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Abstract
Background: Large conductance calcium- and voltage activated potassium (BK) channels are
important determinants of neuronal excitability through effects on action potential duration,
frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1,
which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer
distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated
exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with
distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless
(ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape
their electrical properties during development. However, whether differential splicing of BK
channel variants occurs during development of the mammalian CNS has not been examined.

Results: Using quantitative real-time polymerase chain reaction (RT-PCR) Taqman™ assays, we
demonstrate that total BK channel transcripts are up regulated throughout the murine CNS during
embryonic and postnatal development with regional variation in transcript levels. This upregulation
is associated with a decrease in STREX variant mRNA expression and an upregulation in ZERO
variant expression.

Conclusion: As BK channel splice variants encode channels with distinct functional properties the
switch in splicing from the STREX phenotype to ZERO phenotype during embryonic and postnatal
CNS development may provide a mechanism to allow BK channels to control distinct functions at
different times of mammalian brain development.

Background
Large conductance calcium- and voltage- activated potas-

sium (BK) channels are key determinants in the regulation
of vertebrate neuronal excitability by controlling action
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potential duration, firing frequency, spike frequency
adaptation and neurotransmission [1-5]. In the adult ver-
tebrate nervous system BK channels are widely expressed
and are located in both pre- and post- synaptic compart-
ments including axon terminals, cell bodies and dendrites
[6,7]. Developing neurones in the central nervous system
undergo dramatic changes in electrophysiological proper-
ties that may, at least in part, be attributable to changes in
BK channel function [8]. Increasing evidence suggests that
BK channel expression is up regulated during vertebrate
central nervous system (CNS) development, dependent
on changes in gene transcription, trafficking of channel
protein to the plasma membrane as well as posttransla-
tional modification [9-13]. Furthermore, developmental
changes in the functional properties of BK channels,
including differences in gating behaviour, calcium and
voltage sensitivity, as well as regulation by cellular signal-
ling pathways have been reported [14-16]. However, the
molecular basis for changes in BK channel phenotype dur-
ing CNS development is poorly understood.

The pore-forming α-subunits of BK channels are encoded
by a single gene that undergoes extensive alternative pre
mRNA splicing [17]. Alternative splicing can dramatically
modify the functional properties of BK channels including
calcium and voltage sensitivity, cell surface expression and
regulation by diverse intracellular signalling pathways.
Indeed, changes in BK channel alternative splicing in the
developing Xenopus, Drosophila and Aplysia nervous sys-
tem have been associated with changes in BK channel
properties and neuronal phenotype [18-20]. However,
whether changes in expression of BK channel splice vari-
ants occur during mammalian CNS development is essen-
tially not known. In mammals, splicing of the Stress
regulated exon (STREX) is dynamically controlled by cel-
lular excitability as well as circulating stress and sex hor-
mones [21-25]. Further, insertion of this exon results in
channels with significant changes in BK channel pheno-
type, compared to the insertless (ZERO) variant (Figure
1a), when expressed in heterologous systems [26-31]. In
this manuscript, we have exploited quantitative real-time
RT-PCR Taqman™ analysis of BK channel splice variants
[27] to test the hypothesis that alternative splicing of the
STREX exon is regulated during development of different
regions of the murine CNS.

Results
BK channel mRNA expression in the murine CNS
We first examined whether total BK, and splice variant,
mRNA expression levels differed across distinct regions of
the adult (postnatal day 35, P35) murine CNS. To com-
pare the relative expression of total BK channel mRNA
transcripts between different CNS regions of P35 mice all
data were normalised to the expression of the housekeep-
ing gene, β-actin, in each region. Total BK channel mRNA

expression was variable between different regions with the
highest levels observed in frontal cortex and entorhinal
cortex (Figure 1b). Regions with the lowest levels (< 50%
of the level in entorhinal cortex) were cerebellum,
medulla and posterior cortex. The spinal cord, midbrain,
pons, thalamus, hypothalamus, hippocampus, olfactory
bulb and striatum displayed intermediate total BK mRNA
levels (Figure 1b).

Differential expression of the STREX and ZERO BK chan-
nel splice variant mRNA was also observed across these
tissues at P35. The relative proportion of STREX tran-
scripts (expressed as a percentage of total BK mRNA in
each CNS region) was low in all regions tested, with levels
typically < 10% of total BK mRNA transcripts. However,
even across tissues, the relative proportion of STREX tran-
scripts was significantly different (p < 0.05, Kruskal Wallis
test with post-hoc Dunn's test compared to entorhinal
cortex) with frontal cortex, thalamus and entorhinal cor-
tex displaying the highest proportion of STREX transcripts
and the pons and cerebellum displaying the lowest levels
(Figure 1c). The proportion of total BK channel transcripts
expressing the ZERO variant also varied significantly
across tissues. The entorhinal cortex displayed a signifi-
cantly (p < 0.01, Kruskal Wallis test with post-hoc Dunn's
test) greater proportion of ZERO transcripts compared to
any other tissue, with 85.6 ± 9.7 % of total BK transcripts
encoded by the ZERO variant. (Figure 1c). In the majority
of CNS regions, the proportion of ZERO transcripts was
greater than 50% of total BK mRNA transcripts with the
notable exception of cerebellum, in which 4.5 ± 2.3 % of
transcripts encoded for the ZERO variant (Figure 1c).
Taken together, these data suggest that the ZERO variant
is the predominant transcript in most adult CNS tissues
and that the STREX variant is expressed at a significantly
lower level at postnatal day 35. A notable exception is the
cerebellum, in which both ZERO and STREX transcripts
represent < 10% of total transcripts at P35 suggesting that
other site C2 splice variants are predominantly expressed
in this region.

Developmental regulation of BK channel mRNA splicing in 
the CNS
In order to investigate developmental changes in BK chan-
nel mRNA expression in different regions of the murine
CNS, BK channel mRNA expression was quantified at
embryonic days 13, 15 and 18, and postnatal days 7 and
35. For each tissue, the total BK channel mRNA expression
at each developmental time point was expressed as a per-
centage of that at P35. For each splice variant the expres-
sion at each developmental time point was expressed as a
percentage of the total BK channel transcripts in each tis-
sue.
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Total BK channel, and splice variant, mRNA expression in different regions of the murine CNS at postnatal day 35 (P35)Figure 1
Total BK channel, and splice variant, mRNA expression in different regions of the murine CNS at postnatal 
day 35 (P35). a) Schematic illustrating location of site of splicing C2 and the STREX insert in the intracellular C-terminus of 
murine BK channel pore-forming α-subunits. The ZERO variant has no insert at site of splicing C2. b) Total BK channel mRNA 
expression (grey bars) in different regions of the CNS from 35-day old (P35) mice. Total BK channel mRNA expression is nor-
malised to β-actin in each region and then displayed as a percentage of the expression in entorhinal cortex. Data are Means ± 
S.E.M, n = 5/tissue region. * p < 0.05, ** p < 0.01, compared to entorhinal cortex, Kruskal-Wallis non-parametric test with post 
hoc Dunn's test for multiple comparisons. c) Proportion of ZERO (open bars) and STREX (black bars) mRNA transcripts, 
expressed as a percentage of total BK channel mRNA transcripts, in different CNS regions from P35 mice. All data are Means 
± S.E.M, n = 5/tissue region.

b. 

a.

ZERO STREX

T
ot

al
 B

K
 m

R
N

A
 e

xp
re

ss
io

n 
at

 P
35

(%
 e

nt
or

hi
na

lc
or

te
x)

b.

c.

sp
in

al 
co

rd

m
id

bra
in

ce
re

bell
um

pons

m
ed

ulla

th
ala

m
us

hyp
oth

ala
m

us

fro
nta

l c
orte

x

post
er

io
r c

orte
x

hip
poca

m
pus

olfa
ct

ory
 b

ulb

st
ria

tu
m

en
to

rh
in

al
co

rte
x

0

25

50

75

100

Total BK

0

25

50

75

100

sp
in

al 
co

rd

m
id

bra
in

ce
re

bell
um

pons

m
ed

ulla

th
ala

m
us

hyp
oth

ala
m

us

fro
nta

l c
orte

x

post
er

io
r c

orte
x

hip
poca

m
pus

olfa
ct

ory
 b

ulb

st
ria

tu
m

en
to

rh
in

al
co

rte
x

**
**

**

**

** **

**
****

*
*

S
pl

ic
e 

va
ria

nt
 e

xp
re

ss
io

n 
at

 P
35

(%
 o

f t
ot

al
 B

K
 tr

an
sc

rip
ts

)



BMC Developmental Biology 2006, 6:37 http://www.biomedcentral.com/1471-213X/6/37
Tissues from rhombencephalon, mesencephalon and spinal cord
In spinal cord a small, but significant, increase in total BK
channel mRNA expression was observed from E13 com-
pared to P35 (Figure 2a). This was accompanied by a dra-
matic decrease in STREX variant expression with a
concomitant increase in ZERO variant mRNA expression
(Figure 4a). Similar developmental up regulation of total
BK channel mRNA expression was also observed in the
midbrain, cerebellum, pons and medulla (Figure 2b–e).
In these tissues, significant developmental downregula-
tion of STREX variant expression was again observed
between embryonic and postnatal stages (Figure 4b–e). In
midbrain this was paralleled by a significant increase in
ZERO variant expression whereas in pons and medulla no
significant change between E13 and P35 were observed

(Figure 4d &4e). In contrast to other regions, ZERO vari-
ant expression significantly decreased with postnatal
development in the cerebellum (Figure 4c).

Tissues from the Diencephalon and Telencephalon
In thalamus and hypothalamus a small, but significant,
increase in total BK channel expression was observed from
E15 to P35 (Figure 3a &3b). In contrast, total BK channel
mRNA expression increased almost 10-fold between
embryonic and postnatal stages in frontal cortex, posterior
cortex, hippocampus, olfactory bulb, striatum and
entorhinal cortex (Figure 3c–h). In all regions examined,
there was a significant developmental downregulation of
STREX variant mRNA expression (Figure 5). In frontal cor-
tex, posterior cortex, hippocampus, olfactory bulb, stria-

Developmental regulation of total BK channel mRNA expression in tissues from the rhombencephalon, mesencephalon and spinal cordFigure 2
Developmental regulation of total BK channel mRNA expression in tissues from the rhombencephalon, mes-
encephalon and spinal cord. Total BK channel mRNA levels expressed as a percentage of postnatal day 35, in mouse a) spi-
nal cord, b) midbrain, c) cerebellum, d) pons and e) medulla at embryonic day 13 (E13), 15 (E15), 18 (E18) and postnatal days 
7 and 35 (P7 and P35 respectively). All data are Means ± S.E.M, n = 5/tissue region. * p < 0.05, ** p < 0.01, compared to respec-
tive P35 data, Kruskal-Wallis non-parametric test with post hoc Dunn's test for multiple comparisons.
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tum and entorhinal cortex this is associated with a
significant upregulation of ZERO variant mRNA expres-
sion (Figure 5). In thalamus and hypothalamus no signif-
icant changes in ZERO variant mRNA expression was
observed between E15 and P35 (Figure 5).

Discussion
The contribution of BK channels to the regulation of CNS
function is critically dependent upon cell type, subcellular
localisation, intrinsic BK channel kinetic properties, cal-
cium- and voltage sensitivities, and regulation by diverse

cellular signalling pathways. Such diversity in the func-
tional properties of BK channels, encoded by a single
gene, can be generated by multiple mechanisms including
expression and heterotetrameric assembly of distinct
splice variants of the pore-forming subunit, association
with regulatory beta subunits and signalling complexes
and posttranslational regulation. This study suggests that
during murine development a contributing factor to the
impact of BK channels on CNS function would be
through control of alternative splicing of the BK channel
pore forming subunit.

Developmental regulation of STREX and ZERO variant splicing in tissues from the rhombencephalon, mesencephalon and spi-nal cordFigure 4
Developmental regulation of STREX and ZERO variant splicing in tissues from the rhombencephalon, mesen-
cephalon and spinal cord. STREX (black bars) and ZERO (open bars) mRNA levels expressed as a percentage of total BK 
channel transcripts in the respective tissue at each developmental time point. Splice variant expression was analysed in mouse: 
a) spinal cord, b) midbrain, c) cerebellum, d) pons and e) medulla at embryonic day 13 (E13), 15 (E15), 18 (E18) and postnatal 
days 7 and 35 (P7 and P35 respectively). All data are Means ± S.E.M, n = 5/tissue region. * p < 0.05, ** p < 0.01, compared to 
respective splice variant expression at P35, Kruskal-Wallis non-parametric test with post hoc Dunn's test for multiple compar-
isons.
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The robust developmental changes in splice variant
mRNA expression we observe in multiple CNS regions
strongly supports the hypothesis that BK channel splicing

is coordinated in the developing CNS and is of functional
relevance. In all CNS regions examined, the expression of
the STREX variant was significantly down regulated in the

Developmental regulation of total BK channel mRNA expression in tissues from the diencephalon and telencephalonFigure 3
Developmental regulation of total BK channel mRNA expression in tissues from the diencephalon and telen-
cephalon. Total BK channel mRNA levels expressed as a percentage of postnatal day 35, in mouse a) thalamus, b) hypothala-
mus, c) frontal cortex, d) posterior cortex, e) hippocampus, f) olfactory bulb, g) striatum and h) entorhinal cortex at 
embryonic day 13 (E13), 15 (E15), 18 (E18) and postnatal days 7 and 35 (P7 and P35 respectively). All data are Means ± S.E.M, 
n = 5/tissue region. * p < 0.05, ** p < 0.01, compared to respective P35 data, Kruskal-Wallis non-parametric test with post hoc 
Dunn's test for multiple comparisons.
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Developmental regulation of STREX and ZERO variant splicing in tissues from the diencephalon and telencephalonFigure 5
Developmental regulation of STREX and ZERO variant splicing in tissues from the diencephalon and telen-
cephalon. STREX (black bars) and ZERO (open bars) mRNA levels expressed as a percentage of total BK channel transcripts 
in the respective tissue at each developmental time point. Splice variant expression was analysed in mouse: a) thalamus, b) 
hypothalamus, c) frontal cortex, d) posterior cortex, e) hippocampus, f) olfactory bulb, g) striatum and h) entorhinal cortex 
at embryonic day 13 (E13), 15 (E15), 18 (E18) and postnatal days 7 and 35 (P7 and P35 respectively). All data are Means ± 
S.E.M, n = 5/tissue region. * p < 0.05, ** p < 0.01, compared to respective splice variant expression at P35, Kruskal-Wallis non-
parametric test with post hoc Dunn's test for multiple comparisons.
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face of increasing total BK mRNA levels. In most tissues,
such as spinal cord and olfactory bulb, this was accompa-
nied by an upregulation in ZERO variant expression sug-
gesting that splicing decisions to exclude the STREX insert
are coordinated across all regions of the developing
murine CNS. However, there are important exceptions to
this rule such as the cerebellum. In the cerebellum, both
STREX and ZERO variant expression is developmentally
down regulated resulting in ZERO and STREX variants
representing < 10% of total BK channel transcripts at P35.
In the cerebellum, developmental upregulation of total
BK channel mRNA must be accompanied by an increased
expression of other site C2 splice inserts. A similar situa-
tion must also occur in tissues such as pons and medulla
in which STREX expression declines with no significant
change in proportion of ZERO variants when comparing
between E13 and P35. Analysis of the splicing decisions in
CNS regions with distinct splicing patterns should pro-
vide important insights into the mechanisms controlling
splicing at site C2 during development.

This broad-scale qRT-PCR analysis, at the level of CNS tis-
sue regions, provides a framework in which to generate
testable hypothesis of the functional importance of BK
channel alternative splicing in specific cell types during
murine CNS development. Clearly, detailed expression
and functional analysis in individual cell types within a
particular brain region are required to address these
issues.

In this regard, during the time-span of the developmental
regulation analysed here, considerable changes in both
maturational states of neurones (including arborisation
of dendritic networks, connectivity and intrinsic electrical
excitability) as well as the cellular composition of brain
regions (e.g. relative levels of glial to neuronal cells) are
apparent. Even in the adult state, considerable cell-cell
variations in BK channel mRNA expression levels are
apparent. For example, in the adult cerebellum total BK
channel mRNA and protein levels are high in the Purkinje
cell layer but with very low expression in granular cells
[3,6,7]. Such cell specific expression levels are also high-
lighted by both functional and biochemical analysis of BK
channel expression in a variety of neurones, including the
widely varying levels of BK channel protein observed in
detailed histochemical analysis of rat and murine brain
[3,6,7]. Thus, whether the changes in splicing decision
reported here reflect changes in cellular composition or
intrinsic properties of maturing cell types remains to be
examined. While these developmental changes in BK
channel expression levels are likely to be of functional rel-
evance, it is unlikely that BK channels play a dominant
role in proliferation, migration or morphological matura-
tion of the developing CNS as BK channel knockout mice
[3] do not show gross abnormalities in neuronal or brain

architecture. This suggests that changes in BK channel
expression during development are more important for
shaping cellular activity, plasticity, and/or connectivity.

A further caveat to these studies is the extent to which
developmental changes in BK channel mRNA levels in fact
reflect changes in the expression, or functional properties,
of BK channel protein. While determination of the func-
tional consequence of BK channel mRNA splicing during
development remains to be fully explored in vertebrates
[20], the developmental upregulation in total BK mRNA
expression is in accordance with several functional and
molecular studies [9-13,15,16,20]. For example, in the rat
cerebellum, total BK channel mRNA expression increases
in the first 2 weeks of postnatal development, a process
that appears to be activity dependent [12]. In chick ciliary
neurones, developmental upregulation of BK channel
mRNA is observed at E8, prior to synaptogenesis, and
before a significant macroscopic BK current is observed
[9,10,13]. In chick ciliary neurones, the increase in func-
tional BK channel expression is dependent upon target-
derived factors [9,10,13]. Finally, the relative expression
profiles of total BK channel mRNA levels at late postnatal
stages are in broad agreement with the distribution of
channel protein in adult mice [6].

What may be the functional consequence of differential
splicing of the STREX exon during murine CNS develop-
ment? The STREX insert represents a gain-of-function
module that confers STREX variant channels with faster
activation and slower deactivation kinetics and channels
are activated at more negative voltages than other variants
[23,27,30]. As such, STREX channels have been proposed
to support high frequency action potential firing, for
example in chromaffin cells [32], although this function is
likely to be context and cell type dependent. In humans,
gain of function mutations in the BK channel pore-form-
ing subunit result in generalised epilepsy [33]. Further-
more, in mice, genetic ablation of the neuron specific β 4
regulatory subunit results in a gain of function of BK chan-
nels resulting in hyperexcitability [34]. Thus, the general
down regulation of the gain-of-function STREX variant,
from embryonic to postnatal development, may provide a
protective mechanism to limit hyperexcitability in the
postnatal CNS. In addition, STREX variant channels dis-
play distinct posttranslational regulation by a variety of
cellular signalling pathways compared to other variants:
including differences in regulation by protein phosphor-
ylation, cellular REDOX potential and hypoxia
[28,29,31]. Taken together, these attributes may allow
neonates to differentially control BK channel function,
compared to adults, dependent upon the prevailing phys-
iological demands. In this regard, the close association of
BK channels with either voltage- or ligand- dependent
Ca2+ entry pathways [35-37] may play an important role
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in shaping Ca2+ – signalling to the nucleus to programme
developmental changes in gene transcription [38]. Clearly
detailed biochemical and functional analysis of BK chan-
nel splice variant expression is warranted in selected sys-
tems to address such issues.

How might alternative splicing of the BK channel be reg-
ulating during development? Inclusion of the STREX exon
is dynamically regulated by cellular activity per se through
calcium dependent activation of calmodulin kinase IV
[24,25]. Indeed, in murine cerebellar granule cells, STREX
variant expression is controlled by calcium entry through
L-type calcium channels and genetic deletion of calmodu-
lin kinase IV in the cerebellum results in an upregulation
of STREX transcripts compared to wild type controls [25].
Furthermore, both stress and sex hormones potently reg-
ulate alternative splicing of the STREX exon in endocrine
tissues [21-23] and such hormones have dramatic effects
on neuronal development, activity and plasticity [39-41].
Clearly, such multifactorial control of the splicing deci-
sion suggests that expression levels of splice variants will
be critically dependent upon the cell type under investiga-
tion. Indeed, although the STREX insert is highly con-
served in vertebrate evolution [27] STREX mRNA
expression increases in spinal neurones in Xenopus dur-
ing early postnatal development [20]. However, as robust
downregulation of STREX variant expression occurs across
all regions of the CNS our data suggest that splicing deci-
sions to exclude the STREX exon from BK channel tran-
scripts is tightly coordinated in the developing murine
CNS.

Conclusion
We conclude that developmental up regulation of total BK
channel mRNA levels in the murine CNS are associated
with a developmentally regulated switch in pre mRNA
splicing. The downregulation of STREX variant expression
paralleled with a general increase in ZERO variant expres-
sion suggests that changes in the relative expression levels
of these phenotypically distinct channel isoforms might
result in changes in the physiological function of BK chan-
nels during mammalian brain development.

Methods
Total RNA and cDNA preparation for qRT-PCR 
TaqMan™ analysis
Initial transcript profiling was performed using Origene
Rapid-Scan murine brain cDNA arrays. Additional analy-
sis was performed on pooled tissue dissected from C57Bl6
mice of the indicated developmental age. Total RNA was
prepared using the QIAgen RNeasy Mini Kit according to
the manufacturer's instructions. RNA was treated with
RNAse free DNAse and reverse transcription performed in
20 μl reactions containing 1 × reverse transcriptase buffer
(QIAgen), 0.5 mM of each dNTP, 1 μM oligo-dT primer or

random hexamers (Amersham Pharmacia), 10 U of RNa-
sin (Promega), 4 U of Omniscript reverse transcriptase
(QIAgen) and 2 μg of total RNA. Reactions were incubated
for 60 min at 37°C, then cDNA products stored at -20°C
before TaqMan™ analysis. Control reactions were per-
formed in parallel to exclude contamination from
genomic DNA including exclusion of reverse transcriptase
or primers from reverse transcriptase reaction.

qRT-PCR TaqMan™ analysis
Primers and probes for TaqMan™ quantitative real-time
polymerase chain reaction (qRT-PCR) assays, specific for
each murine site C2 splice variant, were designed with
Primer Express v1.2 (Applied Biosystems) as described
previously [27]. TaqMan™ probes, labelled at the 5' end
with FAM (6-carboxyfluorescein) and at the 3' end with
TAMRA (6-carboxytetramethylrhodamine), were synthe-
sized by Applied Biosystems.

Total BK:

BKfwd: CTCCAATGAAATGTACACAGAATATCTC;

BKrev: CTATCATCAGGAGCTTAAGCTTCACA;

BKprobe: CCTTCGTGGGTCTGTCCTTCCCTACTGTT.

In addition the murine BK channel Assay-on-Demand set
(BK-AoD, Assay ID Mm00516078_m1) from Applied Bio-
systems was also used. Total BK channel mRNA expres-
sion was determined from the mean expression using
both the total BK and BK-AoD probe-primer sets.

ZERO:

ZEROfwd: GCCAAAGAAGTTAAAAGGGCATT

ZEROrev: CGGCTGCTCATCTTCAAGC

ZEROprobe:
TGACGTCACAGATCCCAAAAGAATTAAAAAATGTG

STREX:

e21fwd: TTTGATTGCGGACGTTCTGA

e21rev: TCTCTCAAGGGTGTCCACGTTAC

e21probe: CTGCTCGTGCATGTCAGGCCGT

β-actin: The murine β-actin Assay-on-Demand set (β-
actin, Assay ID: Mm00607939_s1) was used to determine
β-actin transcript levels in CNS regions.
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All TaqMan™ assays were linear over 7 orders of magni-
tude and the efficiency, correlation coefficient (R2) and
limit of detection for each BK channel mRNA assay, deter-
mined from a minimum of 3 independent experiments
were: Total BK: 1.95, 0.99, 0.2 fg cDNA; .BK-AoD: 1.95,
0.99, 0.2 fg cDNA; ZERO: 1.91, 0.99, 0.2 fg cDNA; STREX:
1.98, 0.99, 0.2 fg cDNA. The efficiency and R2 for the β-
actin assay was 1.95 and 0.99 respectively. To determine
specificity of BK channel variant assays, standard curves
were also generated for each variant in the presence of a
competing concentration of another variant. In each case,
no competition was observed even up to a 100,000 fold
excess of competing variant.

All assays were performed using Applied Biosystems uni-
versal cycling parameters (2 min hold at 50°C, 10 min
hold at 95°C, then 40 × (15s at 95°C and 1 min at 60°C)
cycles) on an Applied Biosystems ABI Prism 7000
Sequence Detection System. Reactions (25 μl) were per-
formed in ABI Prism 96-well optical reaction plates. Each
reaction contained 1 × ABI real-time PCR master mix
(including ROX passive reference dye, 5 mM MgCl2 and
nucleotides), 50 nM each of the respective forward and
reverse primers, and 5 nM of labelled TaqMan™ probe. All
data were analysed using ABI Prism 7000 SDS software
version 1.0 (Applied Biosystems). Transcript expression
was determined from standard curves generated using
dilutions of the respective splice variant plasmid DNA.

To confirm our ability to accurately discriminate the pro-
portion of STREX and ZERO splice variant transcripts in a
total BK channel transcript population, we undertook
experiments using varying amounts of cDNAs encoding
the STREX and ZERO variant and analysing mixes using
both total and splice variant specific TaqMan™ assays. For
example, using a constant amount of STREX input (0.2
pg) with varying amounts of zero cDNA allowed us to
analyse each variant as a percentage of total BK input. For
three independent experiments using a STREX/total BK
ratio of: 1%; 10%; 50%; 90% and 99% the experimentally
determined ratios were: 2 ± 3%; 11 ± 2%; 50 ± 3%; 90 ±
3%; 97 ± 2%. For the same predicted ZERO/total ratios,
the experimentally determined ratios were: 2 ± 5%; 9 ±
4%; 52 ± 2%; 88 ± 3%; 96 ± 3%. Thus STREX or ZERO
splice variant levels were expressed as a percentage of the
total BK transcripts.

Statistical analysis
For comparison of total BK channel mRNA expression in
different regions of the CNS, from mice at postnatal day
35 (P35), total BK channel mRNA expression was normal-
ised to β-actin and then expressed as a percentage of that
observed in entorhinal cortex. To compare developmental
changes in total BK channel mRNA expression the total
BK channel mRNA levels at each time point were normal-

ised to that at P35 for each tissue type. Statistical analysis
between CNS regions at P35 was performed using the
non-parametric Kruskal Wallis test, with post hoc Dunn's
test for multiple comparisons between groups. For analy-
sis of splice variant expression at each developmental time
point, the fraction of total BK mRNA transcripts that
encode each splice variant mRNA was calculated from the
variant to total BK channel transcript ratio. Splice variant
expression is shown as a percentage of the total BK chan-
nel transcript level in each region at the respective devel-
opmental time point. Changes in splice variant
expression, in individual CNS regions at different devel-
opmental time points, was analysed using the non-para-
metric Kruskal Wallis test, with post hoc Dunn's test for
multiple comparisons between groups. All data are
expressed as mean ± S.E.M with n independent experi-
ments per group.

Abbreviations
BK, large conductance voltage- and calcium- activated
potassium channel. CNS, central nervous system. RT-PCR,
real-time reverse transcription polymerase chain reaction.
STREX, stress regulated exon
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