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Abstract

Background: Heart anomalies are the most frequently observed among all human congenital
defects. As with the situation for neural tube defects (NTDs), it has been demonstrated that
women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for
delivering offspring with conotruncal heart defects [1-3]. Cellular folate transport is mediated by a
receptor or binding protein and by an anionic transporter protein system. Defective function of the
Folrl (also known as Folbp I; homologue of human FR) gene in mice results in inadequate transport,
accumulation, or metabolism of folate during cardiovascular morphogenesis.

Results: We have observed cardiovascular abnormalities including outflow tract and aortic arch
arterial defects in genetically compromised Folrl knockout mice. In order to investigate the
molecular mechanisms underlying the failure to complete development of outflow tract and aortic
arch arteries in the Folrl knockout mouse model, we examined tissue-specific gene expression
difference between Folr! nullizygous embryos and morphologically normal heterozygous embryos
during early cardiac development (l4-somite stage), heart tube looping (28-somite stage), and
outflow track septation (38-somite stage). Microarray analysis was performed as a primary
screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis
highlighted the following ontology groups: cell migration, cell motility and localization of cells,
structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and
mRNA processing. This study provided preliminary data and suggested potential candidate genes
for further description and investigation.

Conclusion: The results suggested that Folr/ gene ablation and abnormal folate homeostasis
altered gene expression in developing heart and conotruncal tissues. These changes affected
normal cytoskeleton structures, cell migration and motility as well as cellular redox status, which
may contribute to cardiovascular abnormalities in mouse embryos lacking Folr| gene activity.
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Background

Heart defects account for nearly one-third of all major
congenital anomalies diagnosed in fetuses and infants [4],
but the etiologies of heart anomalies are largely unknown.
Most heart anomalies are suspected of being etiologically
and pathogeneticly heterogeneous [5]. Conotruncal
defects are a group of defects which result from abnormal
aortico-pulmonary septation of the outflow tract of the
heart, a process that has been shown to have a major
mesectodermal cell contribution [6-10]. Despite this
understanding of the pathogenesis of conotruncal defects,
little is actually known about the etiology of these heart
defects.

Shaw and co-workers [1] observed a 30% risk reduction
for conotruncal defects among the offspring of women
who used multivitamins containing folic acid in early
pregnancy. The risk reduction for the group was driven by
a larger risk reduction for the Tetralogy of Fallot. Early
studies found that folate deficiency during gestation were
associated with multiple congenital abnormalities in rats,
including those heart anomalies similar to conotruncal
defects [11,12]. Additional evidence in support of the pro-
tective effect of folic acid comes from reports of an associ-
ation between maternal anticonvulsant use and heart
defects [13]. Most of the frontline anticonvulsants are
known to be folate antagonists [14], and reduction in the
bioavailability of folate to the fetus has been proposed as
one of their potential underlying teratogenic mechanisms
of action [15,16].

Several lines of evidence support an association between
maternal use of folic acid in early pregnancy and a
reduced risk for delivering offspring with conotruncal
defects. However, the underlying process by which folic
acid facilitates a reduction in risk is unknown and remains
an area of considerable scientific speculation. Given the
overall evidence that has emerged from the studies of a
closely related set of congenital defects, the induction of
conotruncal defects also is unlikely to be explained by a
simple maternal vitamin deficiency. The evidence accu-
mulated in recent years suggested that elevated homo-
cysteine (Hcy) levels may be a major teratogenic
mechanism underlying folic acid deficiency [17-19]. We
hypothesize that a fetal deficiency in transport and/or
metabolism of folate puts fetuses at risk for conotruncal
defects, and that maternal folic acid supplementation
helps overcome this deficiency. These defects are hypoth-
esized to be the result of a direct effect of folate insuffi-
ciency on the growth and differentiation of embryonic
cells. In addition, neural crest cells that contribute to
conotruncal septation are rapidly dividing cells that
require adequate intracellular folate supply that can best
be facilitated by a well-regulated folate uptake pathway.
We recently characterized the cardiovascular defects in
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Folr1 knockout mouse model [20]. Cardiac outflow tract
defects, including double outflow right ventricle (DORV),
rightward persistent truncus arteriosus (PTA) and transpo-
sition of great arteries (TGA) have been observed in pre-
term nullizygotes rescued from lethality by low dose
maternal folate supplementation. We also observed aortic
arch arteries defects such as right aorta arch, aorta ring/
double aorta and interrupted aorta arch in these fetuses
[20].

We hypothesized that Folrl gene ablation will alter the
expression of other genes which may be important for
normal cardiovascular development. These gene expres-
sion changes may affect biological functions of the devel-
oping heart, and ultimately result in one of several defects
we observed in Folrl mutant mice. In order to investigate
the mechanisms of cardiovascular abnormalities induced
by knocking out Folrl gene, we designed experiments in
which Folrl heterozygous female were crossed to Folrl
nullizygous male mice. Pregnant dams were given low
dose of s-folinic acid in order to rescue the nullizygote's
embryonic lethality. We subsequently collected heart and
conotruncal tissues, extracted total RNA and studied gene
expression within isolated regions of the target tissues. We
investigated the gene expression changes induced by con-
ventional Folrl gene ablation in the cardiac tissue in order
to discover patterns that might shed light on the mecha-
nisms of how Folrl gene and folate status regulate early
cardiac development.

Results

Embryos collected from s-folinic acid supplemented dams
(Table 1)

The average somite number of nullizygous embryos col-
lected at E9.5 was 12.8 (+ 3.3). Their heterozygous litter-
mates developed faster and had an average somite
number of 20.2 (+ 5.9). Average somite numbers for
embryos collected at E10.5 were 28.3 (+ 2.7) for the nul-
lizygous and 34.9 (+ 3.3) for the heterozygous embryos.
The somite number differences between mutants and het-
erozygotes at these two time points were statistically sig-
nificant (Student's T-test, p < 0.001); therefore we were
unable to obtain somite matched littermate controls. In
order to match somites, we decided to collect hetero-
zygous embryos at earlier time points (E9.0 and E10.0).
Heterozygous embryos averaged 12.5 (+ 2.7) somites at
E9.0, and 28.1 (+ 0.9) somites at E10.0, which matched
the nullizygous embryos collected at E9.5 and E10.5,
respectively. Knockout embryos collected at E11.5 also
showed developmental delay; however, the somite
number did not differ significantly from their hetero-
zygous littermates (Student's T-test, p > 0.05) and we
managed to collect comparable null and heterozygous
embryos (Table 1).
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Table I: Folrl nullizygous and heterozygous embryos collected from s-folinic acid supplemented dams

Gestational Day (day:hour) Dams (N) Genotype Embryos (n) Somites (mean * SD) P value (Student's T-test)

9:00 3 -/- Il 57+27 <0.001
+/- 17 125+£27

9:12 5 -/- 20 128 £3.3 <0.001
+/- 16 20.2+59

10:00 3 -/- 9 19.1 £ 3.1 <0.001
+/- 12 28.1 £ 0.9

10:12 5 -/- 16 283 +2.7 <0.001
+/- 12 349 +33

11:12 3 -/- 13 33664 =0.07
+/- 12 382+54

Microarray data

Microarray analyses were performed as preliminary
screening for candidate genes. The original data from this
study have been deposited in NCBI's Gene Expression
Omnibus (GEO) under GEO Series Accession No.
GSE3487. At the 14 somite stage, out of approximately
20,000 genes, 23 genes were down-regulated and 18 were
up-regulated in cardiac tissue. Among these genes, six of
the down-regulated genes and five of the up-regulated
genes are unknown. At the 28 somite stage, 37 genes were
down-regulated and 26 were up-regulated in cardiac tis-
sue, with 15 being functionally unknown. At the 38
somite stage, out of approximately 10,500 genes, 27 genes
were down-regulated and 16 genes were up-regulated in
the conotruncal tissue, with 12 of them being functionally
unknown. Analysis indicated that the Cck gene, encoding
cholecystokinin, was down-regulated 1.6 fold in cardiac
tissue from a 14 somite fetus, and decreased still further
(2.8 fold) in tissue from older (28 somite) fetuses. This is
the only gene showing differential expression in multiple
time points. We further conducted gene ontology (GO)
analysis with the use of GOTM [21]. The GO analysis pro-
duced clusters of statistically (p < 0.01) enriched differen-
tially expressed genes according to their ontology in three
categories: biological processes, cellular component and
molecular function. The ontology groups enriched at each
developmental stage are shown in Table 2.

Quantitative real-time PCR (qRT-PCR)

We performed quantitative RT-PCR using TagMan Gene
Expression Assays (Applied Biosystems, Foster City, CA)
on eight candidate genes suggested by the preliminary
microarray data. The candidate genes we studied included
Mylpf, Cck, Cfill and Nkd2 (14-somite stage), Cck and
Hand1l (28-somite stage), Fbin5, Capnsl and Canx genes
(38-somite stage). Tables 3 summarized the comparison
of gene expression data obtained from quantitative RT-
PCR and microarray. For each gene tested, the qRT-PCR
result is consistent with the microarray result; Mylpf, Cck,
Cfl1 and Fbiln5 were down-regulated, while Nkd2, Hand1,
Capns1 and Canx were up-regulated in nullizygous tissue

samples compared to control samples. The fold changes
obtained from microarray data was also comparable to
those from qRT-PCR assays. However, qRT-PCR changes
in Nkd2 and Fbin5 were not statistically significant (P >
0.05). We subsequently expanded the analysis of Cfl1, Cck
and Handl genes to all three stages. qRT-PCR results
showed that Cfl1 was only down-regulated in 14-somite
stage (p = 0.002) but not in 28-somite heart or 38-somite
conotruncal tissue (p > 0.05). Cck was about 2 fold down-
regulated (p = 0.004) in 14-somite heart, 4.5 fold down-
regulated in 28-somite heart (p = 0.005), and 1.7 fold
down-regulated in 38-somite conotruncal tissue, however
the change is not statistically significant (p = 0.30) (Table
3). Hand1 is unchanged at 14-somite stage, 2 fold up-reg-
ulated in 28-somite stage (p = 0.002) heart, but down-reg-

Table 2: Gene Enrichment analysis of developing heart and
outflow track in FolRI--embryos (P < 0.01)

Ratio of
Enrichment (R)

Gene Ontology category

14-somites heart

Cell migration 9.09
Cell motility 7.69
Localization of cells 7.69
mRNA processing 9.38
RNA binding 5.26
28-somites heart
Structural Constituent of cytoskeleton 9.68
Translation regulation activity 7.32
Translation factor activity/nucleic acid binding 7.69
mRNA processing 5.8
RNA polymerase transcription factor activity 14.29
38-somites conotruncal tissue
Oxidoreductase activity 3.73
Protein folding 7.14
Intracellular membrane-bound organelle 9.64
Nuclear membrane 21.43
All changed genes
Cell-cell adhesion 5.13
mRNA processing 5.74
Intracellular membrane-bound organelle 3261
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Table 3: Gene expression changes in Folrl-- heart and conotruncal tissue-qRT-PCR

Gene Gene Name Ontology qRT-PCR
symbol
| 4-somite 28-somite 38-somite
Fold change *p value Fold change *p value Fold change *p value
Mylpf myosin light chain, cytoskeleton organization -2.8 0.006 --- --- --- ---
phosphorylatable, fast skeletal and biogenesis
muscle
cfll cofilin 1, non-muscle Neural crest cell migration -1.7 0.002 -1 0.3 -1 0.24
Nkd2 naked cuticle 2 homolog Wht signaling pathway 1.6 0.449 - - - -
(Drosophila)
Cck cholecystokinin Cell migration -1.9 0.004 -4.5 0.005 -1.7 0.30
Hand| Heart and neural crest transcription regulation, 1.0 0.444 +2.0 0.002 -1.8 0.07
derivatives expressed heart development,
transcript | angiogenesis
Fbin5 Fibulin-5 Cell-cell adhesion - --- --- --- -7.1 0.098
Capns| Calpain, small subunit | calpain activity - --- --- --- +7.4 0.001
(Capnsl)
Canx Calnexin Protein folding - - --- --- +7.6 0.036

*One-side T-test

ulated in 38-somite conotruncal tissue, however, the
change is not statistically significant (p = 0.07).

Discussion

Our study was designed to investigate differentially
expressed genes related to the heart and conotruncal phe-
notypes in response to conventional knockout of mouse
Folr1 gene. We used "het @ x null 3" matings to generate
heterozygous and nullizygous progeny. It has been estab-
lished that Folr1l heterozygotes do not exhibit any mor-
phological phenotypes, although their biochemical status
may differ from wild type due to the loss of one Folrl
allele [22]. The nullizygous males used in the mating were
born from colonies maintained on a high folate diet,
therefore these mutant animals were completely rescued
from Folrl ablation related morphological phenotypes.
The heterozygous embryos served as controls in the mic-
orarray studies under the same maternal supplementation
regime as the nullizygotes. Embryos used for study were
matched by somite number which represents gross devel-
opmental progress. We chose not to use littermate
matches, since the nullizygotes under the folate supple-
mentation regime we used were significantly delayed
compared to heterozygous littermates (Table 1).

Early embryonic heart development (E9.0 to E11.5)
undergoes a series of highly complex, coordinated and
rapid morphogenesis processes. In Folrl mutant embryos
provided in utero with low dose of maternal folate supple-
mentation (6.25 mg/kg/day s-folinic acid), abnormal
heart looping including inverted looping, midline loop-
ing, and shorterned outflow tract was observed as early as
E10.0 in previous experiments. Abnormal looping in

these animals contributes to the mis-alignment of outflow
tract and some phenotypes seen in the pre-term human
fetuses. Our experiments took snap shots of the gene
expression patterns at two different stages (14-somite and
28-somite) in heart tissues, and later in more restricted
conotruncal tissues (38-somite). The data suggests that
changes in gene expression are responsible, at least in part,
for the observed cardiac malformations.

It is generally hypothesized that multiple genes and path-
ways are responsible for complex birth defects. Gene
expression alterations in the embryonic tissues ultimately
contributed to these malformations. Our study produced
lists of up and down regulated genes, and these genes were
classified by their gene ontologies. GO analysis of our
microarray data highlighted several ontology groups
which were most significantly enriched in Folrl mutant
heart and conotruncal tissues (Table 2, Figures 1, 2, 3, 4).
We further investigated eight candidate genes selected
based on the microarray data.

Embryonic heart development is an extremely complex
process requiring highly organized and coordinated cell
movement. The actin cytoskeleton is intimately involved
in regulating cell motility, membrane trafficking, cell
polarity and signal transduction. During early heart devel-
opment in Folrl mutant embryos, the expression of a
number of structural cytoskeleton genes were altered.
These included Actb, encoding the "house-keeping" cyto-
plasmic beta-actin (down-regulated in 28-somite heart tis-
sue), Arpc5, encoding Actin related protein 2/3 complex
subunit 5 (down-regulated in 28-somite heart tissue) and
Actl7a, encoding Actin-like 7a (up-regulated in 28-somite
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DAG view of Gene ontology Analysis, 14-somite heart tissue in Folrl mutant vs control. Red letters indicated

enriched ontology groups. DAG: Directed Acyclic Graph.

heart tissue). Mylpf (phosphorylatable myosin light
chain, fast skeleton muscle, previously named as "myosin
light chain 2a, Mlc2a"), was found to be down-regulated
in 14-somite tubular heart tissue. Mylpf expression in
tubular heart exhibits a gradient, while in later stages,
Mylpf is expressed at high levels in the outflow tract, atria,
and inflow tract [23]. Cholecystokinin, encoded by Cck, is
known as a brain/gut peptide, whose functional roles
remain unclear. There is evidence showing that Cck may
involve in development of neurons [24] by modulating
cell migration. We observed down regulation of Cck in
both 14-somite and 28-somite hearts. Further investiga-
tion of Cck and cardiac development is warranted.

Actin-based movement results from rapid turnover of
active filaments which requires Arp2/3 complex, actin
depolymerizing factor and capping proteins [25]. Cfl1,
encoding non-muscle cofilin (n-cofilin), was down-regu-
lated in 14-somite heart tissue. n-cofilin is an actin-depo-
lymerizing factor and 1is essential for cytokinesis,
endocytosis, and in the development of all embryonic tis-
sues. Cfl1 knockout mice exhibit failure of neural tube clo-
sure at E10.5 and die in utero. In these embryos, the
delamination and migration of neural crest cell is ineffi-
cient. In vitro migration assay showed no signs of cell

polarization, limited traveling distance and lack of F-actin
structures (fibers, bundles or cortical F-actins) [26].
Reduced Cfll expression, together with later reduced
expression of Actb and Arpc5 in Folrl mutant heart tissues
could contribute to abnormal actin dynamic, cell polarity
and cell migration in these embryos.

The expression changes in the aforementioned cytoskele-
tal related genes in cardiac tissues of Folr]l knockout mice
during different stages of cardiac development support
the hypothesis of possible impairment of cytoskeletal
structure and cell motility of neural crest, myocardial and
endocardial cells. Another study found that genes
involved in the semaphorin/plexin signaling pathway
which regulates cofilin and actin cytoskeleton [27] were
differentially expressed in E12.5 heart tissue from Folrl
knockout mice (Gelineau-van Waes et al., Submitted).
Such altered gene expression may subsequently contrib-
ute to the ultimate cardiac phenotypes observed in the
mutant mice.

Calpain is a Ca2+-regulated cytosolic cysteine protease that
exists in two major isoforms and mediates crucial cellular
functions including rearrangement of cytoskeletal pro-
teins and protein cleavage to activate various receptors
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and pro-enzymes. Calpain protein consist of a large activ-
ity subunit and a small regulatory subunit. Calpain dys-
regulation results in a loss of Ca2?* homeostasis and
intracellular calpain activation, leading to degradation of
a large family of calpain-specific substrates and physiolog-
ically induces tissue damage. Cellular proteins including
cytoskeletal proteins, membrane receptors (e.g. epidermal
growth factor (EGF) and G proteins), signaling molecules
(e.g. integrin, protein kinase C and inositol (1,4,5)-tri-
sphosphate kinase), and transcriptional factors (e.g. c-
FOS and ¢-JUN) have all been identified as potential cal-
pain substrates [28]. Calpain related pathology seems to
be of enormous diversity [29]. Calpain is known to mod-
ulate actin cytoskeleton and cell migration by regulating
activities of signaling molecules including integrin, focal
adhesion kinase, talin, protein kinase C and the Rho fam-
ily of GTPase [30]. The Capnsl gene encodes the small
subunit of p- and m-calpains, which is known to be essen-
tial for embryonic development [31]. Genetic ablation of
the calpain small subunit exhibited abnormal neural crest
cell migration [32]. We observed a significant increase in
Capns1 expression in Folrl mutant conotruncal tissues at
the 38-somite stage. At this stage, the outflow tract is being

remodeled to form endocardium cushions and develop
into the aorta and pulmonary artery. The observed up-reg-
ulation of Capns1 suggests a possible dysregulation of cal-
pain activity and the loss of Ca2* homeostasis. It remains
unclear which genes are serving as down-stream targets of
calpain in our mouse model. It is also possible that an
increase of the small subunit is actually a feedback
response to intracellular oxidative stress caused by the
Folr1 gene ablation and/or folate deficiency.

Cell-cell interaction is a fundamental process required for
mammalian development. Cells interact with each other
through cell adhesion. Cadherins are a group of cell adhe-
sion proteins that mediate Ca2*-dependent cell-cell adhe-
sion. The functional significance of these proteins during
embryogenesis has been previously revealed [33]. The
members of the cadherin superfamily (cadherins) are
characterized by their unique extracellular domains com-
posed of multiple cadherin repeats. Classical cadherins,
such as epithelial (E-) or neuronal (N-) cadherin, link to
the cytoskeleton to establish strong adhesion. This is
mediated by binding of the conserved cytoplamic tail to p-
catenin. The cadherin-B-catenin complex then binds to
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a-catenin which bridges the complex to the actin cytoskel-
eton via actin-binding proteins such as a-actinin or profi-
lin [34]. Interestingly, B-catenin is also a key player in the
canonical Wnt signaling pathway, suggesting important
interrelations between Wnt signaling and cadherin-medi-
ated adhesion [35].

Wnts are a group of important extracellular glycoproteins.
Wnt signaling plays critical roles in many biological proc-
esses such as regulation of cell adhesion, cell proliferation,
differentiation and transcription of target genes. Recent
studies from different species suggested Wnt signaling is
also involved in cardiac development [36]. Wntl1 is a key
regulator of cardiac muscle cell proliferation and differen-
tiation during heart development [37]. Canonical Wnt
signaling is required for proper cardiac differentiation
[38] and neural crest cell induction, while non-canonical
Wnt pathways (Wnt/PCP and Wnt-Ca2+) are essential for
neural crest migration [39]. Nkd2, naked cuticle 2
homolog (Drosophila), encodes NKD2, which is a cal-
cium binding protein known to bind an important signal-
ing molecule, Dishevelled, and antagonizes both canonical
Wnt signaling and PCP pathway [40,41]. During mouse
embryo development, Nkdl and Nkd2 are expressed in
multiple tissues in partially overlapping, gradient-like pat-
tern, some of which correlate with known patterns of Wnt
activity. Increased Nkd2 expression in 14-somite Folrl
mutant heart tissues may inhibit Wnt-Dishevelled signal-
ing pathways in these embryos and contribute to abnor-
mal cardiac development at this stage.

Canx (Calnexin) was up-regulated in 38-somite conotrun-
cal tissues). The calnexin protein is an important compo-
nent of the calreticulin/calnexin cycle and the quality
control pathways in the ER. Disruption of this cycle may
cause impaired cardiac development [42,43]. These may
reflect complex changes of cell-cell and cell-matrix interac-
tion which affect cell behaviors such as polarity and motil-
ity. Other genes related to cell adhesion and ECM found
to be differentially expressed in Folrl mutant heart and
conotruncal tissues included Fbln5 (Fibulin-5, up-regu-
lated in 38-somite conotruncal tissue), Aplp2 (Amyloid
beta precursor-like protein 2, down-regulated in 28-
somite heart tissues), Bbp (Beta-amyloid binding protein
precursor, down-regulated in 28-somite heart tissues),
Cldn18 (Claudin 18, up-regulated in 38-somite conotrun-
cal tissues), N72f2 (Nuclear receptor subfamily 2, group F,
member 2, down-regulated in 14-somite heart tissues)
and Col4a3bp (Procollagen, type IV, alpha 3 binding pro-
tein, down-regulated in 28-somite heart tissues).

The bHLH transcription factor, Hand1, plays an impor-
tant role in cardiac morphogenesis. Hand1 has been iden-
tified a crucial cardiac regulatory protein that controls the
balance between proliferation and differentiation in the

http://www.biomedcentral.com/1471-213X/7/128

developing heart [44]. HAND1 protein acts as cell-specific
developmental co-activators of the MEF2 family of tran-
scription factors [45]. We observed an increase of Hand1
expression in 28-somite heart, suggesting possible
involvement of Hand1 in cardiac phenotype in Folr/-mice.
In 38-somite conotruncal tissue, however, Handl was
down-regulated. Further investigation is needed to charac-
terize the expression of Hand1 in Folr/- embryos.

Our microarra data also showed that a group of genes
involved in oxidoreductive reactions were changed in
Folrl mutants. These included: Peroxiredoxin (Prdx1,
down-regulated in 28-somite heart;Prdx2, down-regulated
in 38-somite conotruncal tissue), Glutathione S-trans-
ferase, mu5 (Gstm5, down-regulated in 28-somite heart),
Coproporphyrinogen oxidase (Cpox, down-regulated in
14-somite heart), Phosphogluconate dehydrogenase (Pgd,
down-regulated in 14-somite heart), ATPase, H+ trans-
porting, VO subunit (Atp6v0Oe, down-regulated in 38-
somate conotruncal tissue), Lactate dehydrogenase 2, B
chain (Ldh2, down-regulated in 38-somate conotruncal
tissue), Acetyl-Coenzyme A dehydrogenase, long-chain
(Acadl, down-regulated in 38-somate conotruncal tissue),
Ribosomal protein L4 (Rpl4, down-regulated in 38-
somate conotruncal tissue), Cytochrome P450, family 2,
subfamily b, polypeptide 19 (Cyp2b19, up-regulated in
38-somate conotruncal tissue), and Serine/threonine
kinase 11 interacting protein (Stk11ip, up-regulated in 38-
somate conotruncal tissue).

Oxidative stress is involved in the etiology of a spectrum
of diseases including those of the cardiovascular diseases,
birth defects, immune diseases, and cancer. Increased gen-
eration of ROS or impaired ROS scavenging function also
play a central role in a variety of teratogenic processes,
such as maternal diabetes/obesity, environmental
(arsenic) and drug-induced teratogenesis [46,47]. Folrl
knockout mice are likely to suffer from oxidative stress
secondary to disturbed folate homeostasis. Changes of
genes involved in the generation of ROS and/or RNS and
antioxidant defense machinery observed in this study pro-
vided supportive evidence to the hypothesis that oxidative
stress contributes significantly to abnormal cardiovascular
development and myocardial function under a rather
complicated mechanism.

Even though the gene ontology analysis of microarray
data is limited to current literature and knowledge, it pro-
vided important clues for generation of new testable
hypotheses. Further studies focused on pathway-specific
gene expression, proteomic and functional validation of
candidate genes, as well as interactions among responsive
genes and pathways, are currently underway in our labo-
ratory.
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The exploratory nature and small sample size (three in
each group) of the microarray study resulted in limited
power of statistical tests, which may subsequently cause
excessive false negative results. Control of false discovery
rate (FDR) has become popular in microarray data analy-
sis [48]. For our study specifically, however, FDR correc-
tion does not help to identify differentially expressed
genes (data not shown). We therefore used combined cri-
teria to select candidate genes for further study: 1) at least
1.5 fold changes in gene expression; 2) t-test p-value <
0.05; 3) average intensity above background signal plus
four standard deviations. This criterion is suitable for
using microarray data as preliminary screening. Selected
genes were further investigated using standard quantita-
tive real-time PCR technology.

Conclusion

The results suggested that Folr]1 gene ablation and abnor-
mal folate homeostasis altered gene expression in devel-
oping heart and conotruncal tissues. These changes
affected normal cytoskeleton structures, cell migration
and motility as well as cellular redox status, which con-
tributed to cardiovascular abnormalities in mouse
embryos lacking Folrl gene activity.

Methods

Animal husbandry

All mice were housed in clear polycarbonate micro-isola-
tor cages, allowed free access to water and food, and were
maintained on a 12-hr light/dark cycle in the Vivarium at
the Institute of Biosciences and Technology in Houston,
Texas. Folrl-deficient mice were generated by standard
gene targeting methodologies [49]. Folrl heterozygous
mice were transferred to the highly inbred LM/Bc genetic
background (L-Folrl), and were maintained by brother-
sister matings for at least 10 generations. Considering the
embryonic lethality of the Folrl knockout, breeders were
maintained on a modified Clifford/Koury folate deficient
diet supplemented with 200 mg/kg folic acid and succinyl
sulfathiazole (Dyets Inc., Bethlehem, PA), in order to
obtain viable nullizygous individuals. Heterozygous and
nullizygous embryos were generated by timed-matings
between L-Folrl heterozygous females and nullizygous
males maintained on a normal diet. The day on which
vaginal plug was found was designated as EO0.5.

Experimental design

Embryos from three different gestational ages: 14-somite
(E9.0~9.5), 28-somite (E10.0~10.5) and 38-somite
(11.5) were harvested in order to perform gene expression
comparisons. At 14-somite stage, the heart tube was dis-
sected out from the arterial end to the venous end. At the
28-somite stage, the outflow tract, ventricle chambers and
atrial chambers were dissected out. At the 38-somite stage,
only the outflow tract (conotruncal tissue) was collected.

http://www.biomedcentral.com/1471-213X/7/128

Heterozygous control samples were chosen by matching
somite numbers with the nullizygous samples. Six embry-
onic tissue samples from separate dams (three mutants
and three controls) for each time point were used for
microarray analyses. Ten embryonic tissue samples from
separate dams (five mutants and five controls) were col-
lected for Q-PCR analyses, and triplicate assays were used
for each RNA specimen. RNA from all samples were iso-
lated and assayed individually without pooling.

Genotyping

Genomic DNA was extracted from yolk sac tissue using
Puregene DNA extraction Kit (Gentra, Minneapolis, MN).
Exon2 was amplified using primer pair: 5'-AATGTCAAG-
GCTGCATGTGG-3"' and 5'-CATTCCGATGTCATAGTITC-
CGC-3' to detect wild type Folrl; the neo cassette was
amplified using primer pair: 5'-CTTGGGTGGAGAG-
GCTATTC-3' and 5'-TGCATTCCGATGTCATAGITCCG-3'
for the identification of the mutant Folr1 allele. The PCR
condition included an initial denaturation at 95°C for 5
min, followed by 30 cycles of denaturation (95°C for 1
min), annealing (60°C for 1 min) and extension (72°C
for 2 min) and a final extension at 72°C for 10 min. PCR
product was examined on 2% agarose gel under UV light
[49]. The 179 BP or 1.2 kb products corresponded to the
wild type and mutant alleles, respectively.

Tissue collection and RNA preparation

Pregnant dams maintained on the normal diet were
treated p.o. with 6.25 mg/kg (6 s) 5-Formyl H, folate (s-
folinic acid) from EO0.5, in order to rescue the embryonic
lethality. This treatment condition was chosen because in
our previous experiments, the same level of supplementa-
tion rescued 80% of the nullizygous embryos from
embryonic death when examined on E 11.5, although
more than 90% of surviving nullizygous embryos pre-
sented with cardiovascular abnormalities. The pregnant
dams were sacrificed by cervical dislocation and the
fetuses were dissected immediately free of maternal decid-
uas in cold RNase-free PBS solution to minimize loss and
change of mRNA. 14-somite stage heart tube, 28-somite
stage heart and 38-somite stage conotruncal tissue of Folrl
nullizygous and heterozygous embryos were collected
and stored in RNA later-ICE (Ambion, Austin, TX) in -
80°C until needed for the RNA preparation. Total RNA
was extracted using PicoPure RNA Isolation Kit (Acturus,
Mountain View, CA) following the manufacturer's proto-
col.

cDNA synthesis and aRNA amplification

In order to obtain sufficient RNA for our microarray
experiments, we performed antisense RNA (aRNA) ampli-
fication using total RNA extracted from embryonic tissues.
Oligo dT,,-V-T7 primer (Ambion, Austin, TX) were added
during the synthesis of double strand cDNA. Two rounds
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of aRNA amplification were performed using MEGAscript
kit (Ambion, Austin, TX). aRNA were subsequently puri-
fied using Qiagen RNeasy kit and the aRNA quantity was
determined using a fluorometer and the fluorescent
nucleic acid stain RiboGreen (Molecular Probes).

Microarray assay

Gene expression analysis was performed using CodeLink
mouse genome Bioarrays. The CodeLink UniSet Mouse 20
K ((GE Healthcare, Piscataway, NJ) arrays were used for
14-somite and 28-somite heart tissue samples. For
conotruncal tissue samples, the CodeLink UniSet Mouse I
(10 K, ~10,500 genes) arrays were used. These arrays have
the ability to detect a 1.3 fold change in gene expression
with 95% confidence or 2-fold with 98% confidence
while differentiating between targets (Codeline Bioarrays;
GE Healthcare, Piscataway, NJ). 10 pg of aRNA was frag-
mented in 40 mM Tris acetate, pH 7.9, 100 mM KOAc and
31.5 mM MgOAc, at 94°C for 20 minutes. Hybridization,
coupling of Alexa Fluor 647-streptavidin, and subsequent
washes were performed according to manufacturer's pro-
tocol (GE Healthcare, Piscataway, NJ). The aRNA was
mixed with buffer component A and B and then dena-
tured at 90°C for 5 minutes. Hybridization was allowed
to go 18 hours at 37°C, while shaking at 300 rpm. Each
slide was rinsed in TNT buffer (0.1 M Tris-HCI pH 7.6,
0.15 M NacCl, 0.05% Tween-20) at room temperature, fol-
lowed by a wash at 42°C for 1 hour. Coupling of a biotin
labeled hybridized probe to dye labeled-streptavidin was
performed in a 1:500 dilution of Alexa Fluor 647-strepta-
vidin. Slides were rinsed in deionized water, spun-dry,
and then scanned using an Agilent DNA Microarray Scan-
ner (Palo Alto, CA). Initial feature extraction from the
images was performed using CodeLink Expression Analy-
sis software v4.0 (GE Healthcare, Piscataway, NJ). Intensi-
ties for each individual gene were determined by the
median intensity of all pixels within the spot's region.
Subtraction of the median local background (computed
from the subset of remaining pixels of the bounding box)
yielded net intensities representing relative gene expres-
sion levels. Criteria for differential expression was set as 1)
at least 1.5 fold increase/decrease in gene expression; 2) t-
test p < 0.05 when comparing controls vs. nulls to ensure
a consistent expression throughout the replicated arrays;
3) Average intensity above background signal plus four
standard deviations. This threshold was set to eliminate
very weakly expressed genes. Data Clustering analysis was
performed using Hierarchical Clustering Explorer version
3.0 (Human Computer Interaction Laboratory, University
of Maryland, College Park) software, and the parameters
were set for average linkage using the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) and
Pearson Correlation Coefficient.
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Quantitative reverse-transcription PCR

TagMan® Gene Expression Assays were used to determine
gene expression changes for selected candidate genes.
Gene-specific probes and primer sets were purchased
from Applied Biosystems (Foster City, CA). The assays
were performed according to manufacturer's protocol on
an ABI PRISM® 7900 HT Sequence Detection System
(Applied Biosystems, Foster City, CA). Data was analyzed
using SDS software v2.1 (Applied Biosystems, Foster City,
CA). Mouse Gapdh gene was used as house-keeping con-
trol for quantitative RT-PCR because it exhibited consist-
ent normalized intensity across all arrays. Relative
standard curve method was used to generate quantitative
values. Each reaction was replicated three times and the
normalized mean value was used in the final compari-
sons. The level of gene expression was compared between
Folr]l nullizygous tissues and control tissues, while an
unpaired T-test was applied with critical P value set at
0.05.

Gene ontology analysis

Gene ontology analysis was performed using Gene Ontol-
ogy Tree Machine (GOTM), University of Tennessee and
Oak Ridge National Laboratory) [21,50]. GOTM com-
pares the distribution of interesting gene set in each GO
category to those in the reference gene set and reports
those enrichments that are statistically significant as deter-
mined by the hypergeometric test (P < 0.01). Ratio of
enrichment is calculated as:

Rzk/K
n/N

N: number of genes on array n: number of interesting genes

K: number of genes in given category on array k: number of
interesting genes in given category

The significance of gene enrichment in a given GO cate-

gory is determined by:
N-K Y K
n . .
3 l n—i I i I
P= N
i=k
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