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Abstract
Background:  Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the
neurotransmitter γ-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of
GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype
suggests that this gene may be involved in the normal development of tissues outside of the CNS.
Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic
analysis of its embryonic expression outside of the nervous system has been performed. The
objective of this study was to define additional structures outside of the central nervous system
that express Gad1, indicating those structures that may require its function for normal
development.

Results:  Our analysis detected the localized expression of Gad1 transcripts in several developing
tissues in the mouse embryo from E9.0-E14.5. Tissues expressing Gad1 included the tail bud
mesenchyme, the pharyngeal pouches and arches, the ectodermal placodes of the developing
vibrissae, and the apical ectodermal ridge (AER), mesenchyme and ectoderm of the limb buds.

Conclusions:  Some of the sites of Gad1 expression are tissues that emit signals required for
patterning and differentiation (AER, vibrissal placodes). Other sites correspond to proliferating
stem cell populations that give rise to multiple differentiated tissues (tail bud mesenchyme,
pharyngeal endoderm and mesenchyme). The dynamic expression of Gad1 in such tissues suggests
a wider role for GABA signaling in development than was previously appreciated.

Background
Glutamate decarboxylase (GAD) catalyzes the formation

of the inhibitory neurotransmitter γ-amino butyric acid

(GABA) from glutamate. In mammals, the two isoforms

of this enzyme, GAD67 and GAD65, are expressed from

two separate genes, Gad1 and Gad2 respectively [1,2,3].

GABA signaling plays several roles in neuronal develop-

ment. Early in CNS development, GABA can modulate

neuron progenitor proliferation as well as neuron migra-

tion, survival and differentiation

[4,5,6,7,8,9,10,11,12,13,14]. In some classes of neural

progenitors GABA stimulates these processes while in

others it has an antagonistic activity. For example, recent

work has demonstrated that GABA acts in the developing

neocortex to stimulate the proliferation of progenitors in

the ventricular zone while inhibiting the proliferation of

progenitors in the subventricular zone [14]. Later, during

postnatal development, normal GABAergic input is re-

quired for activity-dependent plasticity in the visual cor-

tex as shown in the Gad2 knockout mouse [15, 16]. In

addition to these functions in the developing CNS, GABA

signaling is also required for the normal development of
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non-neural tissues. Targeted mutations of the Gad1 gene

lead to defective development of the secondary palate

[17, 18]. The cleft palate phenotype of the Gad1 mutants

suggests the involvement of GABA-mediated signals in
the normal development and differentiation of a struc-

ture derived from the oral epithelium and neural crest

ecto-mesenchyme. This conclusion is further supported

by the similar cleft palate defect seen in mice with a dele-

tion or targeted mutation in the β3 subunit of the GABAA

receptor [19,20,21,22].

This intriguing genetic evidence indicates a role for

GABA-mediated signaling in the development of a non-

neural structure, the secondary palate. The potential for

this pathway to be involved in the early development of

additional non-neural tissues has not yet been thorough-

ly explored [23]. To address this question, we surveyed

Gad1 transcript distribution in the non-CNS tissues of

the embryo. Using a whole mount in situ hybridization

approach, we found that Gad1 is indeed expressed in a

number of different regions and tissues. A notable fea-

ture of this expression pattern is that Gad1 transcripts

accumulate in the specialized ectodermal structures that

are involved in the formation of the mystacial vibrissae

and in limb outgrowth. These specialized ectodermal tis-

sues are known to be sources of developmental signals

[24,25,26]. In addition, transcripts are expressed in the

mesenchymal stem cell population of the tailbud and in

the pharyngeal endoderm and mesenchyme. The expres-
sion patterns show that Gad1 is expressed in several non-

CNS structures that are derived from each of the three

germ layers of the embryo.

Results
The mouse Gad1 gene is widely expressed in the embry-

onic central nervous system [27]. To define additional

sites of expression outside of the CNS, we analyzed the

distribution of Gad1 transcripts in E8.5 to E14.5 mouse

embryos by whole mount in situ hybridization.

Gad1 transcripts were not detected in E8.5 day embryos

(data not shown). At E9.0 Gad1 was readily detected in

the tailbud (figure 1A). Expression in the tail continued

through E12.5 and was undetectable by E13.5 (figure

1B,1C,1D and data not shown), a period corresponding to

secondary body axis formation in the mouse embryo

[28]. Examination of sections from an E9.5 embryo re-

vealed a high level of Gad1 expression throughout the

mesenchyme and neural epithelium in the caudal por-

tion of the tailbud (figure 1F). No transcripts were detect-

ed in the surface ectoderm surrounding the tailbud

mesenchyme (figure 1F). At more cranial levels within

the tail, expression was localized to paraxial mesoderm,

ventral neural tube, notochord and cells of the dorsal
hindgut (figure 1E). In the paraxial mesoderm, the high-

est expression levels were also localized ventrally, adja-

cent to the notochord (figure 1E).

In the pharyngeal region of E9.5 embryos, Gad1 RNA

was detected in and around the second, third and fourth

pharyngeal pouches (figure 2A). Sections through the
third pouch confirmed the presence of Gad1 expression

in the pouch endoderm (data not shown). Expression

was particularly strong in the dorsal portion of this

pouch (figure 2B). The additional diffuse staining ap-

peared to be in the pharyngeal mesenchyme (figure 2B).

The expression in the pharyngeal region was very tran-

sient; transcripts were easily detected at E9.5, but only

faintly at E9.0 and were not detectable by E10.5.

In the limb buds, Gad1 RNA was detected from E9.0 to

E11.5 (figure 3A,3B,3C,3D,3E,3F,3G,3H). Transcripts

were initially expressed in the pre-apical ectodermal

ridge (pre-AER) at E9.5 (figure 3A, 3B) and by E10.5

were seen in the definitive AER of the forelimb (figure

3D). At E10.5 Gad1 was expressed in a diffuse stripe in

the forelimb (figure 3D) while in the hindlimb expres-

sion was only detected in the apical ectoderm (figure 3E).

Figure 1
Gad1 expression in the developing tail. (A-F) Gad1
expression in the tail from E9.0-E12.5. (A) Gad1 is strongly
expressed in the tail at E9.0. At E10.5 (B) and E11.5 (C), the
expression becomes localized towards the tip of the tail. (D)
By E12.5 Gad1 expression fades. (E, F) Sections through the
tail of an E9.5 embryo hybridized to the Gad1 probe prior to
sectioning. The plane of section in (E) is cranial to that shown
in (F). The hindgut (hg), neural tube (nt), tailbud mesenchyme
(m) and neuroepithelium (n) are indicated. Scale bar: A-D
750 µm; E 75 µm, F 100 µm.
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By E11.5 forelimb AER expression was fading and ex-

pression was seen in a diffuse stripe in the proximal fore-

limb and a diffuse crescent in the proximal hindlimb

(figure 3G, 3H). The earlier activation of Gad1 in the

forelimb reflects the normal temporal order of events in

limb development. Sections indicate that the expression

within the limb buds was in surface ectoderm and adja-

cent mesenchyme (data not shown). Gad1 RNA was not

detected in the limbs by whole mount in situ hybridiza-

tion after E11.5.

A dynamic pattern of Gad1 expression was detected in

the developing vibrissae from E12.5 to E14.5 (figure

4A,4B,4C,4D,4E,4F,4G,4H). Expression was first detect-

ed in the supra-orbital, infra-orbital, and post-oral vi-

brissae and in the posterior vibrissae in the lateral nasal

and maxillary rows (figure 4A, 4B; nomenclature as in

[29]). Gad1 RNA was also detected in some of the poste-

rior labial vibrissae at this stage. Expression was activat-

ed in a posterior to anterior (towards the nose)

progression in the lateral nasal and maxillary rows, re-

flecting the pattern of vibrissal development [29]. By

E13.5, Gad1 expression was detected in the anterior lat-

eral nasal and maxillary rows and was activated in the

rhinal, labial and submental vibrissae (figure 4C, 4D). By

E14.5, expression was strong in the labial, submental and

rhinal vibrissae (figure 4E, 4F). Sections of E12.5 whole

mounts show that Gad1 expression was localized to the

epidermal placodes of the mystacial vibrissae (figure 4G,
4H) and was maintained as the placodes begin to invagi-

nate (figure 4G).

Figure 2
Gad1 expression in the pharyngeal region. (A) Expres-
sion in the pharyngeal pouches and arches (arrows). The first
arch (1st A) and heart (H) are indicated. (B) Higher magnifi-
cation of the third pharyngeal pouch illustrating high levels of
Gad1 expression in the dorsal third pouch endoderm (black
arrow) and diffuse expression in the mesenchyme caudal to
the third pouch (white arrow). Scale bar: A 1 mm; B, 100 µm.

Figure 3
Gad1 expression in developing limbs. (A-H) Gad1
expression in the limb buds from E9.5 to E11.5. (A,B) Expres-
sion in the forelimb bud (arrow) at E9.5. (C-E) Gad1 tran-
scripts in the developing limbs at E10.5. (C) Lateral view of
E10.5 embryo indicating the forelimb (black arrow) and hind-
limb (white arrow). Expression is seen in the proximal fore-
limb. (D) Higher magnification view of expression in the
proximal forelimb (white arrow) and AER (black arrow). (E)
Gad1 expression in the hindlimb AER (arrow). (F-H) E11.5
embryos. (F) Fading Gad1 expression in the forelimb AER
(black arrow) and crecent-shaped expression in the proximal
hindlimb (white arrow). (G) Higher magnification view of
declining expression in the AER (black arrow) and strong
expression in mesenchyme and ectoderm (white arrow). (H)
Higher magnification view of the crescent-shaped expression
pattern in the hindlimb (arrow). Scale bar: A, C 1 mm; B, D,
E, G, H 500 µm; F 1.5 mm.
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Control hybridizations using a sense strand Gad1 probe

were also performed. Embryos hybridized to the sense

probe did not reveal any staining pattern at any of the

stages tested (E8.5- E14.5). Sense strand hybridization

results for E10.5 and E11.5 embryos are shown in figure

5.

Discussion
The expression results reported here show that Gad1 was

activated in several tissues outside of the central nervous

system during mouse development. Transcripts were not

seen at E8.5 and were first detected at E9.0. It was sur-

prising that this very early phase of Gad1 expression was

largely outside of the developing CNS and was localized

in the tail bud mesenchyme and in the pre-apical ecto-

dermal ridge (pre-AER) of the forelimb bud. As develop-

ment proceeded Gad1 was detected in pharyngeal

endoderm and in the ectodermal placodes of the vibris-

sae. The data demonstrate that Gad1 is expressed in sev-

eral sites outside of the developing CNS and in

derivatives of all three germ layers. We have also detect-

ed the expression of Gad1-lacZ transgenes in the devel-

oping vibrissae and limbs supporting the novel and

surprising in situ hybridization results we report here

(J.J. Westmoreland and B.G.C., unpublished results).

Previous studies have shown that Gad1 can be regulated

at the post-transcriptional and translational level. Gad1
mRNA translation or protein stability can be regulated in

mature neurons by the level of GABA [30, 31]. During

embryogenesis, post-transcriptional regulation occurs

by alternative splicing during embryonic development in

rats and mice [32, 33]. This alternate embryonic tran-

script inserts a stop codon into the Gad1 mRNA and can

produce the truncated proteins, GAD25 and GAD44,

from its 5'; and 3' ends respectively. The studies reported

here used a probe that will detect the adult Gad1 mRNA

that encodes GAD67 as well as the embryonic alterna-

tively spliced mRNA that can encode GAD25 and

GAD44. These additional mechanisms of Gad1 regula-

tion may control the production of GAD proteins and the

Figure 4
Gad1 transcripts in the developing vibrissae. (A, B)
Expression at E12.5. (A) Gad1 RNA in the supra-orbital
(black arrow at top of panel), lateral nasal/maxillary (white
arrow) and postoral (black arrow bottom of panel) rows of
vibrissae are indicated. (B) Higher magnification view of lat-
eral nasal/maxillary vibrissal rows. The placode correspond-
ing to the β vibrissa follicle [29] is indicated. (C-F) Gad1
transcripts in the vibrissae at E13.5 (C, D) and E14.5 (E, F).
The initial faint expression in the rhinal (white arrow) and
anterior maxillary vibrissae (black arrow) at E13.5 is indi-
cated in panel C. (G, H) Coronal sections through the snout
of E12.5 embryos hybridized to the Gad1 probe prior to sec-
tioning. Scale bar: A, C, F 750 µm; E 1.5 mm; B 450 µm; D
400 µm; G 200 µm; H 25 µm.

Figure 5
Gad1 sense strand control hybridizations. Hybridiza-
tion with the Gad1 sense strand probe resulted in no signal.
(A) Sense strand probe hybridization to an E10.5 embryo. (B)
Sense strand probe hybridization to an E11.5 embryo. Scale
bar: 1 mm.
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synthesis of GABA in the non-neural cell types detected

in our study.

The whole mount in situ hybridization data reported
here extends the results of a recently published section in

situ hybridization study on E10.5-E12.5 mouse embryos

[27]. Our analysis showed that Gad1 expression is first

detectable earlier at E9.0 and revealed novel non-CNS

sites of expression in the pharyngeal region, vibrissae,

tail bud and limb bud. The results of the previous study

[27], together with the data reported herein, provide a

comprehensive picture of Gad1 expression in the E9.0-

E12.5 mouse embryo.

Previous studies have noted Gad expression outside of

the CNS. In adults Gad1 and Gad2 have been detected in

a number of tissues including kidney, testis, oviduct,

pancreatic islets and adrenal cortex [34,35,36,37]. Previ-

ously reported sites of embryonic Gad1 expression out-

side of the brain and spinal cord during rodent

development include the lens fibers and the olfactory pit

[38, 39]. In E10.5-E12.5 mouse embryos Gad1 is ex-

pressed in the olfactory and the lens placodes, the anla-

gen of the olfactory pit and lens fibers [27]. We also

detected Gad1 expression in these tissues (please see fig-

ure 3A and data not shown). Expression of Gad in the de-

veloping heart and blood vessels has also been reported

[27]. We detected weak staining in the heart and did not

detect blood vessel expression, perhaps due to the very
low levels of expression in developing vasculature [27].

Our results document localized expression of Gad1 at ad-

ditional non-CNS sites in the mouse embryo, suggesting

a potential role for GABA signaling in the development of

these structures.

Our interest in the role of GABA signaling in developing

tissues outside of the central nervous system stems from

the cleft palate phenotype of the Gad1 and the β3 GABAA

receptor subunit mutants [17,18,19, 21, 22]. The genetic

data strongly suggest that GABA acts through GABAA re-

ceptors to modulate the development of this tissue. Al-

though the data reported here do not explain the origin

of the cleft palate phenotype, they do indicate that Gad1

is expressed in several additional non-CNS tissues in the

mouse embryo. It is particularly noteworthy that these

include the AER of the limb buds and the ectodermal pla-

codes of the vibrissae. Both are ectodermal structures

known to be sources of developmental signals required

for morphogenesis and patterning [24,25,26, 40]. It will

be of interest to examine the expression pattern of GABA

receptors in the mesenchyme adjacent to these ectoder-

mal signaling centers. Expression of GABA receptor sub-

units in adjacent tissues would indicate that these

receptors read the developmental signals mediated by
GABA in these structures and tissues.

Conclusions
The mouse gene encoding the 67 kDa isoform of gluta-

mate decarboxylase (Gad1) is expressed in the tail bud

mesenchyme, vibrissal placodes, pharyngeal arches and
pouches and the apical ectodermal ridge (AER), mesen-

chyme and ectoderm of the limb buds in mouse embryos

from E9.0-E14.5. Some of the Gad1 expressing tissues

(vibrissal placodes, AER) are known sources of develop-

mental signals. Other sites of expression correspond to

stem cell populations that give rise to multiple differen-

tiated tissues (tail bud mesenchyme, pharyngeal endo-

derm and mesenchyme). The localized and dynamic

expression pattern of Gad1 suggests a wider role for GAD

and GABA in the development of non-neural tissues than

was previously known.

Materials and Methods
Whole mountin situ hybridizations were performed on

Swiss Webster embryos as described [41, 42]. The morn-

ing that the vaginal plug was found was considered 0.5

days of gestation. The Gad1 probe was derived from an

EST clone (accession W59173). Its 5' end corresponds to

nucleotide 142 in exon 1 [43] and the 3' end is at nucle-

otide 2041 in the cDNA sequence [44]. Digoxygenin

sense and antisense RNA probes were generated by labe-

ling with digoxygenin-UTP during transcription. Embry-

os were removed and fixed in 4% paraformaldehyde/PBS

overnight and used immediately for the in situ hybridiza-

tion. The embryos were processed as described previous-
ly [41] and hybridized to the probe overnight in 50%

formamide, 5X SSC (pH 5.0), 50 µg/ml torula RNA, 50

µg/ml heparin at 70°C. The final concentration of probe
in the hybridization was 1 µg/ml. After an overnight hy-

bridization, the embryos were washed at high stringency

in prewarmed 50% formamide, 5X SSC, 1% SDS (wash I)

at 70°C for 90 minutes. The embryos were then washed

in a 1:1 mix of wash I and wash II (0.5 M NaCl, 10 mM

Tris pH 7.5, 0.1% Tween 20) for 10 minutes at 70°C. The
embryos were washed several times in wash II at room

temperature to remove the formamide and then treated

with 100 µg/ml RNase A, 100 units/ml RNase T1 in wash

II for 1 hour at 37°C. Following the RNase treatment the

embryos were washed in three changes of 50% forma-

mide, 2X SSC pH5.0 at 70°C for a total of 90 minutes.

Detection of the hybridized RNA probe was as described

previously [41]. The embryos were photographed with-

out clearing using a Leica model MZFL III dissecting

scope, a Hamamatsu model C4742-95 digital camera and

Openlab 2.0.7 software.

For sectioning, embryos were embedded in Immunobed

(Polysciences) resin and sectioned at 10 µm. Sections

were phtotographed using an Olympus BX60 micro-

scope fitted with a SPOT digital camera (Diagnostic In-
struments Inc.).
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