c-jun 2.49↑
IGF1R 1.53↑ c-myc 2.47↑
IGF2R 1.69↑ TGF-β1 2.03↑
IGFBP2 2.27↑ TGF-β2 2.06↑
IGFBP3 2.41↑ BMP1 2.19↑
IGFBP4 1.92↑ BMP3b 2.35↑
IGFBP5 1.81↑ BMP8a 1.67↓
IGFBP6 2.48↑ BMPR1b 1.92↓
FGFR.1 2.93↑ BMPR2 1.87↑
FGFR4 1.67↓ Smad1 1.90↑
Ras 1.58↑ Smad5 1.50↑
B-Raf 2.01↑ Smad7 1.97↑
ERK6 2.02↑ GR 1.67↓

* This composite data represents the mean changes of 3 independent experiments.
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that some genes with comparable mRNA levels exhibited

a 20-fold difference in their protein expression while

mRNA levels of comparable protein expression varied as

much as 30-fold.

Thus, we next analyzed SN50-treated and control E15 +

2 SMG explants using 2-D Western Multiprotein Arrays

to determine protein differences. This technique allows

for the densitometric analysis of about 600 signal trans-

duction and other proteins simultaneously in each inde-

pendent sample (Fig. 11). As shown in Table 2, we find 18

proteins which have both a 1.5-fold or greater change

with NF-κB inhibition and are specifically related to the
Connections Map (Fig. 1). They include signal transduc-

tion, cell cycle, and apoptosis proteins that are either di-

rectly or indirectly downstream from activation of the
TNF, IL-6, EGF, IGF, and FGF signaling pathways. The

Figure 10
Iterated composite relative importance of all Connections Map
transcripts with altered expression. Transcripts previously
shown in Figures 8 and 9 to best discriminate control from
SN50-treated explants were subjected to further PNN analy-
sis to determine which transcripts are most discriminating in
defining the SN50-treated E15 + 2 phenotype. Refer to Table
1 for the direction and magnitude of change for each tran-
script.

Table 2: Proteins With Significant Changes In Expression After 
Inhibition of NF-κB Nuclear Translocation*

Protein Fold-Change Function (Fig. 1)

PCNA 3.7↓ cell cycle
E2F1 4.1↑ cell cycle
Chk1 >5↑ cell cycle
Chk2 >5↑ cell cycle
FADD >5↑ apoptosis
FAF 1.9↑ apoptosis
Caspase 6 >5↑ apoptosis
PARP >5↑ apoptosis
Ras 1.9↑ signal transduction
c-Raf >5↑ signal transduction
Mek2 >5↑ signal transduction
ERK1 1.6↓ signal transduction
ERK2 1.5↑ signal transduction
Rsk 2.4↑ signal transduction
JAK1 >5↑ signal transduction
STAT1 1.7↑ signal transduction
JNK1 >5↑ signal transduction
GR 1.8↓ signal transduction

* This composite data represents the mean changes of 2 independent 
samples.

Figure 11
2-D Western blot multiprotein analyses of ~600 signal trans-
duction and related proteins in E15+2 control and 100 µg/ml
SN50-treated explants revealed significant changes in protein
expression. Comparison of representative control (A, C) and
SN50-treated (B, D) equivalent Western blots indicates
marked qualitative and quantitative differences in the expres-
sion of specific signaling proteins with SN50 treatment com-
pared to control.
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significant decline in PCNA protein (Table 2) is consist-

ent with the significant decline in PCNA transcript (Ta-

ble 1) and PCNA-defined cell proliferation (Fig. 4A).

PNN analysis shows that among cell cycle proteins with

altered expression (Fig. 12A), the increased expression of

Chk1, Chk2, and E2F1 best discriminates control from

SN50-treated explants. Of particular interest is E2F1.

Among the five known mammalian E2Fs, the ability to

induce apoptosis is unique to E2F1 [49]. Overexpression

of E2F1 in several cell lines results in G2 arrest, as well as

apoptosis via p53-dependent and p53-independent

pathways [50–52]. The presence of a dysplastic SMG

phenotype in E2f1-/- mice indicates that E2F1 plays an

important role during SMG development [53]. Moreo-

ver, E2F1 overexpression in human salivary gland (HSG)

cells diverted these cells into an apoptotic pathway [54].

Among apoptosis proteins with altered expression (Fig.

12B), PNN analysis demonstrates that increased expres-

sion of FAF and Caspase 6 best discriminates control

from SN50-treated explants. Caspase 6 is activated by

active Caspase 3 and in turn cleaves lamin, resulting in

nuclear membrane fragmentation [55]. FAF interacts

with the cytoplasmic domain of the Fas receptor to po-

tentiate Fas-mediated apoptosis [56,57]. Thus, the up-

regulated cell cycle inhibitors and apoptotic proteins

clearly favor cell cycle arrest and death.

Among signal transduction proteins with altered expres-

sion (Fig. 12C), PNN analysis shows that members of all

three growth factor pathways (Ras/Raf; JAK/STAT;

JNK) have high relative importance in discriminating

control from SN50-treated explants. Of particular note

are c-Raf, ERK2, and JAK1. Raf plays a key role in the

Ras signaling pathway (Fig. 1). That ERK2 is of very high

relative importance is consistent with the observation

that the MAPK/ERK overrides apoptotic signaling from

Fas, TNF and TRAIL receptors [58]. It appears that ef-

fectors apart from the MAPK/ERK pathway may also

mediate the anti-apoptotic function of c-Raf [55a]. Fur-

ther, both the SHP-2/Ras and JAK/STAT3 pathways are

activated by IL-6R/gp130 signaling (Fig. 1).

Moreover, it is especially noteworthy that the nearly 2-

fold decline of glucocorticoid receptor (GR) (Table 2) is

also of very high relative importance in defining SMGs

deprived of NF-κB nuclear translocation. As noted
above, CORT/GR binding both activates specific gene ex-

pression and transrepresses NF-κB [47]. To repress NF-

κB, the GR associates through protein-protein interac-
tions with NF-κB bound at κB response elements [44–

47]. The precise relationship between decreased NF-κB-
mediated transcription and a decreased GR protein ex-
pression is unclear.

Nevertheless, CORT/GR function is important to embry-

onic SMG morphogenesis [60]. Radioimmunoassays

first detect SMG CORT in amounts >2 pg/gland on E15;

Western analysis first detects SMG GR on E14 (0.14
fmol/gland). By E18, SMG CORT has increased more

than 50-fold, and SMG GR has increased nearly 11-fold.

The SMG GR is functional, as defined by its ability to

bind a DNA response element (GRE). Increasing CORT/

GR function in vivo is associated with a significant de-

cline in TGF-β expression and a significant increase in
cell division. SMG primordia cultured under serumless,

chemically defined conditions, and deprived of CORT,

exhibit a dramatic decline of SMG branching morpho-

genesis. It is reasonable, then, to assume that the high

relative importance of diminished GR protein expression

to the phenotype of SN50-treated SMGs is directly relat-

ed to the significant (p < 0.001) decline in cell prolifera-

tion and branching (Fig. 3A, B; Fig. 4A).

The iterated composite relative importance of all Con-

nections Map proteins with altered expression as a con-

sequence of NF-κB inhibition was then determined (Fig.

13). This proteomic analysis is a time-based "snapshot"

of proteins assumed to be associated with physiologic

function at the moment of SMG harvesting. Viewing the

most defining proteins with altered expression, it is

clearly reflective of increased apoptosis (increased Chk1,

Caspase 6, E2F1), decreased cell proliferation and

branching (decreased GR), and, interestingly, increased
expression of diverse signal transduction pathways

(Ras/Raf/ERK, JNK) to compensate for the proapoptot-

ic signal.

Analysis of activated pathway components
We then focused our attention on two particularly im-

portant pathways relative to cell proliferation and apop-

tosis, ERK 1/2 and Caspase 3. Downstream of activated

ERK 1/2 is an upregulation of cell proliferation proteins

and potentially enhanced cell division, as well as a pro-

tective effect over apoptotic signaling via suppressed ac-

tivation of caspase effectors. Downstream of activated

Caspase 3 are the sequellae of apoptosis, including PARP

cleavage and inhibition of DNA repair, DNA fragmenta-

tion, and nuclear membrane fragmentation. The in-

crease or decrease in expression of the components of

any signaling pathway is not necessarily probative of

pathway activity. Rather, it is the change in the level of

activated protein that is physiologically important. Thus,

we determined if SN50 treatment was associated with

activation of the ERK1/2 and Caspase 3 pathways, using

E15 + 2 control and SN50-treated explants, 1-D Western

blot analysis, and antibodies specific to activated (phos-

phorylated/cleaved) proteins. Specifically, we evaluated

the levels of activated c-Raf, ERK1/2, Caspase 3, and
PARP using antibodies which identify only the phospho-
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Figure 12
Relative importance of cell cycle, apoptosis, and signal transduction proteins with altered expression in defining control and
SN50-treated phenotypes. These PNN analyses among cell cycle, apoptosis, or signal transduction proteins with altered
expression identified which proteins best discriminate control from SN50-treated E15 + 2 explants. Refer to Table 2 for the
direction and magnitude of change for each protein.
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rylated or cleaved proteins and do not cross react with

the inactive protein. We found a significant increase (p <

0.05) in activated ERK1/2, Caspase 3, and PARP in

SN50-treated explants (Fig. 14); no change was seen in
activated c-Raf levels between control and SN50-treated

explants. The greater than 2-fold increase in Caspase 3

activation is associated with a 1.8-fold increase in PARP

cleavage (Fig. 14) and a 10-fold increase in apoptosis

(Fig. 4B). Since Caspase 3 is nodal to E2F1 (via p53), FAF

(via Fas/Caspase 8), and Caspase 6 [33,36,37,39], our

observation of increased activated Caspase 3 is consist-

ent with the increased levels of E2F1, FAF, and Caspase

6 proteins (Table 2). Regarding the ERK1/2 pathway, we

found a greater than 2-fold increase of activated ERK2 in

SN50-treated glands (Fig. 13) associated with a 1.5-fold

increase in total ERK2 protein (Table 2). This increased

activity of proapoptotic (caspase3/PARP) and compen-

satory antiapoptotic (ERK1/2) pathways is consistent

with the dramatic cell death seen in SN50-treated SMGs.

Paradoxically, increased ERK1 activation is seen despite

a 1.6-fold decrease in total ERK1 protein (Table 2) and

increased ERK 1/2 activation is associated with virtually

no change in the antecedent activation of c-Raf. The lat-

ter is consistent with the demonstration that c-Raf func-

tion is not mediated by the MAPK/ERK cascade [59].

Moreover, although we find an increase in total Raf pro-

tein (Table 2), no increase in activated c-Raf is found; we

also see a 2-fold increase in activated Caspase 3 but no

change in total Caspase 3 protein. These results clearly il-
lustrate that changes in total protein level are not always

indicative of altered protein activity.

Finally, it should be noted that a recent study using cell

lines raised the possibility that SN50's action is not spe-

cific to NF-κB [61,62]. SN50 is composed of the NLS for

NF-κB p50 and was believed to specifically block NF-κB
p50/p65 nuclear translocation by binding the NLS re-

ceptor complex and preventing transport through the

nuclear pore [33–35]. However, Torgerson and cowork-

ers [61] have shown that SN50 treatment inhibited nu-

clear transport of transcription factors NFAT, AP-1,

STAT1, and NF-κB at a high dose of 210 µg/ml in Junkrat

cells. However, others have shown that lower doses ≤ 100
µg/ml of SN50 specifically inhibited NF-κB nuclear
translocation in human peripheral blood lymphocytes

and murine T cells [33,63]. These reported differences

are likely due to dose-dependent or cell-specific differ-

ences in the effect of SN50 [64]. Given that: (1) embryon-

ic SMGs were cultured in the presence of 100 µg/ml

SN50, (2) immunodetectable NF-κB was absent from
SMG epithelia nuclei in TNF + SN50-treated explants,

and (3) one cannot extrapolate observations in Jurkat

cells to those in primary cells [64] or organ cultures, it is

most probable that our observed interruption of SMG
development is proximately due exclusively to the inhibi-

Figure 13
Iterated composite relative importance of all Connections Map
proteins with altered expression. Proteins previously shown
in Figures 11 and 12 to best discriminate control from SN50-
treated explants were subjected to further PNN analysis to
determine which proteins are most discriminating in defining
the SN50-treated E15 + 2 phenotype. Refer to Table 2 for
the direction and magnitude of change for each protein.

Figure 14
SN50-treatment induces the ERK1/2 and Caspase 3 path-
ways. Quantitation of phospho-ERK1/2, phospho-cRaf, cleaved
Caspase 3, and cleaved PARP protein expression in control
(CONT) and 100 µg/ml SN50-treated E15 + 2 explants. Two
independent experiments were conducted and the results
are presented as a mean fold change relative to control pro-
tein. SN50 treatment induced a significant increase in acti-
vated ERK 1/2, Caspase 3, and PARP levels compared to
control; no change was seen in activated c-Raf level.
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tion of NF-κB nuclear translocation. Indeed, for low dos-
es of SN50, there is no evidence in the literature to the

contrary. Nonetheless, we do recognize that absence of

evidence is not necessarily evidence of absence.

Conclusions
Our results indicate that NF-κB-mediated transcription

is directly or indirectly critical to embryonic SMG devel-

opmental homeostasis. We demonstrate the interplay

between gene expression, protein expression, protein ac-

tivity, and morphology in response to NF-κB inhibition.
Gene/protein differences between control and NF-κB-
inhibited phenotypes are not linearly causal of SMG dys-

plasia. In fact, these differences are discovered correla-

tions between network components and an emerging

SMG phenotype, a glimpse of nonlinear organogenesis

[65].

Considering the outcome of this study relative to the

Connections Map (Fig. 1), it is apparent that NF-κB nu-
clear translocation is functionally integral to a genetic

network with broadly related, rather than independent,

components. It may be said to represent the collective

dynamics of a "small-world" network such that the aver-

age number of factors in the shortest chain connecting

any two factors is small [66]. Such dynamical systems

with small-world coupling display enhanced signal-

propagation speed and synchronizability. Thus, if one fo-

cuses on the superimposition of the various layers of in-
formation, namely morphology, gene expression,

protein expression, and protein activity (Figs.

3,4,5,6,7,8,9,10,11,12,13,14), one can visualize a coordi-

nated, multidimensional response to inhibited NF-κB
nuclear translocation. This visualization, however, is

necessarily impressionistic even though our assays have

some precision. This is so because we cannot extrapolate

from transcriptome to proteome to activated proteins

with any accuracy (in the absence of actual steady-state

measures), and because in these experiments time is

necessarily cross-sectional, not longitudinal. Neverthe-

less, relative to understanding a complex genetic net-

work and organogenesis, our results demonstrate the

importance of contemporaneously evaluating the gene,

protein, and activated protein expression of multiple

components from multiple pathways within broad func-

tional categories. Understanding the signal dynamics of

these pathways will require expanded models that en-

compass more aspects of regulation [e.g. [67]]. Still, we

will always be limited by the fact that phenotypes are

complex, emergent phenomena [16].

Materials and Methods
Tissue collection
Female B10A/SnSg mice, obtained from Jackson Labo-
ratories (Bar Harbor, ME), were maintained and mated

as previously described [60]; plug day = day 0 of gesta-

tion. Pregnant females were anesthetized on days 15–19

of gestation (E15–18) with methoxyflurane (metafane)

and euthanized by cervical dislocation. Embryos were
dissected in cold phosphate buffered saline (PBS) and

staged according to Theiler [68]. SMGs were dissected

and cultured, processed for histology, or stored at -70°C.
For cDNA expression and proteomic studies, E15 + 2 ex-

plants were collected, pooled, and stored at -70°C.

Culture system
E15 SMG (mostly Canalicular Stage) primordia were

cultured using a modified Trowell method as previously

described [13]. The medium consisted of BGJb (Life

Technologies, Rockville, MD) supplemented with 0.5 mg

ascorbic acid/ml and 50 units penicillin/streptomycin

(Life Technologies), pH 7.2, and replicate cultures were

changed every other day. Cultures were supplemented

on day 0 and maintained for the duration of the experi-

ments. In each of the enumerated studies, a minimum of

12 explants were cultured for 2 or 4 days in the cell per-

meable peptide SN50 (Biomol Research, Plymouth

Meeting, PA) which inhibits NF-κB translocation into
the nucleus [24,33–35]. The concentration used (100

µg/ml) was double that shown to inhibit NF-κB translo-
cation in mouse endothelial LE-II cells; 100 µg/ml mu-

tant SN50 (mSN50) peptide was used as a positive

control and control BGJb medium as a negative control.

We evaluated their microanatomy by routine hematoxy-
lin and eosin histology. We report a marked difference

between SN50-treated and control explants or SN50-

and mSN50 peptide-treated explants. No differences

were observed between control and mSN50-treated ex-

plants. Since these initial studies demonstrated no dif-

ference between explants cultured in control media

alone and in mutant peptide, control media was used as

the control in all subsequent experiments. Ten inde-

pendent experiments of E15 primordia were cultured for

2 days (E15 + 2) in CONT (control) or SN50-supplement-

ed media, each group consisting of a minimum of 8 ex-

plants per group. E15+2 explants were collected and

processed as described below.

To further demonstrate that SN50 treatment inhibited

NB-κB activation, we evaluated if TNF supplementation

would induce NF-κB translocation and SMG morpho-

genesis. E15 SMGs were cultured for 4 days or longer in

10 U/ml recombinant mouse TNF (rTNF, R & D, Minne-

apolis, MN), 100 µg/ml SN50 + 10 U/ml rTNF, or 100

µg/ml mSN50 + 10 U/ml rTNF, 6–10 explants per treat-

ment group. This rTNF concentration was previously

shown in our laboratory to induce embryonic SMG mor-

phogenesis and cell proliferation [13]. Explants were col-

lected and evaluated by histological and
immunochemical analyses as described below.
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Histology and immunolocalization
SMGs were fixed in Carnoy's fixative, processed, embed-

ded in low-melting point paraplast, and stored for brief

periods at 4°C as previously described [13]. Cultured ex-
plant morphogenesis was analyzed by dissecting micros-

copy and by light microscopy of serial sections stained

with hematoxylin and eosin. A minimum of 5 explants

per group was evaluated for all experimental groups. For

immunochemistry, the tissues were sectioned at 7 µm,

placed on cleaned, gelatin-coated slides at 37°C for 3 hr,
and immediately immunostained as previously de-

scribed [9,13]. The sections were incubated in polyclonal

goat anti-NF-κB p65/RelA antibody (C-20)(Santa Cruz
Biotechnology, Santa Cruz, CA); this antibody has been

shown to cross-react with mouse p65; it is not cross-re-

active with RelB p68 or c-Rel p75. We confirmed the spa-

tial distribution of NF-κB using a polyclonal goat anti-
NF-κB p50 antibody (C-19) (Santa Cruz Biotechnology);
this antibody has been shown to react with mouse p50 or

p105; it is not cross-reactive with NF-κB p52, p65/RelA
or p100. Controls consisted of sections incubated with

preimmune serum or in the absence of primary anti-

body; controls were routinely negative. The spatial dis-

tribution of NF-κB p65 was identical to that of NF-κB
p50. Therefore, we only show the results of the anti-NF-

κB p65 antibody experiments.

Quantitation of activated p53
To quantitate differences in activated (phosphorylated)
p53 protein, 3 SN50 and control E15 + 2 explants were

sectioned, preincubated with unlabeled goat-anti mouse

IgG as previously described [9] and sequentially incubat-

ed with a monoclonal anti-phosphorylated p53 (Ser15)

antibody (Cell Signaling Technology, Beverly, MA), bi-

otin-labeled goat anti-mouse IgG, and HRP-labeled SA

(Zymed Laboratories, South San Francisco, CA), and

counterstained with hematoxylin. Controls consisted of

preimmune serum or PBS alone. In this set of experi-

ments, the cytoplasm appears blue and activated p53-

positive cells appear dark brown. Three sections per

group were selected and 3 areas per section was photo-

graphed at 200×. p53-positive epithelial cells/total epi-
thelial cells were determined per area and the mean

ratios per section and per group were determined. Statis-

tical comparisons were made between CONT and SN50-

treated E15 + 2 explants as described below.

Cell proliferation assay
E15 + 2 CONT or SN50-treated explants were sectioned,

incubated with anti-PCNA using the Zymed mouse

PCNA kit (South San Francisco, CA), and counterstained

with hematoxylin as previously described [13]. In this set

of experiments, the cytoplasm appears blue and PCNA-

positive cells appear dark brown. Quantitation of cell
proliferation was conducted as described above for p53.

Cell proliferation is presented as the ratio of PCNA-posi-

tive epithelial cells/total epithelial cells. Mean ratios per

section and mean ratios per group were determined. Sta-

tistical comparisons were made between CONT and
SN50-treated E15 + 2 explants as described below.

Apoptosis assay
Apoptotic cells were detected using a monoclonal anti-

body to single-stranded DNA (ssDNA) (Mab F7–26) ac-

cording to the method of Apostain, Inc. (Miami, FL) [13].

Selective binding of anti-ssDNA monoclonal antibody

F7–26 to apoptotic nuclei reflects decreased stability of

DNA to thermal denaturation. Four positive and nega-

tive controls were conducted. Negative controls: (1) Tis-

sue sections were heated and treated with S1 nuclease

(Sigma); S1 nuclease eliminates staining of apoptotic

cells, thus demonstrating that Mab F7–26 binds specifi-

cally to ssDNA. (2) Sections were pretreated in PBS con-

taining lysine-rich histone (Sigma) prior to heating and

immunostaining; reconstitution with histone restores

DNA stability in apoptotic nuclei, thus preventing DNA

denaturation and eliminating Mab staining of apoptotic

cells. Positive controls: (1) Sections were heated in water

and treated with Mab; bright staining of all non-apoptot-

ic nuclei with low apoptotic indexes demonstrates that

the procedure is adequate to detect ssDNA. (2) Sections

were pretreated with proteinase K before heating; inten-

sive staining of non-apoptotic nuclei demonstrates that

the procedure detects decreased DNA stability induced
by the digestion of nuclear proteins. Mab F7–26 was pur-

chased from Apostain, Inc.

Apoptotic nuclei appear as dark brown. Since the sec-

tions were not counterstained with hematoxylin in this

set of experiments, epithelial cell cytoplasm appears as

light brown. Only apoptotic (variously intense dark

brown) nuclei were counted in control and SN50-treated

sections. Apoptosis was evaluated in a minimum of 4 ex-

plants per experimental group. Quantitation of apoptotic

nuclei was conducted as described above for p53. Apop-

tosis is presented as the ratio of apoptotic-positive epi-

thelial cell nuclei/total epithelial cell nuclei. Mean ratios

per section and mean ratios per group were determined.

Statistical comparisons were made between CONT and

SN50-treated E15 + 2 explants as described below.

cDNA expression arrays
For cDNA Expression Array analysis, E15 SMG primor-

dia were cultured in the presence or absence of SN50

peptide for 2 days (E15 + 2), collected in cold PBS con-

taining 0.02% DEPC, snap frozen, and stored at -70°C.
Clontech (Clontech Laboratories, Inc., Palo Alto, CA)

Mouse 1.2 cDNA Expression Arrays were used to analyze

each sample. These arrays include 1176 mouse cDNAs, 9
housekeeping control cDNAs, and negative controls im-

www.clontech.com
www.clontech.com
www.clontech.com
www.clontech.com
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mobilized on a nylon membrane  [www.clontech.com] .

Briefly, total RNA was isolated and cDNA probes were

synthesized using the Atlas Pure Total RNA Labeling

System and 32P. The labeled cDNA probes were hybrid-
ized to the Atlas Array using ExpressHyb Solution. Hy-

bridization signals were revealed by phosphorimaging

and quantitated using the Clontech Atlas Image 1.01 soft-

ware package, which allows for unbiased normalization

of transcript abundance to overall signal. We generated

pseudocolored images indicating up and down gene reg-

ulation. The probe set intensity (average difference) is

proportional to the abundance of the specific mRNA it

represents and was calculated by comparing hybridiza-

tion signal of the control oligonucleotide to that of the

treated. Total signal intensity of different probes was

scaled to the same value before comparison. Fold chang-

es were calculated by AtlasImage 1.0 software by pair-

wise comparisons of corresponding probe pairs from ex-

perimental and control. Three independent experiments

were conducted per experimental group and the compos-

ite array determined. Relevant genes with altered ex-

pression were then assigned to functional groups.

Specifically, we assigned those genes related to the Con-

nections Map (Fig. 1) that have a 1.5 or greater fold-

change to functional groups (i.e., cell cycle, apoptosis,

signal transduction, etc.) which have biological signifi-

cance.

2-D western array screening
The expression of signaling proteins was analyzed by

Powerblot Western Array Screening (BD Transduction

Laboratories, Lexington, KY). This 2-D Western Blot Ar-

ray methodology simultaneously examines relative

changes in protein expression in ~600 proteins in a giv-

en sample. Using highly specific monoclonal antibodies

in antibody combinations carefully formulated by BD

Transduction Laboratories, this multiprotein assay de-

tects proteins to the nanogram levels and can distinguish

closely related members of many important signaling

families. E15+2 CONT and SN50-treated explants were

collected and processed according to the protocol of BD

Transduction Laboratories. Each sample (CONT and

SN50-treated) was analyzed on 4 separate 2-D gels

which were then transferred onto 4 blots. Each blot was

then incubated with a different mixture of ~150 mono-

clonal antibodies and proteins were detected by chemilu-

minescence; ~600 (150 antibodies × 4 blots) proteins
were evaluated in a given sample. For this set of experi-

ments, two independent samples were analyzed The rel-

ative level of proteins were determined by phosphor

imaging and normalized to overall signal. We then as-

signed those Connections Map proteins with a 1.5 or

greater fold-change to functional groups as described

above.

1-D western blot analysis
To determine which key pathways were activated, West-

ern blot analyses of phosphorylated or cleaved proteins

in E15+2 CONT and SN50-treated explants were con-
ducted as previously described [5]. For this set of exper-

iments, we first determined the specificity for each of the

following antibodies purchased from Cell Signaling

Technology (Beverly, MA) using E15 and E17 SMG ho-

mogenates: anti-phosphorylated Erk1/2 [phospho-p44/

42 MAP kinase (Thr202/Tyr204)] antibody, anti-phos-

phorylated c-Raf(Ser259) antibody, anti-cleaved Cas-

pase 3 (D 175) antibody, and anti-cleaved PARP (D214)

antibody. Each antibody had previously been shown to

be specific for the activated (phosphorylated/cleaved)

protein and not to cross react with inactive protein. Once

optimal experimental conditions were established for

each antibody, we then incubated blots of E15 and E17

SMGs in a mixture of these 4 antibodies and determined

that we could identify all proteins in a single sample by

Mr. This methodology using a mixture of antibodies has

been successfully used by Cell Signaling Technology and

BD Signal Transduction for 2-D and 1-D Western blot

analyses. Controls consisted of blots incubated in preim-

mune rabbit serum or in the absence of primary antibod-

ies; controls were routinely negative. In each sample,

each activated protein was identified by Mr and the rela-

tive level of activated proteins in CONT and SN50-treat-

ed explants was determined by densitometry. The SN50

results are presented as fold change relative to CONT
protein. Two independent samples per group was ana-

lyzed. Statistical comparisons were made between CONT

and SN50-treated E15 + 2 explants as described below.

Probabilistic neural network analysis
We used PNN analyses to determine which Connection

Map (Fig. 1) transcripts or proteins with altered expres-

sion best discriminate CONT from SN50-treated ex-

plants with 100% sensitivity and specificity [69]. PNN

analyses identify the relative importance (0–1, with 0 be-

ing of no relative importance and 1 being relatively most

important) of gene and protein expression changes in de-

fining the SN50 phenotype. It is the change in expres-

sion, not the direction of change, that is important in

defining the phenotype. The algorithm we used (Ward

Systems Group, Frederick, MD) is based upon the work

of Specht and colleagues [69–72]. Utilizing proprietary

software designed by Ward Systems Group (Frederick,

MD), we made comparisons among Connections Map

transcripts or proteins with altered expression in a given

group.

Statistical analysis
Means differences were analyzed by t-test in the usual

manner [73]. To meet the assumptions of this analysis,
namely normality and homoscedasticity (homogeneity

www.clontech.com
www.clontech.com
www.clontech.com
www.clontech.com
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of variances), counts, ratios, and percentages were log or

arcsin transformed [74]. This allows for parametric sta-

tistical testing.
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