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Abstract
Background: Metal-responsive transcription factor 1 (MTF-1), which binds to metal response elements (MREs),
plays a central role in transition metal detoxification and homeostasis. A Drosophila interactome analysis revealed
two candidate dMTF-1 interactors, both of which are related to the small regulatory protein Dumpy-30 (Dpy-30)
of the worm C. elegans. Dpy-30 is the founding member of a protein family involved in chromatin modifications,
notably histone methylation. Mutants affect mating type in yeast and male mating in C. elegans.

Results: Constitutive expression of the stronger interactor, Dpy-30L1 (CG6444), in transgenic flies inhibits MTF-
1 activity and results in elevated sensitivity to Cd(II) and Zn(II), an effect that could be rescued by co-
overexpression of dMTF-1. Electrophoretic mobility shift assays (EMSA) suggest that Dpy-30L1 interferes with
the binding of MTF-1 to its cognate MRE binding site. Dpy-30L1 is expressed in the larval brain, gonads, imaginal
discs, salivary glands and in the brain, testes, ovaries and salivary glands of adult flies. Expression of the second
interactor, Dpy-30L2 (CG11591), is restricted to larval male gonads, and to the testes of adult males. Consistent
with these findings, dpy-30-like transcripts are also prominently expressed in mouse testes. Targeted gene
disruption by homologous recombination revealed that dpy-30L1 knockout flies are viable and show no overt
disruption of metal homeostasis. In contrast, the knockout of the male-specific dpy-30L2 gene results in male
sterility, as does the double knockout of dpy-30L1 and dpy-30L2. A closer inspection showed that Dpy-30L2 is
expressed in elongated spermatids but not in early or mature sperm. Mutant sperm had impaired motility and
failed to accumulate in sperm storage organs of females.

Conclusion: Our studies help to elucidate the physiological roles of the Dumpy-30 proteins, which are
conserved from yeast to humans and typically act in concert with other nuclear proteins to modify chromatin
structure and gene expression. The results from these studies reveal an inhibitory effect of Dpy-30L1 on MTF-1
and an essential role for Dpy-30L2 in male fertility.
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Background
Metal-responsive transcription factor 1 (MTF-1) can coop-
erate, in a positive or negative manner, with other tran-
scription factors binding to their own DNA sites nearby
(USF1, [1]; NFI, [2,3]; Sp1, [4]; NF-kB [5]), but no MTF-1-
specific coactivators or corepressors were described so far.
A general interaction analysis of Drosophila proteins by
means of the yeast two-hybrid system [6] revealed two
closely related proteins as potential interaction partners of
MTF-1 (see below). These interaction proteins were
encoded by genes designated CG6444 and CG11591 [7].
Both belong to a protein family that is conserved from
yeast to humans and whose founding member was
described in the nematode C. elegans as Dumpy-30 (Dpy-
30), a protein involved in dosage compensation of sex
chromosomes [8]. Dpy-30 is required for sex-specific
association of Dpy-27, a chromosome condensation pro-
tein homolog, with the hermaphrodite's X chromosomes.
Besides causing XX-specific lethality, the dpy-30 mutation
in XO animals causes developmental delay, small body
size, inability to mate and abnormal tail morphology [9].
These phenotypes suggest an involvement of Dpy-30 also
in processes other than dosage compensation. The yeast
homolog of C. elegans Dpy-30, Sdc1, was identified as an
important component of the eight-member complex
(SET1C protein complex), which functions as a histone 3
lysine 4 (H3-K4) methyltransferase [10]. The loss of indi-
vidual SET1 protein complex subunits differentially
affects SET1 stability, complex integrity and the distribu-
tion of H3K4 methylation along active genes. Such muta-
tions cause defects in maintenance of telomere length [11]
and in DNA repair [12,13]. Dpy-30 and its close relatives
contain a short motif related to the dimerization motif in
the regulatory subunit of Protein Kinase A. This motif con-
sists of two α-helices that form a special type of four-helix
bundle during dimerization [14]. Until recently no data
were available on one of the Drosophila homologs,
CG6444, while the other, CG11591, was shown to be
expressed in testes by genome-wide microarray analysis of
transcription [15].

As mentioned, the interaction partner of Dpy-30-like pro-
teins in the Drosophila interaction study was identified as
metal-responsive transcription factor 1 (MTF-1). MTF-1 is
a key regulator of heavy metal homeostasis and detoxifi-
cation in higher eukaryotes [16-19]. In mammals, MTF-1
controls a number of genes for metal homeostasis and is
also essential for embryonic liver development [20-23].

MTF-1 binds via its zinc fingers to metal-responsive ele-
ments (MREs) in the promoter/enhancer region of target
genes [16,24] and activates their transcription. Metal-
lothioneins are the best characterized target genes of MTF-
1; they encode small, cysteine-rich proteins with an ability
to scavenge excess heavy metal ions [25-27]. Drosophilae

mutant for dMTF-1, the homolog of mammalian MTF-1,
are viable but more sensitive to elevated concentrations of
heavy metals, as well as to copper scarcity [28]. Upon cop-
per starvation, dMTF-1 activates transcription of the gene
encoding Ctr1B, a high affinity copper importer [29].
Recently several additional target genes of MTF-1 in mam-
mals and in Drosophila were identified and characterized
in our laboratory by microarray and specific transcript
analysis [30,31] but little is known to date about proteins
interacting with and/or regulating Drosophila MTF-1 func-
tion.

Here we show that transgenes of both Drosophila Dpy-30
orthologs, CG6444 and CG11591, hereafter termed Dpy-
30-like 1 (Dpy-30L1) and Dpy-30-like 2 (Dpy-30L2),
respectively, inhibit MTF-1-dependent reporter gene
expression in cell culture. Constitutive expression of a
Dpy-30L1 transgene in flies results in elevated sensitivity
to Cd(II) and Zn(II), while Dpy-30L2 overexpression has
no such effect. Consistent with metal resistance, only the
Dpy-30L1 transgene inhibited dMTF-1 activity in flies.
Gene knockout by homologous recombination revealed
that dpy-30L1 null mutant flies are viable and fertile and
maintain a seemingly normal metal homeostasis, while
knockout of the male-specific dpy-30L2 results in male ste-
rility. Sperm motility in dpy-30L2 mutants is impaired and
drastically decreases with age. After mating mutant sperm
is transferred to the uterus but does not accumulate in the
seminal receptacle and spermathecae, making successful
fertilization impossible. These findings reveal a major role
of Dpy-30 proteins in male fertility and sperm motility.

Results
Inhibition of MTF-1-dependent reporter expression in 
Drosophila Schneider S2 cells
The Drosophila interactome study of Giot et al. [6] had
revealed three proteins that display very good (Dpy-
30L1), good (Dpy-30L2), and weak (CG11061) interac-
tion with dMTF-1. In order to characterize the role of these
proteins in Drosophila, especially in the context of metal
homeostasis, the open reading frames (Figure 1) of all
three were cloned into a Drosophila expression vector and
analyzed by transfection and co-transfection studies in
insect cells. The third protein reported to interact with
dMTF-1 only weakly, CG11061, was listed as a protein
putatively involved in Golgi organization and biogenesis,
mitosis and protein targeting. In our hands it did not
affect MTF-1 function (data not shown), thus rendering
doubtful a physiological relevance of the predicted inter-
action.

In Drosophila Schneider S2 cells [32], transfection of dpy-
30L1 or dpy-30L2 inhibited the expression of MTF-1-
dependent reporter genes driven either by the promoter of
the Drosophila metallothionein A (MtnA) (not shown) or
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by a synthetic promoter consisting of four tandem metal
response elements (MREs), the binding sites of MTF-1
(Figure 2A). The effect on the synthetic MRE promoter was
more pronounced, suggesting that Dpy-30L1 and Dpy-
30L2 indeed interact with dMTF-1 and thereby interfere
with its activity, as MTF-1 is the only factor known to bind
MREs. This inhibitory effect could also be shown in the
whole organism expressing an YFP reporter gene driven by
the metallothionein (MtnA) promoter (Figure 2B). Here,
the response (YFP expression) to copper, and especially to
cadmium, was strongly reduced, whereas under copper
starvation conditions no difference was observed.

Due to the high degree of conservation among all the
members of this protein family, we screened the mouse
and human genome for the orthologs (Figure 1) and sub-
cloned the Dpy-30-like members both from mouse and
human. These mammalian Dpy-30-like proteins were as
effective as the Drosophila proteins in repressing dMTF-1
activity in Drosophila Schneider cells (Figure 3B and not
shown). However, it appears that the antagonistic interac-
tion between MTF-1 and Dpy-30 family members is spe-
cific to Drosophila MTF-1: mammalian MTF-1 was not
affected by Dpy-30-type proteins, irrespective of whether

the test was done in Drosophila cells (Figure 3) or mamma-
lian cells (not shown).

To gain further insights to the inhibitory effect of Dpy-
30L1 on dMTF-1, we did an electrophoretic mobility shift
assay (EMSA) of transfected VSV-tagged MTF-1, without
or with co-transfected dpy-30L1. The reduced band inten-
sity of the shifted MRE oligo suggests that Dpy-30L1 inter-
feres with binding of MTF-1 to its cognate MRE DNA
(Figure 4).

Flies overexpressing Dpy-30L1 are sensitive to heavy metal 
load
We generated transgenic flies with ubiquitous, constitu-
tive expression of dpy-30L1 or dpy-30L2, taking advantage
of the UAS-Gal4 system whereby Gal4 was driven by the
Drosophila actin promoter. Flies overexpressing Dpy-30L1
were raised during their entire development on normal
food, or food supplemented with different heavy metals.
They did not show a phenotype when kept on standard
food but were much more sensitive to heavy metal load,
especially to cadmium and zinc, while sensitivity to cop-
per was only marginally affected (Figure 5). The sensitivity
to cadmium and zinc could be rescued by co-overexpres-
sion of an MTF-1 transgene (Figure 5). This shows that the

Alignment of Drosophila Dpy-30L1 and Dpy-30L2 with their orthologs from different speciesFigure 1
Alignment of Drosophila Dpy-30L1 and Dpy-30L2 with their orthologs from different species. The core domain of 
these short proteins is highly conserved among different species. Grey shaded: similar, black shaded: identical aa. Dpy-30 '' 
core'' indicates the consensus core sequence.
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metal sensitivity of organisms expressing transgenic Dpy-
30L1 was not merely reflecting a generally lower resist-
ance to stress but rather a disturbed metal-specific stress
response. This point was corroborated by raising flies in
excess iron, a metal that is handled by a pathway different
from the MTF-1/metallothionein system. Neither an

increased sensitivity nor a rescue effect could be observed
upon overexpression of Dpy-30L1 and/or dMTF-1 (data
not shown). Although both Dpy-30L1 and Dpy-30L2
overexpression inhibited MTF-1 function in cell culture,
only Dpy-30L1 was effective in a transgenic fly. This leads
to the conclusion that there are functional differences

Effect of Dpy-30L1 overexpression on MTF-1 dependent reporters in cell culture and in vivoFigure 2
Effect of Dpy-30L1 overexpression on MTF-1 dependent reporters in cell culture and in vivo. A) In transiently 
transfected Drosophila Schneider S2 cells [32], the ratio of firefly (reporter) to renilla (reference) luciferase activity is shown. 
Reporter: 4xMRE from the metallothionein B (MtnB) promoter [18] fused to firefly luciferase; reference: tubulin promoter 
fused to renilla luciferase [53]. Dpy-30L1 and Dpy-30L2 expression constructs were under the control of the actin promoter. 
72 hours after transfection, cells were treated with the indicated concentrations of heavy metals for 24 hours. B) Expression 
level of green fluorescent protein in transgenic larvae that carry an MtnA-YFP reporter construct. Transgenic flies were 
allowed to lay eggs on normal food or food supplemented with different heavy metals.
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Inhibitory effect of Dpy-30L1, Dpy-30L2 and their mammalian orthologs is restricted to Drosophila MTF-1Figure 3
Inhibitory effect of Dpy-30L1, Dpy-30L2 and their mammalian orthologs is restricted to Drosophila MTF-1. The 
ratio of firefly to renilla luciferase activity in transiently transfected Drosophila Schneider S2 cells is shown. Reporter, MtnA pro-
moter fused to firefly luciferase; reference, tubulin promoter fused to renilla luciferase. Dpy-30L1 and the mouse ortholog 
were under the control of the actin promoter. 72 hours after transfection, the medium in half of the plates was supplemented 
with 40 μM cadmium chloride for 24 hours, while the others served as controls. A) Mouse MTF-1 was co-transfected in the 
indicated samples; B) Drosophila MTF-1 was co-transfected in the indicated samples.
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between the two related proteins that become evident
only in whole-organism studies.

Expression pattern of Dpy-30L1 and Dpy-30L2
To determine the expression pattern of both genes in lar-
vae and adult flies, transgenes were constructed where a
fluorescent reporter (YFP) was under the control of
approximately 7 kb of genomic region from Dpy-30L1 or
Dpy-30L2. The expression pattern of the two genes was
quite distinct: The dpy-30L1 regulatory region induced
expression in multiple larval tissues, notably brain,
gonads, imaginal discs and salivary glands. In adult flies,
expression was seen in the brain, testes, ovaries and sali-
vary glands. In contrast, the expression of Dpy-30L2-YFP
was confined exclusively to male gonads in larvae, and to
the testes in adult flies. Further dissection of the expres-
sion pattern of Dpy-30L2-YFP during spermatogenesis
revealed that Dpy-30L2-YFP is expressed in elongated
spermatids at the "canoe-like" stage but not during the
early stages of spermatogenesis or in mature sperm (not
shown), which is also consistent with the online Dro-
sophila testis gene expression database [33]. The expres-

sion pattern of these transgenic constructs was very similar
to the ones derived from a genome-wide transcription
map recently published online in Flyatlas [34,35].

Targeted gene disruption shows that Dpy-30L2 is essential 
for male fertility
In order to determine the in vivo role of the two Dpy-30-
like proteins, we disrupted both of the corresponding
genes by means of homologous recombination [36].
Somewhat unexpectedly, dpy-30L1 knockout flies turned
out to be viable and fertile under laboratory conditions
and did not show any obvious alterations in metal resist-
ance/sensitivity phenotypes (data not shown). In the
mutated locus, the yellow fluorescent protein (YFP) and
SV40 polyadenylation/termination sequence was fol-
lowed, out-of-frame, by a truncated Dpy-30L1 coding
sequence (for details, see Materials & Methods). Though
unlikely, we cannot rule out the possibility that the resid-
ual Dpy-30L1 sequence was expressed by re-initiation of
transcription and translation from an internal site in the
coding region, thus producing a hypomorph, rather than
a null mutation. In contrast, disruption of the male-spe-
cific dpy-30L2 gene resulted in complete male sterility.
Combination of the two mutations did not reveal any
additional phenotypic features, i.e., male flies were again
sterile but otherwise normal under laboratory conditions.

We attempted to identify more precisely the defects in the
reproductive system of dpy-30L2 knockout males. A dis-
section of dpy-30L26-1 males revealed apparently normal
testes that contained sperm. In the nematode C. elegans,
Dpy-30 is known to be involved in dosage compensation,
a process that equalizes the expression of X-chromosomes
in XX and XO animals [8], and in yeast it methylates his-
tones [38,39]. Dpy-30L2 is specifically expressed in the
spermatid stage where transcription is repressed in germ
cells and histones are removed from DNA to be replaced
by protamines. Thus we wondered whether in Drosophila,
loss of Dpy-30L2 distorts chromatin structure at this criti-
cal stage. However, loss of histone H2A variant D
(H2AvD) expression, a hallmark of the transition to the
protamine-loaded sperm, was not affected (Figure 6), and
also the protamine B-eGFP distribution pattern was not
disturbed. Furthermore, the marker Mst77F-eGFP was
inconspicuous in that it was associated with DNA at the
appropriate stage of spermatogenesis (Figure 6). Mst77F is
a distant relative of the linker histone H1/H5 family and
has been proposed to support the transition to compact
Drosophila sperm chromatin [39,40]. Unlike its mamma-
lian homolog (mHILS1), Drosophila Mst77F persists in
mature sperm nuclei [40].

However, we found one clear difference between mutant
and wild type flies: dissection of the reproductive tract of
females that had mated with dpy-30L2 mutant males

Reduced DNA binding of dMTF-1 upon co-expression of Dpy-30L1Figure 4
Reduced DNA binding of dMTF-1 upon co-expression 
of Dpy-30L1. DNA binding by dMTF-1 was determined by 
EMSA. Drosophila S2 cells were transfected with VSV tagged 
dMTF-1 expression plasmids, and 20 μg of nuclear protein 
extract was used for each bandshift reaction. Lanes 1 and 4, 
bandshift with [32P]-labeled MRE consensus oligonucleotide 
(MRE-s). Lanes 2 and 5, same conditions but also including a 
200-fold excess of unlabeled MRE-s competitor oligonucle-
otide (specific competitor). Lanes 3 and 6, same conditions 
but with a 200-fold excess of unlabeled Sp1 oligonucleotide 
(nonspecific competitor). Cells had been treated for 6 hours 
with medium containing 100 μM zinc sulfate.
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revealed that sperm were confined to the uterus, which
means that they had failed to be transmitted to the semi-
nal receptacle and the spermathecae (Figure 7). Since
from these latter sites sperm are used to fertilize eggs, this
mislocalization could, in part or completely, explain the
sterility of mutant males. A possible reason for mislocali-
zation of dpy-30L2 mutant sperm in females could be
impaired or uncoordinated motility of sperm. Dissection
of the reproductive tract of females that had been mated
either with Oregon R or with dpy-30L26-1 males showed
that dpy-30L2 knockout sperm indeed lose their motility
after transfer to the female reproductive tract (Table 1).

More detailed analysis of sperm amount and motility in
males revealed an age-dependent decrease in both
amount and motility of dpy-30L26-1 sperm, with complete
loss of motility in 20-day-old males in contrast to hetero-
zygous males. Taken together, these results reveal that
Dpy-30L2 is important for sperm production and motil-
ity.

Discussion
In transfected cells, both of the Dpy-30 orthologs of Dro-
sophila, termed Dpy-30L1 and Dpy-30L2 (Dumpy-30-
like1 and -like2), inhibit the activity of MTF-1 (metal-

Sensitivity of Drosophila to heavy metal loadFigure 5
Sensitivity of Drosophila to heavy metal load. Crosses of flies with the indicated genotypes were done on normal food 
(NF) or on food supplemented with the indicated metals. Flies were allowed to lay approximately the same amount of eggs, 
then in each tube the ratio of eclosed Dpy-30L1 overexpressors to controls was determined. In normal food, the cross was 
expected to yield 1/3 overexpressors and 2/3 controls i.e., a ratio of 0.5, which is indicated by a green line. act – actin, tub – 
tubulin.
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responsive transcription factor 1), while in transgenic
flies, such an effect was only seen with the stronger inter-
actor Dpy-30L1. Consistent with such an inhibition,
transgenic flies were sensitive to cadmium or zinc load,
while copper sensitivity was only marginally affected. The
increased metal sensitivity could be rescued by co-overex-
pression of dMTF-1. An EMSA assay revealed a weakened
binding of MTF-1 to MRE DNA in the presence of Dpy-
30L1. Taken together, these results suggest that for detoxi-
fication of Cd(II) or Zn(II) a higher level of MTF-1 is
required than for Cu(II) detoxification. Studies with par-
tial inactivation mutants of dMTF-1 are in agreement with
such a notion (A.V., H. Yepiskoposyan and W.S., unpub-
lished). Unexpectedly, only MTF-1 of insect origin
responded to Dpy-30 type proteins: while the human and
mouse Dpy-30 members also inhibited Drosophila MTF-1
across species boundaries, activity of human MTF-1 was
unchanged in the presence of either Drosophila or mam-
malian Dpy-30 members. This indicates some degree of
functional divergence between Drosophila and mamma-
lian MTF-1 during evolution, in spite of a conserved role
in heavy metal homeostasis and detoxification. We con-
sider the Dpy-30-dMTF-1 interactions observed in the

interactome study [6] relevant because (i) the two major
interactors Dpy-30L1 and L2 are members of the same
protein family; (ii) a (negative) functional interaction
with dMTF-1 was seen with both of them, and with their
mammalian Dpy-30 homolog, in transfected cells; (iii)
Dpy-30L1, the stronger interactor, also produced an effect
in vivo, and (iv) it inhibited the binding of dMTF-1 to its
cognate DNA sequence.

As a complement to transgenic expression of Dpy-30L1
and Dpy-30L2, we also tested a loss of function of the two
proteins. Disruption of short genes in Drosophila has been
a great challenge since small targets are rarely hit by ran-
dom mutagenesis. To circumvent this problem, we elimi-
nated Dpy-30L1 and L2 function separately by
homologous recombination [36,41]. Somewhat unex-
pectedly, knockout of neither Dpy-30L1 nor Dpy-30L2
affected metal handling under the conditions tested, but
Dpy-30L2 which is specifically expressed in male gonads,
turned out to be essential for male fertility.

Sdc1, the yeast homolog of Dpy-30, is a component of
SET1C, also called COMPASS (complex proteins associated

Transition of histones to protamines in dpy-30L2 knockout malesFigure 6
Transition of histones to protamines in dpy-30L2 knockout males. Degradation of histones was checked in dpy-30L2 
knockout (dpy-30L26-1) males carrying a transgene with a fusion of GFP to the coding sequence of the histone H2A D variant 
(H2AvD). Arrow, H2AvD-GFP in degradation; arrowheads, H2AvD-GFP degraded. Incorporation of protamine B and Mst77F 
was analyzed in dpy-30L2 knockout males that carry either a transgene of protamine B fused to eGFP or of Mst77F fused of 
eGFP. During the "canoe" and "post-canoe" stages of spermatid development, ProtamineB-eGFP and Mst77F-eGFP incorpora-
tion in the spermatid nucleus appeared to be normal in dpy-30L2 knockout males. Any (diffuse) YFP signal from the dpy-30L2 
promoter was not filtered out.
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Dpy-30L2 knockout sperm in the wild type female reproductive systemFigure 7
Dpy-30L2 knockout sperm in the wild type female reproductive system. Sperm of wild type males were marked by 
Mst77F or protamineB fused to eGFP to follow its fate in the female reproductive system. Wild type females were allowed to 
mate with wild type or mutant males, the females were then dissected and checked for a GFP signal in their reproductive sys-
tem. 30 minutes after mating, 20% of wild type sperm had accumulated in female storage organs. However, mutant sperm 
remained in the uterus and failed to be transferred to seminal receptacle and spermathecae, the female sperm storage organs. 
Ov – ovaries; spt – spermatheca; src – seminal receptacle; ut – uterus; ovd – oviduct.
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with SET1 protein). SET1C methylates histone H3 at
lysine residue 4 [38]. Yeast strains mutant for SET1,
although viable, display defects in cell growth, rDNA
silencing [42], and silencing of telomeres and mating type
loci [11]. In C. elegans, the dosage compensation complex
(DCC), which among other proteins includes Dpy-30,
represses X-chromosomal transcription in cells of XX ani-
mals. The complex binds preferentially to promoter
regions and seems to be required for the early steps of dos-
age compensation, not for its maintenance [43]. The
SET1C complex has also been shown to activate some spe-
cific genes, notably for DNA repair genes. This activation
is however an indirect one, via repression of a signaling
cascade [13]. Direct activation of target genes is also pos-
sible, at least in mammals: a human homolog of SET1C,
the MLL (mixed-lineage leukemia) complex which also
has methyltransferase activity and is ivolved in tumor cell
proliferation [44], positively regulates Hox gene expres-
sion through binding to promoter sequences [45]. Recent
investigations have shown that the human MLL2/ALR
complex contains the human ortholog of Dpy-30 [46].
Taken together, these data indicate a conserved role of
Dpy-30 family members in the modulation of chromatin
structure and transcription.

However, there are clear differences as well. The Drosophila
trithorax complex, the homolog of yeast SET1C, is essen-
tial for viability. Our findings suggest that flies lacking
both Dpy-30L1 and Dpy-30L2 are viable and that Dpy-30
orthologs of Drosophila are not obligatory components of
the trithorax complex. The only mutant phenotype we
observed was male sterility in the absence of Dpy-30L2. A
hallmark of spermatogenesis, the replacement of histones
by protamines [47] is not affected in the Dpy-30L2
mutant. Because transcriptional silencing of the spermatid
genome seems to occur independently of protamines
[39], it appears still possible that Dpy-30L2 is required for
proper gene silencing during spermatogenesis.

In yeast, C. elegans and Drosophila, Dpy-30 members serve
different but important functions, perhaps converging, in
metazoans, on sex-specific gene expression programs,
compatible with the fact that the single Dpy-30 ortholog
of the mouse is strongly expressed in testes.

Conclusion
Dumpy-30 (Dpy-30) type proteins are conserved from
yeast to humans but their function in higher eukaryotes is
only partially understood. Here we have characterized the
two Dpy-30 familiy members in Drosophila. Strong expres-
sion of Dpy-30L1 can inhibit the activity of MTF-1 (metal-
responsive transcription factor 1), resulting in elevated
sensitivity of flies to cadmium and zinc load. The second
member, Dpy-30L2, is only expressed in the male genital
tract; targeted gene disruption of dpy-30L2 results in male
sterility associated with reduced motility of sperm and
failure to be transferred to the female's seminal recepta-
cles. Like Drosophila Dpy-30L2, the mouse Dpy-30
homolog is strongly expressed in testes, from where the
expressed sequence tag (EST) was obtained [48]. Thus
Dpy-30 family members may well be required for male
fertility also in mammals.

Methods
Database searches and computer analysis of the sequences
Blast searches for mammalian and yeast orthologs were
performed using the NCBI BLAST service. Sequence align-
ments were performed using ClustalW and Boxshade.

Fly food and heavy metal sensitivity assay
Flies were raised on standard cornmeal molasses-based
food. For sensitivity assays, food was supplemented with
CdCl2, CuSO4, ZnCl2 or 500 μM copper chelator BCS dis-
odium salt hydrate (Sigma-Aldrich 14, 662-5). The con-
centrations of trace metals in normal food, based on the
content of the individual ingredients, are ~5 μM for cop-
per and 150 μM for zinc. Flies with indicated genotypes

Table 1: Sperm presence and motility in female reproductive tract

Male genotype Female 
genotype

Days after cross Number of 
tested females

Number of females with sperm in 
seminal receptacle

Number of females with sperm in 
uterus/oviduct

Sperm Motile Sperm Motile

Oregon R Oregon R 5 6 5 5 1 No
XY hs-tra* 5 6 4 4 4 1
XY hs-tra* 1 6 6 6 4 4

dpy-30L26-1 Oregon R 5 6 0 - 0 -
XY hs-tra* 5 10 0 - 3 No
XY hs-tra* 1 6 0 - 6 No

XY hs-tra* – XY fly carrying a single copy of the hs-tra-female plasmid [54]. These flies are females, which contain no eggs, but rather small 
nonfunctional germ cells in their gonads. As no eggs are laid, sperm can be detected in the uterus or in oviducts long after mating. The experiment 
shows that mutant sperm is not stored in the seminal receptacle and that it is immotile when remaining in the uterus or in the oviduct. In contrast, 
motile wildtype sperm is found both in seminal receptacles and in the uterus or oviducts of the analyzed females.
Page 10 of 13
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were allowed to lay eggs for 2 days on normal food or
food supplemented with different heavy metals, and
eclosed flies were counted. Drosophila cultures were kept at
the standard temperature of 25°C.

Targeted gene disruption by homologous recombination
The targeting construct of the dpy-30L1 gene consisted of
a DNA segment with 4.5 kb of upstream and 2.5 kb of
downstream sequences (relative to the transcription unit)
that also included another four genes: CG6443, CG17118,
CG6750 and Nup170. To disrupt the dpy-30L1 gene, the
coding sequence of YFP with its genuine stop codon fol-
lowed by the SV40 polyadenylation/transcription termi-
nation sequence, was inserted in frame immediately
following the ATG start codon. Insertion of YFP resulted
in disruption of dpy-30L1 reading frame as well as a dele-
tion of 17 aa from the coding region; the truncated Dpy-
30L1 sequence was out of frame relative to the ATG-YFP
sequence.

The targeting construct for dpy-30L2 gene contained 3.1 kb
of upstream and 3.6 kb of downstream sequences of the
gene. Also in this case, the coding sequence of YFP with its
stop codon and the SV40 sequence was inserted after the
ATG. Insertion of YFP resulted in the disruption of the dpy-
30L2 reading frame and in this case deletion of 40 aa from
the coding region, generating the following junction:
CCTCAGCCCAACAatgC/CCGGACACCAGTTCCATG,
where atg stands for the initiator triplet and slash indicates
the junction.

Targeting constructs contained an I-SceI cleavage site and
were inserted into the pTARG plasmid that contained a
multiple cloning site, an I-CreI recognition site, a mini-
white gene, two loxP sites, and two FLP recombinase target
sites to release a circular episome for gene targeting [49].
Targeting was performed by a procedure essentially corre-
sponding to that described by [50,51,36]. By screening a
total of 23 000 flies, we recorded five independent events
for dpy-30L1 (i.e., a frequency of one event in 4600 flies)
and two independent events from 6 000 screened flies for
dpy-30L2, respectively (a frequency of one event in 3 000
flies). The reduction efficiency of the two tandem copies
to the mutant was 32% for dpy-30L1 and 20% for dpy-
30L2. Verification of knockout copies was done using PCR
with primers that yielded a different product size in the
case of the mutant copy, namely, 1.4 kb vs. 512 bp (wt)
for dpy-30L1 and 1.1 kb vs. 200 bp (wt) for dpy-30L2.
Sequencing of the fragment confirmed the expected dele-
tion junction: CACATTGCCatgGAGGC/GCTGGCAAG-
GAGCCAAATG (atg, initiator triplet; slash, junction).

Furthermore, S1 nuclease protection assay revealed a com-
plete absence of genuine mRNA from the two mutated
genes.

Genomic rescue
The rescue construct of dpy-30L2 contained 3.5 kb of
upstream sequence and 4.4 kb of downstream sequence
relative to the transcription unit, whereby the start of dpy-
30L2 overlaps with the end (400 bp) of the first exon of
another gene, namely, CG1136.

The cDNA rescue constructs of mammalian orthologs all
contained the 3.5 kb upstream region, the leader of the
dpy-30L2 transcript and 4.4 kb downstream sequence.

Expression pattern determination by fluorescent protein 
reporter
Three different transgenic lines that carried knockout con-
structs (described above) were used to determine the pro-
moter activity of the genes in different tissues of larvae
and flies. Pictures were taken with a Zeiss Axiocam.

Preparation of nuclear extracts for EMSA
Drosophila Schneider S2 cells were transiently transfected
with the respective constructs and collected 72 hours later.
Electrophoretic mobility shift assays (EMSAs) were per-
formed as described by Radtke et al. [17] and Zhang et al.
[18]. Binding reactions were performed by incubating 25
fmoles of [γ-32P]ATP end-labeled, 31-bp-long double
stranded DNA oligonucleotides containing the core MRE
consensus sequence (MRE-s), TGCACAC, with nuclear
extracts prepared according to Schreiber et al. [52]. For
competition experiments, 5 pmoles of unlabeled oligonu-
cleotides were added to the reaction mixture prior to the
addition of the extracts. The MRE-s oligonucleotide used
for EMSA is as follows:

5'-CGAGGGAGCTCTGCACACGGCCCGAAAAGTG-3'
and

3'-TCGAGCTCCCTCGAGACGTGTGCCGGGCTTT-
TCACAGCT-5.

Dpy-30L2 and male sterility phenotype
Constructs H2AvD-GFP, Protamine B-eGFP and Mst77F-
eGFP-eGFP, used to verify loss of histones with concomi-
tant appearance of protamines and Mst77F during nuclear
shaping and chromatin condensation of sperm, are
described in Jayaramaiah Raja and Renkawitz-Pohl [40].
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