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Abstract

Background: Expression of the mouse Delta-like | (DIll) gene in the presomitic mesoderm and in
the caudal halves of somites of the developing embryo is required for the formation of epithelial
somites and for the maintenance of caudal somite identity, respectively. The rostro-caudal polarity
of somites is initiated early on within the presomitic mesoderm in nascent somites. Here we have
investigated the requirement of restricted DI/ expression in caudal somite compartments for the
maintenance of rostro-caudal somite polarity and the morphogenesis of the axial skeleton. We did
this by overexpressing a functional copy of the DIl gene throughout the paraxial mesoderm, in
particular in anterior somite compartments, during somitogenesis in transgenic mice.

Results: Epithelial somites were generated normally and appeared histologically normal in
embryos of two independent DIl over-expressing transgenic lines. Gene expression analyses of
rostro-caudal marker genes suggested that over-expression of DIl without restriction to caudal
compartments was not sufficient to confer caudal identity to rostral somite halves in transgenic
embryos. Nevertheless, DIl over-expression caused dysmorphologies of the axial skeleton, in
particular, in morphological structures that derive from the articular joint forming compartment of
vertebrae. Accordingly, transgenic animals exhibited missing or reduced intervertebral discs,
rostral and caudal articular processes as well as costal heads of ribs. In addition, the midline of the
vertebral column did not develop normally. Transgenic mice had open neural arches and split
vertebral bodies with ectopic pseudo-growth plates. Endochondral bone formation and ossification
in the developing vertebrae were delayed.

Conclusion: The mice overexpressing DIl| exhibit skeletal dysmorphologies that are also evident
in several mutant mice with defects in somite compartmentalisation. The DIl transgenic mice
demonstrate that vertebral dysmorphologies such as bony fusions of vertebrae and midline
vertebral defects can occur without apparent changes in somitic rostro-caudal marker gene
expression. Also, we demonstrate that the over-expression of the DI/ gene in rostral epithelial
somites is not sufficient to confer caudal identity to rostral compartments. Our data suggest that
the restricted DIl expression in caudal epithelial somites may be particularly required for the
proper development of the intervertebral joint forming compartment.
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Background

Segmentation along the rostro-caudal (R/C) axis is a fun-
damental characteristic of vertebrates. It originates during
embryogenesis when the paraxial mesoderm is divided
bilaterally into spheres of epithelial somites, which
enclose a core of mesenchymal cells, the somitocoele cells
[1]. Each somite is divided in a rostral and caudal com-
partment with distinct gene expression and developmen-
tal fate [2-4]. This R/C somite polarity is established early
on in the presomitic mesoderm (PSM) prior to segmenta-
tion [5-7] and is essential for the subsequent resegmenta-
tion of sclerotomes [8,9] and the sequential patterning of
the neural tube [10,11].

Experimental evidence suggests that Mesp2 and Notch sig-
nalling are required for the initiation of R/C somite com-
partmentalisation in nascent somites through induction
and suppression of DII1 expression in caudal and rostral
somite halves, respectively [12-14]. The maintenance of
somite R/C polarity requires the compartmentalised
expression of caudal genes, such as DIl1, Notchl, Paraxis
and Uncx4.1 [15].

Here, we analysed the requirement of restricted DIl1
expression in epithelial somites for the maintenance of R/
C identity following the initial establishment and for the
development of somitocoele cells, in particular. It has
been demonstrated that somitocoele cells contribute to
proximal ribs, the articular surface of intervertebral (zyga-
pophyseal) joints, and the peripheral parts of the interver-
tebral discs (IVDs) [16,17]. In the avian embryo, these
cells constitute a joint forming compartment, the
arthrotome [18,19]. The molecular mechanisms underly-
ing the specification of the arthrotome compartment have
not been studied. Our data demonstrate that the over-
expression of DII1 throughout epithelial somites of trans-
genic mice does not alter somite polarity but affects the
development of intervertebral joints, IVDs and proximal
ribs. This suggests a role of restricted DII1 expression in
caudal epithelial somites for arthrotome development.

Results

Generation of DIl gain-of-function transgenic lines

To direct the expression of DIl1 throughout somites
including rostral somite compartments, a full length DIl1
c¢DNA under the control of the mesodermal specific cis-
regulatory element (msd) was fused to the DII1 minimal
promoter [20] (Fig. 1A). Two independent and stable
transgenic lines (Tg(msd/DIll1)1leg and Tg(msd/
DIll1)2leg) were established by pronuclear injection.
Transgenic mice showed tails with multiple kinks and a
reduction in tail and body length with varying severity
(Fig. 1B, C). Both transgenic lines exhibited comparable
dysmorphologies of the axial skeleton with varying sever-
ity. 25% of the transgenic mice born had an externally vis-
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Mouse line Tg(msd/DIll)leg exhibits a transgenic
external and internal phenotype. (A) Scheme of the
Tg(msd/DIll)leg transgene vector. (B-C) External phenotype
of transgenic mice of (B) line Tg(msd/DIII)lleg and (C) line
Tg(msd/DIll)2leg. Both lines show kinked tails and reduced
axial length. Skeletal preparations of (D) transgenic and (E)
wild-type mice stained with alizarin red and alcian blue.
Although the body length is reduced in transgenic mice com-
pared to wild-type littermates, the number of vertebral ele-
ments from the first cervical to the first sacral vertebral
element remains unchanged.

ible alteration of the phenotype. 18 transgenic animals
without externally visible transgenic phenotypes from
both the transgenic lines were examined for morphologi-
cal changes of the axial skeleton by X-ray imaging (Table
1). Abnormal bony fusions of vertebral bodies were found
in the thoracic, lumbar and tail regions in 9 out of the 18
transgenic animals. Vertebrae with reduced rostro-caudal
length in the thoracic or tail regions were evident in 7 out
of the 18 transgenic mice without externally visible phe-
notype. In 6 out of the 18 animals the number of thoracic
and lumbar vertebrae was altered as compared to wild-
type littermates and in 1 out of the 18 animals the number
of sacral vertebrae was changed. Neural arches were irreg-
ular (lacking the spinous process or without bony fusion
in the midline) in 11 out of the 18 transgenic mice with-
out externally visible phenotype changes. We did not find
dysmorphologies of the vertebral column by X-ray imag-
ing in one of the 18 transgenic animals. Bones of limbs
and skull were not affected in any of the transgenic ani-
mals. The shortening of the vertebral axis in adult trans-
genic mice with severe transgenic phenotype was due to
frequent fusions of vertebral bodies from thoracic to cau-
dal regions and a reduction of the R/C length of vertebrae
caudal to the cervical region (Fig. 1D, E). Thus, the DIil1
overexpression phenotype was characterized by various
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Table I: X-ray analyses of the axial skeleton of 18 adult mice without an external phenotype from Tg(msd/DIll)leg lines.

number of vertebrae

vertebral fusions

reduced vertebrae

cv th lu sa ta cv th lu sa ta cv th lu sa ta
7 13 6 4 >25 - - 5-6 - - - - - - 2-4
7 12 7 4 >25 - - 3-6 4+ +1—4 - 11-12 - - -
7 13 6 4 >25 - - - - - - - - - 2-3
7 13 6 4 >25 - - - - - - - - - -
7 12 7 4 >25 - - - - - - - - - -
7 13 6 4 >25 - 13+ +1; 5-6 - - - - - - -
7 13 6 4 >25 - - - - - - - - - -
7 12 7 5 >25 - - 1-2; 4-5 - - - 11-12 - - -
7 13 6 4 >25 - - - - - - - - - -
7 14 5 4 >25 - - - - - - - - - -
7 13 6 4 >25 - - 34 - - - - - - 2-4
7 12 7 4 >25 - - 4-7 - - - 10—-12 - - -
7 13 6 4 >25 - - 24 - - - - - - -
7 13 6 4 >25 - - - 4+ +] - - - - -
7 13 6 4 >25 - - - - - - - - - -
7 13 6 4 >25 - - - - - - 11-14 - - -
7 13 6 4 >25 - - - - - - - - - -
7 12 7 4 >25 12+ +1 4+ +| - - - - -
7 13 6 4 >25 - - - - - - - - - -

cv, cervical; lu, lumbars; ta, tail; th, thoracic; sa, sacral

Bold values differ from the wild-type phenotype presented in the bottom row. Numbers with a '+' indicate fusions of vertebral bodies to the next
or previous vertebra. "Reduced vertebra" refers to a shortened R/C length of vertebrae.

dysmorphologies of the axial skeleton (analysed in detail
below) with high penetrance but varying severity.

Ectopic DIIl expression throughout somite epithelia

DIl1 expression in wild-type and transgenic mouse
embryos was examined from E7.5 to E10.5 by whole-
mount RNA in situ hybridisation. At E7.5 no differences
between wild-type and transgenic embryos were observed
(Fig. 2A). Ectopic DII1 expression in rostral halves of
recently formed somites was first detected at E8.0 in trans-
genic embryos when somitogenesis is initiated and has
lasted at least until E10.5 (Fig. 2B to 2E). Variations in the
expression level of the transgene were observed but did
neither correlate with one of the transgenic lines nor with
a specific stage of development. Embryos from whole-
mount in situ hybridisations were used for histological
sections to determine DII1 expressing cells. In wild-type
embryos at E10.5, sections revealed significant staining in
cells of the somitic epithelium of caudal somite halves
(Fig. 2D, E). A weak staining was detected in the somito-
coele adjacent to the caudal epithelium. In transgenic
embryos, DIl1 expression was also detected in epithelial
cells but without restriction to caudal somite compart-
ments (Fig. 2D, E). Similar to wild-type embryos a weak
staining was detected in the somitocoele.

Epithelial somites appear normal in DIll over-expressing
embryos

Histological sections of paraffin embedded embryos at
E10.5 revealed no differences between somites of wild-
type and transgenic embryos (Fig. 2F). Nascent somites
developed a normal epithelial layer surrounding the
somitocoele. The size of somites was identical in five age-
matched pairs of transgenic and wild-type embryos
between E9.5 and E10.5 in raster electron microscopic
images (data not shown). Thus, the over-expression of
DIl in the paraxial mesoderm did not affect the early gen-
eration of somites with regards to epithelialisation, size
and histological appearance at least until E10.5.

We analysed the expression of various rostral and caudal
somite marker genes and Notch signalling targets by
whole-mount in situ hybridisation of wild-type and trans-
genic embryos. From E9.5 to E10.5 we found no differ-
ences in the expression levels of DII3, Jag1, Notch1, Notch2,
Lfng, Uncx4.1, Hes5, Mespl, Mesp2, Paraxis (Tcfl5), Pax1,
Pax9, Myf5, Epha4, Myog and Cer1 (Fig. 3A to 3], and data
not shown) [13,21-25]. The R/C marker and Notch path-
way genes Notchl, Notch2, Mespl, Mesp2, Myf5, Uncx4.1,
Pax1, and Pax9 were analysed until E12.5 and did not
reveal differential gene expression between transgenic and
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DIll whole-mount RNA in situ hybridisations and
somite formation. (A) DIl whole mount in situ hybridisa-
tions of E7.5 embryos from crosses of transgenic and wild-
type mice. 24 embryos were analysed for DIl expression
patterns. We did not observe differences in DIl expression
patterns in these embryos. From left to right: view from the
cephalic side, lateral view with the cephalic region to the left
and the primitive streak side to the right, view from the side
of the primitive streak, view onto the node with the primitive
streak on top of the node. Each picture was taken from a dif-
ferent embryo. Ectopic DIlI| expression is detected at (B)
E9.5 and (C) E10.5 throughout somites in transgenic
embryos. Wild-type expression is restricted to caudal somite
halves (asterisks). (D, E) Cryo-sections of in situ hybridised
E10.5 wild-type embryos reveal expression of DI/ in the cau-
dal, inner epithelium. A weak staining may be present in cells
of the caudal somitocoele. The red broken line in the left
panel of (E) indicates the boundary between the somitic epi-
thelium and the inner somitocoele. Transgenic embryos
express DIl in epithelial cells without caudal restriction.
Again, weaker staining is detected in the somitocoele. (F) H/
E stained sections of E10.5 embryos reveal normal epithelial
somites in wild-type and transgenic embryos. ac, anterior
compartment of somite; pc, posterior compartment of
somite; sc, somitocoele; se, somitic epithelium; TG, trans-
genic; WT, wild-type.
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wild-type embryos (Additional file 1). Many of these
genes also have dynamic patterns of expression in the
PSM. In accordance with the normal and regular epithelial
somites observed, we did not find evidence for a change
in phased gene expression in the PSM of transgenic
embryos in comparison to their wild-type littermates. In
particular, the cyclic expression of Lfng in the PSM [26,27]
was not affected in Tg(msd/Dll1)leg embryos. Distinct
phases of Lfng expression were evident in transgenic
embryos at E10.5 (Additional file 2). Homozygous
Tg(msd/DIl1)Ileg mice were generated. Dysmorphologies
of the axial skeleton of these mice were not different from
the dysmorphologies that were identified in heterozygous
transgenic mice. We did, therefore, not undertake a gene
expression analysis of homozygous transgenic embryos.
We cannot exclude that even higher doses of ectopic DIl1
signal in the PSM may lead to a different phenotype with
regards to cycling gene expression and the generation of
R/C polarized epithelial somites.

DIll over-expression affects intervertebral articulations
and vertebrae morphology

Since the contribution of distinct somitic regions to the
elements of the axial skeleton has been rather well
described [1,17,28,29], we examined vertebrae morphol-
ogy with the aim to identify those sclerotome and
arthrotome derived cell types that contribute to mal-
formed skeletal elements in DII1 transgenic mice. In ali-
zarin red and alcian blue stained skeletons of transgenic
mice we observed that structures derived from the somito-
coele were frequently missing (Fig. 4). In particular, costal
heads of ribs were absent or strongly reduced in their
thickness (Fig. 4B, C; asterisks) and IVDs were often miss-
ing resulting in the fusion of vertebral bodies (Fig. 4B, C;
arrows). The articular processes of the neural arches were
either missing in transgenic mice with strong phenotype
(Fig. 4F, black arrowheads) or reduced and malformed
(Fig. 4F, black and white arrows). Despite the dysmor-
phologies of articular processes we did not observe
fusions between adjacent neural arches even in transgenic
animals with severe phenotype (Fig. 4F, H).

Additional dysmorphologies in the axial skeleton of trans-
genic mice included split vertebral bodies with ectopic
pseudo-growth plates (Fig. 4B, C; arrowheads) and open
neural arches with missing spinous processes (Fig. 4E, F;
white arrowheads). Pedicles and laminae of neural arches
were always present and did not fuse between adjacent
vertebrae (Fig. 4H).

Developmental progression of axial dysmorphologies

To further characterise the loss of intervertebral joints and
midline clefts of the axial skeleton, the developmental
progression of this transgenic phenotype was monitored
from E12.5 to the newborn stage using alcian blue and ali-

Page 4 of 12

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:68 http://www.biomedcentral.com/1471-213X/7/68

<

x =

D) o
3
G
-

-

o

=

o

=

=

'Y 24

a o

D =

O X

= —

Q

—

(&) ]

= .|

® 2

O ik "

- &

% >

« ©

Figure 3

Expression of DIll target and cranial and caudal somite marker genes at E10.5 in Tg(msd/Dlll)leg transgenic
and wild-type embryos. Top panels in A to € and panels D, E, I, and ] show right lateral views of in situ hybridised whole
embryos. Lower panels in A to C and panels F, G, and H show dorsal views of the posterior tail regions. The red brackets in
the lower panels of (B) indicate the region of the unsegmented, presomitic mesoderm. The gene transcripts to which the in
situ probes were specific are indicated next to each panel. We did not detected reproducible changes in gene expression pat-
terns between wild-type and transgenic embryos for the indicated genes at EI10.5. TG, transgenic: WT, wild-type.
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Figure 4
Alizarin red and alcian blue stained adult skeletons. Alizarin red and alcian blue stained (A-F) thoracic and (G, H) lum-
bar vertebrae. (B, C) Split vertebrae (arrowhead), fused vertebrae (arrow) and reduced costal heads of ribs (asterisks) com-
pared to (A) wild-type animals are found. (D-F) Dorsal examinations exhibit reduced spinous processes, open neural arches
(white arrowheads) and reduced (black arrowheads) or malformed (black and white arrows) intervertebral joints. (G, H)
Reduced intervertebral joints occur in (H) transgenic mice compared to (G) wild-types but no fused adjacent neural arches
(dashed lines) are observed. iap, inferior articular process; ivd, inter-vertebral disc; la, lamina; p, pedicle; pr, proximal rib; sp,
spinous process; sap, superior articular process; TG, transgenic; tp, transverse process; vb, vertebral body; WT, wild-type.
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zarin red stainings (Fig. 5). Pairwise chondrocyte conden-
sations of the presumptive axial skeleton adjacent to the
notochord appeared normal in transgenic embryos at
E12.5 compared to wild-type littermates (Fig. 5A, B). In
wild-type embryos at E13.5 the pairs of cell condensations
have come into contact at the axial midline. Here they
now form single, rather cylindrical cell condensations that
periodically encircle the notochord (Fig. 5C). In trans-
genic embryos at E13.5 pairs of cartilage condensations
were not yet merged at the axial midline and regions
between successive presumptive vertebrae stained with
alcian blue (arrowhead in Fig. 5D). In wild-type embryos
at E14.5 morphogenesis had proceeded and a regular pat-
tern of strongly alcian blue stained presumptive vertebral
bodies and weaker stained presumptive IVDs was evident
(Fig. 5E). Contrary, in transgenic embryos of the same age,
the developing vertebral column stained uniformly with
alcian blue (Fig. 5F). The extrusion of notochordal cells in
transgenic embryos was incomplete such that the rod of
axial mesoderm in the regions of vertebral bodies was
thicker than in wild-type embryos (Fig. 5E, F). In vertebral
bodies of newborn wild-type mice, alizarin red staining
showed a single, central core of mineralised extracellular
matrix (Fig. 5G). Mineralisation had progressed also in
the early neural arches and morphogenesis had resulted in
the formation of superior and inferior articular processes
forming the intervertebral joints. In contrast, transgenic
newborn mice showed two mineralised cores lateral to the
axial midline in each vertebral body (Fig. 5H). Interverte-
bral discs were missing and adjacent vertebral bodies
fused. Superior and inferior articular processes were miss-
ing in the newborn transgenic mice with severe phenotype
(Fig. 5H). Thus, the loss of IVDs and the failure of scle-
rotome cells to merge at the axial midline was traced back
as early as E13.5 in transgenic embryos.

In addition to altered cell differentiation of presumptive
IVD cells in transgenic mice, we considered the possibility
that the loss of IVD cells might result either from apopto-
sis of presumptive IVD cells or, alternatively, from over-
proliferation of cells of the prospective vertebrae displac-
ing future IVD cells. To analyze these alternatives, we per-
formed Bromodeoxyuridine (BrdU) and TUNEL assays
(BrdU: E12.5 (n = 4), E13.5 (n = 4); TUNEL: E12.5 (n =
8), E13.5 (n =3), E14.5 (n=6), E15.5 (n = 4) and E17.5
(n =3)). No significant differences between wild-type and
transgenic animals were observed in BrdU (Additional file
3) and in TUNEL assays (Additional file 4).

DIlI over-expression affects chondrocyte hypertrophy and
endochondral bone formation in vertebrae

We performed Safranin O stainings on histological sec-
tions of paraffin embedded embryos to investigate carti-
lage development in prospective vertebral bodies (Fig. 6).
These stainings revealed fewer hypertrophic chondrocytes

http://www.biomedcentral.com/1471-213X/7/68

Ai

E13.5 E12.5

E14.5

newborn

Figure 5

Developmental progression of the transgenic pheno-
type in the vertebral column. (A-H) Alizarin red and
alcian blue stained wild-type and transgenic lumbar verte-
brae, ventral view. (A, B) EI2.5 reveals no differences
between wild-type and transgenic embryos. (D) At EI3.5
presumptive IVDs stain with alcian blue in transgenic
embryos (arrowhead) but not in (C) wild-types. At E14.5 (E)
vertebrae of wild-type embryos are separated by weaker
stained IVDs (arrowhead). The notochord is extruded to the
nucleus pulposus. (F) Transgenic vertebrae are shortened,
stain uniformly with alcian blue, IVDs are missing and the
notochord remains as a rod like structure. Newborn trans-
genic mice (H) exhibit two lateral centres of ossification
compared to one centre in wild-type mice (G). ivd, interver-
tebral disc; L, lumbar vertebra; nc, notochord; np, nucleus
pulposus; s, somite; T, thoracic vertebra; TG, transgenic
mouse; vb, vertebral body; WT, wild-type.
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Figure 6

Safranin O stainings for cartilage of mid-sagittal sec-
tions through the presumptive vertebrae of trans-
genic and wild-type embryos. (A) In wild-type embryos
at E16.5 hypertrophic chondrocytes are observed in the cen-
tre of the vertebrae (arrow). (B) The number of chondro-
cytes undergoing hypertrophic differentiation is reduced in
transgenic embryos (arrow). At EI17.5 (C) chondrocytes of
wild-type embryos lose the cartilage matrix and vascularisa-
tion and invasion of osteocytes starts (arrow). The noto-
chord is extruded from the vertebrae. (D) In transgenic
vertebrae of the same age fewer cells are hypertrophic and
are dorsally displaced (arrow). Ossification is delayed and
notochord extrusion is incomplete. Scale bar: 200 pm. Aster-
isks: nucleus pulposus.

in vertebral bodies of transgenic rather than of wild-type
embryos (E16.5) (Fig. 6A, B; arrows). Ossification had
progressed normally at E17.5 in wild-type animals but
was delayed in transgenic embryos (Fig. 6C, D; arrows)
and hypertrophic chondrocytes were dorsally displaced
(Fig. 6D; arrow). RNA in situ hybridisations to detect
Col10al gene expression, which is a marker for cells
undergoing endochondral ossification [30,31], also
revealed fewer hypertrophic cells (data not shown).

Discussion

Mouse DII1 expression in the PSM and caudal somite
halves, is necessary for the formation of epithelial somites
and maintenance of caudal somite identity [32,33]. We
established two transgenic mouse lines (Tg(msd/
DIl1)leg) over-expressing DIl1 in the paraxial mesoderm
including rostral somite compartments under the control
of the msd cis-regulatory element [34,35]. We investigated
the role of restricted, compartmentalised DII1 expression
for the maintenance of R/C somite identity and the mor-
phogenesis of the axial skeleton. Tg(msd/Dll1)leg ani-
mals were viable and fertile. They developed normal
epithelial somites and gene expression analysis on R/C

http://www.biomedcentral.com/1471-213X/7/68

marker genes revealed, that the uniform over-expression
of DII1 throughout the somites was not sufficient to con-
fer caudal compartment identity to rostral somite halves.
Nevertheless transgenic animals had at least three distinct
phenotypic alterations of the vertebral column: (i)
arthrotome related dysmorphologies, (ii) midline defects
and (iii) a failure in chondrocyte maturation. In the fol-
lowing, we discuss the potential role of DIl1 over-expres-
sion for these phenotypic traits and the requirement of
caudally restricted DIl1 expression for intervertebral joint
formation.

Somite formation and rostro-caudal polarity are not
affected by DIl over-expression

DII1 deficient embryos (DII1tm1Gos/tmlGos) showed severe
patterning defects in the paraxial mesoderm and died
before E12.5 [33]. In these mutants, the R/C pattern of
somites was not established and maintained as in wild-
type embryos and nascent somites did not epithelialise
normally. The requirement of DIi1 for the formation of
the axial skeleton was also studied in a mouse model
expressing a truncated and dominant-negative version of
DIli1 (DIil14n) under the control of the msd cis-regulatory
element (Tg(msd/DI114")) [35]. In the axial skeleton such
transgenic mice exhibited fusions of laminae of neural
arches, reduction or loss of pedicles, split vertebral bodies
as well as rostral homeotic transformations at the cervical-
thoracic transition. Gene expression analyses revealed a
reduction of Uncx4.1 expression in caudal compartments
and an expansion of the expression domain of the rostral
somite marker gene Thx18. These data suggested a partial
loss of caudal somite compartment characteristics in
Tg(msd/DIl14") animals. Despite the fact that Tg(msd/
DIl1)leg animals exhibited dysmorphologies of the axial
skeleton, DII1 transgenic embryos did not display changes
in R/C marker gene expression.

The midline defects in the axial skeleton, the vertebral
fusions and dysmorphologies of ribs observed in Tg(msd/
Dll1)leg animals were reminiscent of somitogenesis
related phenotypes observed in other mutant mice. All of
these mutant animals are, however, characterised by alter-
ations of R/C marker gene expression. For example, the
bilateral centres of ossification in the vertebral bodies of
Paraxis [36-39], DII3 [40-42] and Psenl [14,25,43,44]
deficient mice as well as missing spinous processes in
Uncx4.1-/- [23,24] and DII3 deficient skeletons resemble
the midline defects found in the DII1 over-expressing
mice. Proximal rib malformations and/or rib fusions
occur consistently in Paraxis, Psen1, DII3 and Uncx4.1 as
well as in the DIl over-expressing transgenic mice.
Fusions of vertebral bodies or precursors along the R/C
axis and the loss of IVDs as described for Tg(msd/DI11)leg
animals were also found in Paraxis, Psenl and occasion-
ally in Uncx4.1 deficient mice. Our analysis of the
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Tg(msd/DIl1)Ieg mice clearly shows that these pheno-
types can occur in mice with apparently normal R/C
polarity of somites. The fact that rostral and caudal scle-
rotome derived structures were not missing in the
Tg(msd/DIl1)leg mice additionally supports the hypo-
thesis that R/C somite polarity is not affected and suggests
an alternative origin of the axial dysmorphologies. A
potential reason for the finding that transgenic DII1 over-
expression does not affect the polarity of somites maybe
that the endogenous expression of DII3 inhibts the ectopic
activation of Notch signalling in anterior somite compart-
ments [45].

DIlIl over-expression might affect arthrotome cell
differentiation

In addition to midline defects, we observe the loss or
reduction of IVDs, articular (zygapophyseal) joints and
proximal ribs in the axial skeletons of Tg(msd/DIl1)leg
animals. These phenotypic characteristics are present
despite normal epithelialisation and R/C polarity in trans-
genic mice. One possible explanation for the transgenic
phenotype affecting the intervertebral joints may be that
the loss of restricted DIl1 expression results in a late defect
in resegmentation of sclerotomal compartments. Alterna-
tively, we noted that all the vertebral structures (IVDs,
articular joints, and proximal ribs) that are affected in Dil1
over-expressing mice are located in a central position of
the vertebral motion segment. Injection of single somite
cells with fluorescent dye [46] and homotopical grafting
experiments of quail and chicken somitocoele cells
[16,17] had previously suggested that somitocoele cells
form a distinct somitic compartment, the arthrotome.
During later development these cells are located at a cen-
tral position of the vertebral motion segment forming ver-
tebral joints, IVDs and the proximal ribs [18].
Accordingly, the microsurgical removal of somitocoele
cells from chick epithelial somites and preventing the epi-
thelial cells from contributing to the somitocoele cell pop-
ulation, resulted in the loss of IVDs, fusion of vertebral
bodies and the absence of intervertebral joints [19]. These
analyses on the immediate fate of somitocoele cells have
consistently been performed in the avian system [17,46-
48]. A related study in mice showed Pax1 expression in
somitocoele cells and the ventromedial sclerotome. Mice
deficient for the Pax1 gene lack derivatives of the ventro-
medial sclerotome or have reduced IVDs, proximal ribs
and articular processes [49]. Considering the experimen-
tal evidence on the fate of somitocoele cells in the avian
embryo and of Pax1 expressing cells in mice, we propose
the hypothesis that the observed reduction or loss of cen-
tral structures of the vertebral motion segment may be due
to a failure in the development or specification of the
arthrotome in Tg(msd/Dll1)leg transgenic embryos.
However, we did not observe any changes in the expres-
sion of Paxl in transgenic embryos. This observation

http://www.biomedcentral.com/1471-213X/7/68

together with the normal histological appearance of
somites suggests that the DII1 over-expression throughout
somites and the PSM does not affect the initial formation
of somitocoele cells. Instead we consider the possibility
that the over-expression of DII1 in epithelia of somites
might affect the contribution of epithelial cells to the
somitocoele [19,46].

DIIl over-expression negatively regulates chondrocyte
differentiation

Tg(msd/DIl1)Ieg animals exhibited a delay in chondro-
cyte hypertrophy and endochondral bone formation in
presumptive vertebral bodies. Mid-sagittal as well as lat-
eral-sagittal sections through the vertebral column of
transgenic embryos at E16.5 and E17.5 displayed less
hypertophic chondrocytes that undergo endochondral
ossification than in wild-type embryos (Fig. 6B, D). Previ-
ous lacZ reporter gene analyses in DII1+/tm1Gos gnimals [33]
revealed no DII1 expression in presumptive vertebral bod-
ies, IVDs or the notochord [34]. We therefore assume that
chondrocyte maturation was inhibited in transgenic
embryos due to the earlier sclerotomal over-expression of
DIl1. These observations essentially confirm previous
studies that have revealed that Delta/Notch signalling acts
as a negative regulator for the transition from pre-hyper-
trophic to hypertrophic chondrocytes [50-52].

Conclusion

In conclusion, the over-expression of the DII1 gene in ros-
tral epithelial somites was not sufficient to confer caudal
somite identity to rostral compartments in transgenic
embryos. It had been suggested previously that the com-
partmentalised expression of DII1 later in epithelial
somites might be necessary for the maintenance of seg-
ment boundaries. However, it has been unclear so far,
through which biological process DII1 could function to
maintain segment boundaries. Our data from transgenic
mice over-expressing DII1 suggest that the restricted DII1
expression in caudal epithelial somites may be required
for the proper development of the arthrotome compart-
ment. The failure of arthrotome development in Tg(msd/
DIl1)leg mice leads to distinct dysmorphologies of the
central region of the vertebral motion segment. The mech-
anism through which DII1 acts to specify cells of the
arthrotome still needs to be elucidated.

Methods

Cloning of the Tg(msdIDIll)leg construct and generation
of two transgenic mouse lines

The 1.4 kb msd - element was introduced upstream the
DIl1 minimal promoter as previously described [20,35],
followed by a full length DIl1 cDNA cloned in frame with
the start codon and the SV40 and PGK polyadenylation
signals [32]. The construct was isolated as fragment and
microinjected into pronuclei of hybrid CByB6 fertilised
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eggs according to standard procedures. Two independent
transgenic lines (Tg(msd/DIl1)1leg and Tg(msd/
DIl1)2leg) were established and maintained on a C3H
background.

Genotyping of transgenic mice

Genomic DNA from yolk sacs or tail biopsies was used for
PCR genotyping. With the primers 5'-CGATACCCAGGTT-
GTCTCC-3' (exon 6) and 5'-AGCACACTCATCTACTTIC-
CAG-3' (exon 7) a 347 bp and a 225 bp PCR product for
the wild-type and the transgene were amplified, respec-
tively.

Skeletal preparations, safranin O and hematoxylin and
eosin (HIE) staining

Skeletal preparations of embryos, newborn and adult
mice were performed by alizarin red and alcian blue stain-
ing according to standard procedures [53]. Safranin O
staining on paraffin embedded sections was performed as
described previously [54]. H/E staining was performed
according to standard procedures [55].

Whole-mount in situ hybridisation

Whole-mount in situ hybridisation was performed
according to standard procedures [56,57]. Embryos were
fixed, dehydrated by ascending methanol series, bleached
in 14% H,0, for one hour and stored in 100% methanol
at -20°C. Antisense riboprobes were generated using the
DIG-RNA labelling system (Roche, Germany) and hybrid-
isation was performed at 68°C over night. BM Purple AP
substrate (Roche, Germany) was used for colour develop-
ment at 4°C for 24 - 48 hours. After staining was com-
plete embryos were post fixed in 4% PFA. For sections
embryos were cryo-protected in 30% sucrose in PBS, OCT
embedded, cryo-sectioned at 35 pm and mounted. The
following probes were used: DIl1 [32]; DI3 [58]; Jagl
[59]; Notchl [60]; Notch2 |61]; Lfng [62]; Uncx4.1 [63];
Hes5 [64]; paraxis [37]; Mesp2 [25]; Pax1 [65]; Pax9 [66];
Myf5 ; Mespl [67]; Epha4; Myog; mCer; Col10al.

Proliferation (BrdU) and apoptosis (TUNEL) assays

Cell proliferation was analysed by detection of incorpo-
rated BrdU (Sigma, Germany) in mouse embryos of day
12.5 and 13.5 (E12.5 and E13.5) according to published
protocols [24,68]. TUNEL assay was performed as
described by Kingsley-Kallesen [69].
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Additional material

Additional File 1

Whole mount in situ hybridisations of E12.5 wild-type (wt) and
transgenic (tg) mouse embryos. In each panel a representative wt
embryo is shown on the left and a transgenic embryo is shown on the right.
The upper photograph in each panel shows a whole embryo either in a ven-
tral (A) or lateral view (B, C, and D). The photographs below show
details from the pre-somitic mesoderm and several pairs of somites; poste-
rior is to the left in the lower photographs. Hybridisation with a probe for
Uncx4.1 (A), Pax9 (B), Pax1 (C), and Notchl mRNA (D).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-68-S1.pdf]

Additional File 2

Three phases of cyclic Lfng expression in the paraxial mesoderm of
Tg(msd/DIl1)Ieg embryos at E10.5. (A) After somite formation a weak
expression domain is initiated in the tail bud and the recently formed
somite, strong expression is detected in the rostral PSM. (B) The strong
expression domain is expanded in the PSM and (C) Lfng is expressed in
the whole PSM, a weaker domain marks the line of the next somite for-
mation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-68-52.pdf]

Additional File 3

BrdU assay in frontal (A and C) and mid-sagittal sections (B and D)
of E12.5 and E13.5 wild-type (wt, left) and transgenic (tg, right)
embryos. (A) shows frontal sections at the level of the notochord (nt)
through a wt (left) and transgenic (right) embryo at E12.5. Presumptive
regions of intervertebral discs (ivd) and the region of the sclerotome (scl)
can be histologically distinguished. There is no difference in the number
of BrdU labelled cells if regions of ivd and scl are compared. The sectioned
transgenic embryo (right) shown in panel (B) has a severe phenotype:
There is no clear metameric sequence of ivd and scl regions. At E13.5 (C
and D) the formation of the nucleus pulposus (np) initiates. Also at this
stage there is no change in the number of BrdU labelled cells if scl and ivd
are compared in wt and tg embryos. Numbers above scale bars indicate the
size in um.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-

213X-7-68-53.pdf]
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Additional File 4

TUNEL assay and DAPI stainings in sections of E12.5 (A - E), E13.5
(F - K), and E15.5 (L - Q) wild-type (wt) and transgenic (tg)
embryos. Panels (A — D) show frontal sections at the level of the noto-
chord in the thoracic region. Notochord (nt), sclerotome (scl), and pre-
sumptive intervertebral regions (ivd) are histologically recognizable in
DAPI stainings (left panels). Based on TUNEL assays (right panels, B
and D) no indication of increased DNA fragmentation was evident in any
particular region of the section. Panel (E) shows a positive control that
was DNase treated. Sagittal sections through the lumbar (F - I) and sac-
ral (], K) regions did not reveal increased fluorescence in particular
regions in the TUNEL assay in wt (F and G) and transgenic (H - K)
embryos at E13.5. Panels (L — O) show sagittal sections through the tho-
racic regions of a wt (L, M) and a transgenic (N, O) E15.5 embryo. The
presumptive vertebral bodies and a future ivd are discernible in the DAPI
stainings. No increased fluorescence was detected in these regions in the
TUNEL assay. Panel (Q) shows a DNase treated positive control for the
TUNEL assay and panel (P) is a DAPI staining of the same section.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-68-84.pdf]
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