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The miR‑200 family in normal mammary 
gland development
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Abstract 

The miR-200 family of microRNAs plays a significant role in inhibiting mammary tumor growth and progression, and 
its members are being investigated as therapeutic targets. Additionally, if future studies can prove that miR-200s 
prevent mammary tumor initiation, the microRNA family could also offer a preventative strategy. Before utilizing miR-
200s in a therapeutic setting, understanding how they regulate normal mammary development is necessary. No stud-
ies investigating the role of miR-200s in embryonic ductal development could be found, and only two studies exam-
ined the impact of miR-200s on pubertal ductal morphogenesis. These studies showed that miR-200s are expressed 
at low levels in virgin mammary glands, and elevated expression of miR-200s have the potential to impair ductal mor-
phogenesis. In contrast to virgin mammary glands, miR-200s are expressed at high levels in mammary glands during 
late pregnancy and lactation. miR-200s are also found in the milk of several mammalian species, including humans. 
However, the relevance of miR-200s in milk remains unclear. The increase in miR-200 expression in late pregnancy 
and lactation suggests a role for miR-200s in the development of alveoli and/or regulating milk production. Therefore, 
studies investigating the consequence of miR-200 overexpression or knockdown are needed to identify the function 
of miR-200s in alveolar development and lactation.
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Background
Mammals evolved mammary glands to generate milk to 
nourish their offspring. Milk is a complex solution con-
taining proteins, fats, carbohydrates, vitamins and other 
nutrients that satisfy the nutritional needs of offspring 
[1]. While mammary gland development has been stud-
ied to understand this normal physiological process, 
these studies are also important for cancer researchers 
as several of the processes involved in generating a fully 
functional mammary gland such as proliferation, differ-
entiation, epithelial-to-mesenchymal transition (EMT), 
migration, and invasion, are hijacked by cancer cells [2–
5]. The impact of genes, hormones and growth factors 
on ductal morphogenesis and alveolar development have 

been extensively investigated, while studies on non-cod-
ing RNAs such as microRNAs are less well characterized.

MicroRNAs (miRNAs) are small, non-coding RNA 
molecules 19–22 nucleotides (nt) long [6, 7]. miRNAs 
are initially transcribed as long primary transcripts that 
are processed by the ribonucleases Drosha [8, 9] and 
Dicer [8, 10, 11] into their mature 19–22nt duplexes [8, 
12]. Mature miRNAs are incorporated into an RNA-
induced silencing complex (RISC) [8] where they bind to 
the 3’-UTRs of mRNAs primarily using the miRNA seed 
region (nucleotides 2–8 of the miRNA) [8, 10, 11, 13, 14]. 
RISC complex binding to target mRNAs typically induces 
mRNA destabilization and translational repression [8, 
10, 11, 13]. Each miRNA is predicted to target tens, hun-
dreds, or thousands of mRNAs [15].

The miR-200 family consists of five members, 
miR-200a, miR-200b, miR-200c, miR-141, and miR-
429 [16]. miR-200c and miR-141 are located on 
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chromosome 12 in humans and chromosome 6 in mice 
[17]. miR-200b, miR-200a, and miR-429 are located on 
chromosome 1 in humans and chromosome 4 in mice 
[17]. The miR-200 family can be further character-
ized by seed sequences that separate the members into 
two functional groups. miR-200b, miR-200c, and miR-
429 exhibit an identical seed sequence: AAUACUG 
[17]. Likewise, miR-200a and miR-141 share the seed 
sequence: AACACUG. The seed sequences of the two 
functional groups only differ by a single nucleotide 
(underlined) [17].

One of the main functions of the miR-200 family 
is influencing EMT. EMT is a biological process that 
causes polarized epithelial cells which interact with 
the basement membrane to lose their inter-cellular 
adhesion and acquire a mesenchymal cell phenotype 
[18–21]. This new phenotype has enhanced migra-
tory capacity, invasiveness, and resistance to apoptosis 
[19–21]. EMT occurs in normal physiological events 
such as embryogenesis [22, 23], branching morpho-
genesis [24–27], and involution [28]. However, EMT is 
also implicated in abnormal physiological events such 
as tumorigenesis and metastasis [25, 29–32].

miR-200 expression appears to be controlled pri-
marily by transcription factors such as Zeb1 and Zeb2 
that directly bind to the promoter regions of the miR-
200 clusters and repress transcription [33–35]. The 
miR-200 family and EMT-inducing transcription fac-
tors exist in a reciprocal negative feedback loop [24]. 
As a result, increasing miR-200 levels reduces EMT-
inducing transcription factors. DNA methylation and 
histone H3 methylation also reduce miR-200 expres-
sion [36–41]; thus, inhibitors of DNA methylation or 
histone methylation should increase miR-200 expres-
sion. It has also been shown that compounds such as 
cryptotanshinone, phthalates, dihydrotanshinone, 
alkylphenols, and retinoic acid affect miR-200 levels 
[42–44].

The miR-200 family has been extensively studied in 
mammary tumorigenesis, particularly the claudin-low 
breast cancer subtype by our lab [41, 45, 46] and others 
[47–60]. From this research, it has been postulated that 
miR-200s may serve as therapeutic targets for the treat-
ment or prevention of breast cancer. If miR-200s are to 
be used as therapeutic targets or preventative agents, it 
is important to understand the consequences that alter-
ing miR-200s may have on mammary gland develop-
ment. This paper will provide the current state of the 
literature regarding the function of miR-200s in mam-
mary ductal development and alveologenesis. For each 
stage, the general physiology of the mammary gland 
will be outlined, as will the known role of the miR-200 
family.

Main text
The miR‑200 family in embryonic and pubertal ductal 
morphogenesis
While most mammary ductal development occurs post-
natally, the mammary ductal network is initiated in the 
embryo during mid-gestation in mammals [27, 61, 62]. 
In rodents, bands of ectodermal cells form along the 
mammary lines around embryonic day 11 (E11), and 
early mammary buds develop by E12.5 [27, 63, 64]. These 
mammary buds will continue to develop into an ecto-
dermal stalk that extends into the mammary fat pad by 
E15.5 [27]. Programmed cell death removes cells from 
the centre of this stalk, creating a lumen in the centre of 
the duct [27]. The bifurcation of the stalk generates the 
initial ductal tree consisting of 10–15 branches by partu-
rition [61]. Embryonic ductal development is regulated 
by many growth factors and hormones, including fibro-
blast growth factors, Wnt proteins and Hedgehog pro-
teins that, in turn, regulate Gata3, Hox, Tbx3, and Gli3 
transcription factors [25, 27]. After birth, mammary 
ductal development is considered quiescent relative to 
embryonic and pubertal stages as the ductal growth rate 
matches normal body growth [2, 65, 66]. In response to 
pubertal hormones such as estrogen and progesterone, 
multilayer structures known as terminal end buds (TEBs) 
develop on the leading edge of the mammary duct and 
drive ductal elongation and bifurcation [66–68]. TEBs 
are composed of progenitor cells that eventually give rise 
to a single layer of luminal epithelial cells surrounded 
by a basal layer, including myoepithelial cells [69]. By 
the end of puberty, TEBs are no longer observable and 
the branched epithelium occupies 60% of the mammary 
stroma, leaving room for further expansion during lacta-
tion [70].

While no studies have evaluated the role of miR-200s 
during embryonic mammary ductal morphogenesis, a 
limited number of studies have evaluated miR-200s in 
post-natal ductal development. Avril-Sassen et al. evalu-
ated miRNA expression in whole murine mammary 
glands at different developmental stages and found miR-
200a, miR-141, and miR-429 to be expressed at low levels 
in juvenile, pubertal, and mature virgin mammary glands 
(Fig. 1) [71]. The expression of miR-200b and miR-200c 
were not reported [71].

A study by Shimono et al. investigated mammary ductal 
development by transplanting 50,000 murine mammary 
epithelial cells infected with a miR-200c expressing len-
tivirus or a control lentivirus into the cleared fat pad of a 
syngeneic mouse [35]. While 11/20 transplants infected 
with the control lentivirus gave rise to a mammary ductal 
network, only 1/18 of the transplants infected with the 
miR-200c expressing lentivirus generated a mammary 
ductal tree [35]. Six of the miR-200c infected transplants 
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produced small, disorganized clusters of cells. Staining 
of the transplants for myoepithelial cell marker keratin 
14 (Krt14) and luminal cell marker keratin 18 (Krt18) 
revealed that the control infected transplants contain 
cells that were either Krt14 positive or Krt18 positive 
while the miR-200c infected transplants contained pri-
marily Krt14 positive cells. This finding suggests that 
miR-200c promoted differentiation into myoepithelial 
cells rather than luminal cells.

The only study that evaluated miR-200s in human 
breast tissue was performed on reduction mammoplasty 
tissue. Bockmeyer et al. found that miR-200s are primar-
ily expressed in luminal epithelial cells with lower levels 
of expression in myoepithelial cells [72].

Although these conclusions are based on a very small 
number of studies, it appears that miR-200s play a minor 
role in regulating ductal morphogenesis in virgin mice. 
Low levels of miR-200 family members throughout ductal 
morphogenesis [71] could indicate the presence of EMT-
inducing transcription factors facilitating developmental 
changes requiring a mesenchymal cell phenotype [20]. 
Looking at this biological mechanism through the lens 
of breast cancer therapeutics, upregulating miR-200s in 
potential treatments could reduce necessary EMT-induc-
ing transcription factors at this stage (ex. Zeb1, Zeb2). 

As Shimono et  al. have begun to demonstrate, elevated 
expression of miR-200s may impair ductal elongation 
[35] and mammary trees favouring differentiation into 
myoepithelial cells over luminal cells would have later 
consequences during lactation. However, more research 
is required to determine whether elevated miR-200s 
delay or disrupt pubertal ductal morphogenesis and to 
define the mechanisms through which miR-200s impart 
this phenotype.

The miR‑200 family in alveologenesis
The first transformation seen in early pregnancy is an 
increase of ductal branching in preparation for alveolar 
development [70]. Proliferating epithelial cells produce 
alveolar buds which develop into alveoli [70]. Cellular 
differentiation becomes a dominant process at mid-
pregnancy as cells prepare for lactation [73]. Hormonal 
stimulation to produce milk begins around day 16 of 
pregnancy in mice and is stimulated by estrogen, pro-
gesterone, and prolactin [74]. At the completion of lacta-
tion, weaning results in a lack of demand for breast milk 
causing the milk to stagnate within the epithelium. This 
initiates mammary involution, which remodels the exten-
sive epithelial alveolar network back to its simple ductal 
structure exhibited before pregnancy [70].

Fig. 1  Illustrating the generalized trends of miR-200 expression throughout the main stages of mammary gland development. miR-200 expression 
is relatively low in the newborn, pubertal, and virgin mammary gland when EMT is a dominant process [71]. miR-200 expression increases 
throughout pregnancy, peaking during lactation and remaining high during involution to facilitate alveologenesis and support lactation [71, 
75–78]. Mammary gland illustrations adapted from Macias & Hink [70]
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Avril-Sassen et  al. found that the expression of miR-
200a, miR-141 and miR-429 were expressed at higher 
levels in whole murine mammary glands during preg-
nancy compared to virgin mammary glands and a further 
increase in miR-200a, miR-141 and miR-429 expression 
was observed in lactating mammary glands [71]. The lev-
els of miR-200a, miR-141 and miR-429 remained highly 
expressed during involution [71].

Similarly, a study by Nagaoka et al. found that miR-200a 
expression increased in mid-pregnant murine mammary 
glands (gestation day 14) compared to virgin mammary 
glands and further increased in lactating mammary 
glands [75]. The increase in miR-200a expression in lac-
tating mammary glands was associated with an increase 
in Csn2 and Cdh1 expression and a decrease in Vim 
expression [75]. Moreover, this group found that the nor-
mal mouse mammary epithelial cell line, EpH4, showed 
an increase in miR-200a expression as well as Csn2 and 
Cdh1 expression following treatment with a mixture of 
lactogenic hormones [75]. Knockdown of miR-200a in 
EpH4 cells prior to treatment with lactogenic hormones 
significantly decreased Csn2 and Cdh1 expression com-
pared to control cells [75].

Galio et  al. investigated mouse mammary tissue col-
lected from virgin mice as well as mice during early preg-
nancy, late pregnancy, early lactation, and late lactation 
[76]. miR-200a, miR-200b, and miR-200c showed a simi-
lar expression profile with low levels of expression in vir-
gin and early pregnancy mammary glands with increased 
expression in mammary glands during late pregnancy 
and lactation [76]. Mammary glands during late lacta-
tion had the highest expression of miR-200a, miR-200b, 
and miR-200c [76]. miR-141 and miR-429 expression 
were low in virgin and early gestation mammary glands 
and increased in late pregnancy and lactating mammary 
glands; however, the expression of miR-141 and miR-429 
peaked in mammary glands during early lactation [76].

The increase in miR-200 expression during alveologen-
esis has also been observed in species other than mice. 
Galio et al. evaluated miRNA expression in cycling ovine 
mammary glands as well as ovine mammary glands dur-
ing early, mid, and late pregnancy as well as during lacta-
tion [76]. miR-200a, miR-200b, miR-200c, and miR-141 
were all shown to increase in expression in mammary 
glands during late gestation compared to the estrous 
cycling mammary gland with a further increase in lactat-
ing mammary glands [76]. Le Guillou et  al. studied the 
mammary gland miRNA expression in bovines during 
lactation, revealing that miR-200a, miR-200b, miR-200c, 
and miR-141 were among the 30 most highly expressed 
microRNAs in mammary epithelial tissue [77]. Li et  al. 
also found increased expression of miR-200c and miR-
141 in lactating compared to non-lactating bovine 

mammary tissue [78]. Consistent with the increased 
miR-200 expression in mammary glands observed during 
lactation, miR-200 family members are also found at high 
levels in milk from humans [1, 79], mice [1], cows [1, 80], 
pigs [1, 81], and wallabies [1].

These studies consistently demonstrate that miR-
200s increase in expression in mammary tissue during 
pregnancy and achieve peak expression during lacta-
tion. miR-200s, as well as other miRNAs, can be found 
in the milk of several species but whether there are any 
functional consequences of miR-200s in milk remains 
unknown (Fig.  1). One study found that miR-200c was 
found in bovine milk, but bovine miR-200c was not pre-
sent in the circulation of individuals who drank bovine 
milk suggesting that milk miR-200s are unlikely to have 
significant physiological functions in newborns [82]. This 
finding by Auerbach et al. suggests that a miR-200-alter-
ing breast cancer treatment may not cause undue harm 
to the normal physiology of a newborn feeding from 
a mother with breast cancer. If future research can fur-
ther support this hypothesis, safe breastfeeding through-
out treatment would be a unique property of miR-200 
therapeutics. Breast cancer patients receiving traditional 
chemotherapy and hormone therapies are discouraged 
from breastfeeding as anti-cancer medications (ex. Doxo-
rubicin, Cisplatin, Mitoxantrone, Methotrexate) [83] and 
hormone receptor modulators (ex. Tamoxifen) [84] can 
be transferred to the infant through breastmilk with toxic 
effects. Surgical removal of breast tissue (lumpectomy 
or single mastectomy) under general anesthesia may 
also allow for safe breastfeeding [85, 86]; however, these 
treatment options may not be sufficient for aggressive 
subtypes of breast cancer. For an individual with breast 
cancer, a miR-200-altering therapy is unlikely to produce 
off-target effects on their normal mammary physiology 
throughout pregnancy and lactation as miR-200 levels 
are already high during the two developmental stages.

miR‑200 mRNA targets and mammary gland development
miR-200 family members exert their effects by binding 
to mRNA transcripts matching their seed sequence and 
repressing translation to prevent/reduce mRNA-specific 
protein synthesis [8, 10, 11, 13]. There are thousands of 
mRNAs targeted by miR-200s as Bracken et al. found 917 
transcripts directly bound to miR-200a and 1,194 tran-
scripts directly bound to miR-200b [87]. Among the miR-
200 mRNA targets, Ctnnb1, Zeb1, Zeb2, Snai1, Snai2, 
and Twist will be discussed based on their importance 
throughout mammary gland development.

The finding by Shimono et  al. that overexpressing 
miR-200c impaired the elongation of mammary ductal 
trees [35] can be understood by investigating miR-200 
mRNA targets. Thus far, miR-200a [88, 89], miR-200b 
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[90, 91], miR-200c [90, 92], and miR-141 [90] have been 
found to inhibit β-catenin (Ctnnb1)  activation by tar-
geting its mRNA. β-catenin inhibition prevents acti-
vation of transcription factor TCF which mediates the 
growth and proliferation outcomes of the Wnt signal-
ing pathway [93]. Postnatally, Uyttendaele et  al. found 
that Wnt-1 is involved in mammary branching mor-
phogenesis by overcoming Notch-mediated inhibition 
[94]. For successful Wnt-mediated branching morpho-
genesis, miR-200 levels must be low which Avril-Sas-
sen et  al. confirmed for pubertal morphogenesis [71]. 
miR-200 members also bind to the mRNA of EMT-
associated transcription factors Zeb1 and Zeb2 [34]. 
As epithelial cells invade the underlying matrix during 
pubertal ductal morphogenesis, it is hypothesized that 
cells undergo partial-EMT [26], and EMT-inducing 
transcription factors have been detected at TEBs dur-
ing puberty [27]. This invasion would not be possible if 
cells remained in an epithelial cell phenotype promoted 
by miR-200s based on cell-adhesion to the basement 
membrane.

While stages leading up to pregnancy require low 
miR-200 expression, peaking miR-200s during and after 
pregnancy is essential for lactation and is facilitated by 
interactions with mRNA targets. An epithelial cell mor-
phology within the lactiferous ducts is required during 
lactation as luminal cells must establish and maintain 
apical/basal polarity to function as secretory cells. Mes-
enchymal transcription factors Zeb1, Zeb2, [34, 95] 
Snai1, Snai2, and Twist [95] have been identified as 
direct targets of miR-200 family members based on their 
mRNA sequences. Watson et al. have also demonstrated 
miR-200s’ ability to significantly reduce the expression 
of Zeb1, Snai1, Twist1, and Twist2 [45]. Zeb1, Zeb2, 
and Snai1 proteins bind directly to the  Cdh1 promoter 
to repress its transcription while Twist proteins repress 
Cdh1 indirectly [96]. Cdh1 is essential for lactation and 
Boussadia et  al. demonstrated that Cdh1 gene deletion 
impacted terminal differentiation of the lactating mam-
mary gland. Cdh1 gene deletion reduced milk produc-
tion so significantly that adult mouse mothers could not 
suckle their offspring [74]. miR-200s translational repres-
sion of EMT-associated transcription factors through 
mRNA interaction prevents Cdh1n repression, contrib-
uting to successful lactation.

Based on the extensive number of mRNA targets by the 
miR-200 family, understanding their impact on the Wnt 
signaling pathway via β-catenin and EMT via Zeb, Snai1, 
Snai2, and Twist is just scratching the surface of under-
standing this microRNA family. However, these pathways 
serve as avenues for future research to further under-
stand the impact of miR-200s on normal mammary gland 
development.

Conclusions
During mammary ductal morphogenesis, where the 
percentage of progenitor cells is relatively high and cell 
migration and invasion are required for mammary ductal 
elongation, it appears that the expression of miR-200s is 
low. The results reported by Shimono et al. provide pre-
liminary evidence that increased expression of one or 
more miR-200 family members can impair ductal elon-
gation potentially by interacting with the Wnt/β-catenin 
signaling pathway and/or inhibiting EMT. However, sup-
porting evidence is required to further substantiate these 
claims and confirm the biological mechanisms at play. 
Increased expression of miR-200 family members dur-
ing a potential cancer therapy may consequently impair 
ductal morphogenesis. While breast cancer is rare in 
adolescents undergoing pubertal branching morpho-
genesis, it must be considered for post-pubertal indi-
viduals experiencing ductal morphogenesis associated 
with cyclic ovarian stimulation in preparation for lacta-
tion. Studies analyzing mammary duct length and area 
of miR-200 knockdown mice would provide valuable 
insights on the impact of miR-200-altering therapeutics 
on normal mammary development. Alveologenesis in 
late pregnancy and maintenance of alveoli structure and 
function during lactation are associated with increased 
expression of miR-200s. As mammary epithelial cells 
are terminally differentiated during alveolar develop-
ment, the increase in miR-200s during this process is 
consistent with the observation that miR-200s are asso-
ciated with maintaining an epithelial cell identity. While 
increased expression of miR-200s in alveoli is consist-
ently observed, the requirement of miR-200 for proper 
alveolar development and the functions of miR-200s in 
alveolar epithelial cells have yet to be determined. There-
fore, studies overexpressing or knocking down/knocking 
out miR-200s during different mammary developmental 
stages are required to determine the functional roles of 
miR-200s in the mammary gland. Future research should 
also focus on EMT-associated transcription factors such 
as Zeb, Snai1, Snai2, and Twist [33–35] to understand the 
complete picture of the miR-200 family throughout nor-
mal mammary development. Finally, studies providing 
insights into the mechanisms through which miR-200s 
impair mammary tumor initiation, growth and progres-
sion will help determine whether increased expression 
of miR-200s has the potential to serve as a therapeutic or 
preventative strategy for breast cancer.
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TEB: Terminal end bud.
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