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Abstract

Background: The miniature pig provides an excellent experimental model for tooth morphogenesis because its
diphyodont and heterodont dentition resembles that of humans. However, little information is available on the
process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs
or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important.

Results: In our study, after serial sections were made, the development of the crown of the miniature pigs’
mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage
(E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated
from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed.
Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular
deciduous molars (E35, E45, E50, and E60) of miniature pigs using lllumina Solexa deep sequencing. Microarray
assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA
expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during
the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there
were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo
sapiens genes compared with those in the mouse.

Conclusion: Our results not only identify the specific transcriptome and cDNA profile in developing mandibular

deciduous molars of the miniature pig, but also provide useful information for investigating the molecular
mechanism of tooth development in the miniature pig.
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Background

The pig is a large animal species suitable not only for meat
production, but also as a model organism for comparative
genomics and biomedical studies [1-6]. Due to the similar-
ity of the dental and jaw bone system between human and
pigs [7-9], using swine in dental biomedical research has
increased in recent years, including research into dental
implants, irradiation damage to parotid glands, bio-root
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regeneration, osteoradionecrosis, and bisphosphonate-
related osteonecrosis, etc. [10-16].

The mouse is the most widely used animal model for
studying tooth development. Almost all known molecu-
lar mechanisms of tooth formation and mineralization
are derived indirectly or directly from studies of murine
models [17-19]. However, mouse teeth are different from
those of humans in both number and morphology, with
only one dentition present throughout the mouse life
cycle and a complete absence of canines and premolars
[20]. Miniature pigs have both deciduous and permanent
dentition, and all tooth types found in humans are
present in pigs. However, detailed descriptive informa-
tion concerning tooth development in the pig is lacking.
Recently, our group has been dedicated to investigating
the complicated mechanism of tooth development in
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miniature pigs, including the mRNA expression profiles
of developing deciduous molar tooth [21], and the tim-
ing and sequencing of tooth replacement [22]. Other
groups also reported that early morphogenesis of hetero-
dont dentition can be divided into four significant stages
in miniature pigs [23]. The purpose of the present study
was to identify and classify the early stages of odonto-
genesis in miniature pig’s deciduous molar teeth, focus-
ing on the differential expression of cDNAs during typical
periods of tooth development. We also compared the genes
from the E45 to E60 time course during tooth development
with those of known Homo sapiens genes, and aimed to
obtain basic information about their development for fur-
ther molecular studies. We found that 12 up-regulated and
15 down-regulated genes may be involved in the miniature
pig’s tooth development. We also found there were 6
down-regulated and 2 up-regulated genes with high hom-
ology to those in Homo sapiens, and compared these with
those in mouse.

Methods

Ethics statement

Pregnant Wuzhishan miniature pigs were obtained from
the Institute of Animal Science of the Chinese Agriculture
University. Experiments were performed according to the
Regulations for the Administration of Affairs Concerning
Experimental Animals (Ministry of Science and Technol-
ogy, China, revised in June 2004), and approved by the
Animal Care and Use Committees of Capital Medical Uni-
versity, Beijing, China under permit No. CMU-B20100106.
Animals were allowed access to food and water ad libitum
under normal conditions and humanely sacrificed as ne-
cessary to ameliorate suffering. In brief, pregnant sows
were anesthetized with a combination of 6 mg/kg ketamine
chloride and 0.6 mg/kg xylazine, and pregnancy and the
fetal state roughly determined by B-mode ultrasonography.
After removing the fetuses by cesarean section, the preg-
nant sows were sacrificed by over-anesthetization.

Preparation of tissues and histological staining

Developing miniature pig embryos were obtained by
hysterectomy at embryonic days 30 (E30), E35, E40, E45,
E50, E55, E60, and E65 according to the developmental
progression of deciduous dentition in pigs [24]. After
surgically removing the fetuses, germ tissue samples
from deciduous molar teeth were removed from the
mandibles under a microscope. The first mandibular
molar could be obtained from E30. The second man-
dibular molar could be obtained from E35. The third
mandibular molar could be obtained from E45. So the
first deciduous mandibular molars were used in all stud-
ies. The samples were immediately frozen in liquid ni-
trogen and stored separately at -80°C until used for
analysis. At least five miniature pig embryos were used
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for each evaluation. Specimens for the histological study
were chosen by random selection from each specific age
group litter. Embryo mandibles were separated and pre-
served in 4% paraformaldehyde. Mandible specimens
from E30 were placed in EDTA bone decalcifying agent.
Serial sections were made of the mandibular deciduous
molar region. The tissues were mounted and stained
with hematoxylin and eosin.

RNA sample preparation and cDNA library establishment
Mandibular deciduous molar germs from E35, E45, E50,
and E60 miniature pig embryos were excised and total RNA
was extracted with an RNA purification kit (QIAGEN,
Germany). RNA was then mixed in equal amounts from
four different developmental time points. Oligo dT cellulose
(MicroFast Track, Invitrogen, CA) was used as a template
to synthesize first-strand cDNA. The cDNA library was con-
structed using the SMART ¢DNA Library Construction Kit
(Clontech, CA). The obtained double-stranded (ds)-cDNA
was purified using the QIAquick PCR Purification Kit
(QIAGEN, Germany), then normalized with the DSN
(duplex-specific nuclease) using the Trimmer-Direct
Kit (Evrogen, Moscow, Russia). The normalized cDNAs
were digested with Sfi I restriction enzyme, size fraction-
ated (1-3 kb), directionally ligated into pDNR-LIB, and
transformed into E. coli DH10B by electroporation. The
c¢DNA library was plated on LB plates with X-gal,
isopropyl-D-thiogalactopyranoside, and ampicillin. Thirty
white colonies were randomly selected for identification of
c¢DNA inserts in the recombinants to estimate the recom-
bination efficiency. Exact same samples were used for
both microarray and qRT-PCR.

Microarray procedures

Microarray targets were prepared from each stage. RNA
labelling, hybridization and scanning were conducted by a
commercial Affymetrix array service (Institut de Recerca
Hospital Universitari Vall d’'Hebron, Barcelona, Spain).
Reverse transcription of RNA and synthesis of biotin-
labelled cRNA with one round of amplification were
carried out following the standard Affymetrix one-
cycle protocol according to the manufacturer's instruc-
tions. Samples were hybridized to the Affymetrix 24 K
Genechip® Porcine Genome Array (Affymetrix, Santa Clara,
CA, USA). Data analysis was performed with Bioconductor
implemented in R 2.6.0 (http://cran.r-project.org/).

Quantitative real-time RT-PCR

Total RNA reversely transcribed into ¢cDNA using the
PrimeScriptTM PT Reagent Kit (TaKaRa, Dalian, China).
Amplifications of target genes were performed by real-
time quantitative PCR (qPCR) using the cDNA as tem-
plate, the specific primers and the SYBR® PrimeScript’
RT-PCR Kit (Takara) on an ABI PRISM 7900 Real Time
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PCR System (Applied Biosystems, Carlsbad, USA). PCR
amplifications were performed in duplicate at 95°C for
15 sec, and subjected to 40 cycles of 95°C for 5 sec 60°C
for 30 sec, and 95°C for 15 sec 60°C for 15 sec 95°C for
15 sec. The primers used are shown in Additional file 1.
The relative levels of target genes expression to the con-
trol of E45 were quantified. The relative levels of target
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gene mRNA transcripts to control p-actin were deter-
mined by 244,

cDNA library sequencing, data processing, sequence analysis
After ¢cDNA library identification, large-scale plasmid
extraction and sequencing were performed for gener-
ation of expressed sequence tags (ESTs). High-quality
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Figure 1 Histology and stage of the developing miniature pig mandibular deciduous molar. (A) Normal mandibular deciduous molar with
5 or 6 main cusps and 5 roots. (B) Developmental stages of the mandibular deciduous molar in the miniature pig. The relatively typical points in
time are E35 (bud stage), E45 (cap stage), E50 (early bell stage), and E60 (late bell stage). (C, G) The epithelium grew into the mesenchyme to
form the dental lamina (d)) at E30. (D, H) The dental lamina formed the dental bud (db) at £35. (E, 1) The peripheral cells of the enamel organ
extended outside at E40. (F, J) A typical cap stage appeared at E45, with differentiation of the outer enamel epithelial cells (oe), inner enamel
epithelial cells (ie), and stellate reticular cells (s). The dental papilla (p) could also be observed. (K, O) At E50, the typical early bell stage was
observed. The cusp morphology could be seen at the junction of the inner enamel epithelium and dental papilla. The stratum intermedium (si)
appeared between the inner enamel epithelium and the stellate reticulum. (L, P) Morphological findings at E55. (M, Q) By E60, the molar reached
late bell stage. In the cusp region, dental epithelial cells and mesenchymal cells were polarized and cells lengthened to become pre-ameloblast
and pre-odontoblast. (N, R) Continuous and intact ameloblasts (ab), enamel (e), dentin (d), and odontoblasts (0b) were observed in the molar
cusp at E65. Scale bars: 5 mm in A, 50 um in C-F and O-R, 20 pm in G-J, and 100 pm in K-N.
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ESTs were assembled into unigenes by phrap_0.990329
software. The unigene sequences were performed with
E-values of less than 107> on the GenBank database ac-
cording to the BLAST Search program (ftp://ftp.ncbi.
nih.gov/blast/db/FASTA/). The unigenes were compared
with annotations through the Gene Ontology Consor-
tium using Interpro2GO. All ESTs were sequenced and
analyzed at a commercial facility (BGI LifeTech Co. Ltd,
Beijing, China). If the unigene sequence was more than
100 bp and its homology greater than 90% with a known
functional pig gene, this gene was annotated in the pig
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genes. Then, if the sequence had high homology to a
known gene in other species (E-values < 107°), it was as-
sumed that the gene is an orthologue of the comparator
gene.

Statistical analysis

Data of qRT-PCR are expressed as mean + SEM. Data
were analyzed by one-way analysis of variance. Multiple
comparison between the groups was performed by using
Bonferroni post-tests method. A p value of less than 0.05
was considered statistically significant. Statistical analysis
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Figure 2 mRNA expression of 12 genes detected by microarray and qRT-PCR. The mRNA relative expression of 12 selected genes.
(A) Amelogenin, membrane-associated ring finger 6 (MARCHS), isolate X269 mitochondrion, DSPP600 (DSPP), enamelin precursor, and caveolin were
up-regulated at E60 compared with those at E45 in the microarray. (B) Ribosomal protein L7, eukaryotic translation elongation factor 1 alpha (EEF1A1
gene), prothymosin alpha, selenoprotein P (Sepp1), quinoid dihydropteridine reductase (QDPR) and cytochrome coxidase were down-regulated at E60
compared with those at E45 in the microarray. Validation of microarray data was achieved by using gRT-PCR. The six up-regulated and 6
down-regulated genes were changed accordingly (Figure 2C and 2D). (C) The six up-regulated genes were changed accordingly. (D) The six
down-regulated genes were changed accordingly. Samples taken at E45 were used as controls. The relative levels of mMRNA to GAPDH RNA
were determined longitudinally by gRT-PCR assay. Data are expressed as mean relative values + the standard error measurement (SEM) of
each group of cells at each time point from three separate experiments. *P <0.05.
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Table 1 A summary of ESTs and unigene analysis

Description Number Percentage
Total number of EST sequences 20,065
Number of high quality sequences 17,520 87.3'
Number of singletons 11,709 583!
Number of contigs 2,198 109"
Number of unigenes 13,907 69.3'
Number of unigenes with BLAST hits 10,883 783°
Number of unknown unigenes 3,024 217°

Unigene Size: The Number of ESTs in Unigene, 'percentage of all ESTs,
2percentage of unigenes.

was carried out using StatView 5.0 software (SAS Institute,
Cary, NC) and GraphPad Prism 4.0 software.

Results

Development stages and histological characterization of
miniature pig mandibular deciduous molars

Mandibular deciduous molar germs from E30 to E65 mini-
ature pig embryos were excised (Additional file 2). Normal
mandibular deciduous molars of miniature pigs have five
or six main cusps and five roots (Figure 1A). Figure 1B
shows the developmental stages of the mandibular decidu-
ous molars. Development progressed as follows:

E30: In the E30 embryonic mandible, the oral epithe-
lium thickened and extended to form the dental lamina
(Figure 1C, G). E35: E35 samples showed hyperplasia of
the lamina epithelium cells to form the primary enamel
organ, meaning that the typical bud stage was observed
(Figure 1D, H). The mesenchymal cells surrounding the
bud clearly gathered. The placode was identified between
the epithelium and the mesenchyme. E40: In the E40
mandibular region, the molar remained in the bud stage,
but minor changes were seen at this time (Figure 1E, I).
The peripheral cells of the enamel organ had now ex-
tended outside of the bud. E45: The typical cap stage for
this molar did not appear until E45. At this time, the
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entire enamel looked like a cap (Figure 1F, J). More not-
able cell differentiation was present than at E40. Four cell
types were identified; outer enamel epithelium, inner en-
amel epithelium, stellate reticulum, and dental papilla.
The dental sac could also be observed. E50: E50 embryos
showed the typical appearance of the early bell stage of
this molar (Figure 1K, O). The dental papilla was larger
than during the cap stage, whereas there were no mor-
phological changes of dental papilla cells. The cusp
morphology could be seen at the junction of the inner
enamel epithelium and dental papilla. Inner enamel
epithelial cells near the cusp region became stylolitic
in shape, with the nucleolus far from the basalis. The
stellate reticulum had sufficiently developed and the
stratum intermedium appeared between the inner en-
amel epithelium and the stellate reticulum. E55: At
this stage, there were no further changes except the
adoption of a highly stylolitic shape by the inner en-
amel epithelial cells near the cusp region (Figure 1L,
P). E60: By E60, the deciduous molar had reached the
late bell stage of development (Figure 1M, Q). In the
cusp region, dental epithelial cells and mesenchymal cells
were polarized, and the cells lengthened to become pre-
ameloblast and pre-odontoblast. At the same time, the
pink matrix was seen in the cusp region. E65: At E65, con-
tinuous and intact ameloblasts, enamel, dentin, and odon-
toblasts were observed in the molar cusp (Figure 1N, R).

Taken together, the crown development of miniature
pigs’ mandibular deciduous molar were divided into five
main periods as follows (Figure 1B): the dental lamina
stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50),
early bell stage (E50-E60), and late bell stage (E60-E65).
The relatively typical time points are E35 (bud), E45 (cap),
E50 (early bell), and E60 (late bell).

Verification of gene expression

Amelogenin, membrane-associated ring finger 6
(MARCHS®), isolate X269 mitochondrion, DSPP600
(DSPP), enamelin precursor, and caveolin were up-
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Figure 3 Gene ontology (GO) graphs. The unigene sequences were annotated using Interpro2GO software and included in the graphs. Each of
the three categories is presented, including the cellular component (A), molecular function (B), and biological processes (C).
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regulated at E45 compared with those at E60 in the micro-
array (Figure 2A). Ribosomal protein L7, eukaryotic
translation elongation factor 1 alpha (EEF1A1l gene),
prothymosin alpha, selenoprotein P (Seppl), quinoid
dihydropteridine reductase (QDPR) and cytochrome
coxidase were down-regulated at E45 compared with
those at E60 in the microarray (Figure 2B). Valid-
ation of microarray data was achieved by using qRT-
PCR. The six up-regulated and down-regulated genes
were changed accordingly (Figure 2C and 2D). The
mRNA fold changes of all representative mRNAs
were consistent with those in the normalized micro-
array data.

cDNA library overview
Crown development in the miniature pig’s mandibular
deciduous molars could be divided into four relatively
typical periods as noted above. The mandibular de-
ciduous molar germ cells were excised from miniature
pig embryos at the E35, E45, E50, and E60 time
points.

Total RNA from each period was used as template
to synthesize cDNA and construct a cDNA library
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(Additional file 3 and Additional file 4). The titer of the
unamplified ¢cDNA library was approximately 3.0 x
10° cfu/mL. A library comparison showed that all of the
30 selected clones had insert fragments, suggesting that
the recombination rate was nearly 100% (Additional file
5). The primary cDNA library was used to generate
ESTs. Twenty-three thousand and six hundred inde-
pendent white clones were picked randomly for EST se-
quencing. A total of 20,065 ESTs were sequenced from
the cDNA library. After removing the vector sequences
and low-quality sequences (EST length less than
100 bp), 17,520 high-quality sequences were obtained
with an average length of 441.61 bp, ranging from 100
to 681 nucleotides in length. Overall, 87.3% of the
17,520 high-quality sequences were longer than 300 bp.
Cluster analyses assembled the 17,520 high-quality ESTs
into 2,198 contigs and 11,709 singletons (13,907 uni-
genes, Table 1). The average length of the unigenes was
508 bp (range from 100 to 1,367 bp).

Unigene sequence analysis
Unigenes were compared to annotations through the
Gene Ontology Consortium using Interpro2GO. Graphs

Table 2 Partial unigenes with high homology to Homo sapiens known genes

Query name Annotation Score
gdtca_Cluster6467 Homo sapiens cytoplasmic polyadenylation element binding protein 2 (CPEB2), transcript variant F, mRNA 1037
gdtca_Cluster1457 Homo sapiens zinc finger E-box binding homeobox 2 (ZEB2) on chromosome 2 944
gdtca_Cluster10676 Homo sapiens TGF-beta activated kinase 1/MAP3K7 binding protein 3 (TAB3), mRNA 914
gdtca_Cluster11351.seq.Contigl  Homo sapiens splicing factor, arginine/serine-rich 12 (SFRS12), transcript variant 2, mRNA 912
gdtca_Clusterg8807 Homo sapiens zinc finger protein 407 (ZNF407) on chromosome 18 892
gdtca_Cluster2284 Homo sapiens SATB homebox 2 (SATB2) on chromosome 2 884
gdtca_Cluster4583 Homo sapiens SAPS domain family, member 3 (SAPS3), transcript variant 3, mRNA 846
gdtca_Cluster3803 Homo sapiens LUC7-like 3 (S. cerevisiae) (LUC7L3), transcript variant 1, mRNA 799
gdtca_Cluster4617 Homo sapiens fibronectin type Ill and SPRY domain containing 1-like (FSD1L), transcript variant 3, mRNA 797
gdtca_Cluster6088 Homo sapiens nebulette (NEBL), transcript variant 3, mRNA 783
gdtca_Cluster2858 Homo sapiens formin-like 3 (FMNL3), transcript variant 2, mRNA 773
gdtca_Cluster591 Homo sapiens fat mass and obesity associated (FTO) on chromosome 16 765

gdtca_Cluster11523.seq.Contig1

Homo sapiens Rho GTPase activating protein 19, mRNA (cDNA clone MGC:138804IMAGE40082327) complete cds 763

gdtca_Cluster11577.seq.Contigl  Homo sapiens zinc finger CCCH-type containing 6 (ZC3H6), mRNA 729
gdtca_Cluster8595 Homo sapiens TEA domain family member 1 (SV40 transcriptional enhancer factor) (TEAD1), mRNA 729
gdtca_Cluster6631 Homo sapiens zinc finger and BTB domain containing 34 (ZBTB34), mRNA 706
gdtca_Cluster1697 Homo sapiens neuronal PAS domain protein 3 (NPAS3) on chromosome 14 686
gdtca_Cluster2466 Homo sapiens SIX homeobox 1 (SIX1) on chromosome 14 682
gdtca_Cluster1883 Homo sapiens B-cell CLL/lymphoma 11A (zinc finger protein) (BCL11A) on chromosome2 674
gdtca_Cluster8789 Homo sapiens TAR DNA binding protein (TARDPB) on chromosome 1 650
gdtca_Cluster4024 Homo sapiens protease, serine, 12 (neurotrupsin, motopsin) (PRSS12), mMRNA 636
gdtca_Cluster10567 Homo sapiens fibroblast growth factor 14 (FGF14) on chromosome 13 620
gdtca_Cluster9160 Homo sapiens forkhead box D3 (FOX3D) on chromosome 1 618
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Figure 4 Genes from the four time periods were compared with each other. The differentially expressed genes from E35 vs E45, E35 vs E50,
E35 vs E60, E45 vs E50, E45 vs E60, and E50 vs E60 were compared. (A) The number of up-regulated and down-regulated genes in each group is
shown in the histogram. (B) The hierarchical clustering analysis of differentially expressed transcripts at different developmental stages.

based on the GO terms were created (Figure 3). Under  protein complex (Figure 3A). In the category of molecu-
the cellular component category, most transcripts were lar function, the five most abundant transcripts were in-
linked to inherent cellular structure, as well as to the volved in binding, catalytic activity, transporter activity,
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structural molecular activity, and signal transducer activ-
ity (Figure 3B). The most common biological processes
were physiological processes and cellular processes
(Figure 3C).

Based on BLAST results, 78.3% (10,883) of the uni-
genes were annotated to known genes, and 62.2%
(6,772) had a BLAST score greater than 200. There
were 3,024 unknown unigenes (21.7%) in the cDNA
library. Unigenes whose sequences were markedly
similar to known important proteins associated with
dental development were found in this library, includ-
ing ameloblastin, amelogenin, enamelin, dspp, and
dmpl (Additional file 6). What’s more, expression
of known specific transcription factors (Additional
file 7), growth factors (Additional file 8), and related
receptors (Additional file 9) during murine tooth de-
velopment also can be searched in the cDNA library.
These results indicated that the cDNA library will be
useful in facilitating further dental experiments in the
miniature pig model.

Homology searches showed that the top ten species
were as follows: Sus scrofa (5,771), Homo sapiens
(2,122), Bos taurus (894), Equus caballus (467), Pan
troglodytes (310), Canis familiaris (263), Macaca
mulatta (262), Pongo abelii (53), Felis catus (39), and
mouse (33). In the Unigene homology to Homo sapi-
ens, 139 clones exhibited significant similarities to
known genes (score greater than 500). Table 2 shows
23 unigenes with high homology to known Homo sa-
piens genes.
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cDNA expression patterns during tooth development

We found that some cDNA sequences in the library had
high homology to known Homo sapiens genes. Because
detailed descriptive information concerning tooth devel-
opment in Homo sapiens is lacking, miniature pigs are
an optimal choice as a large animal model to investigate
these molecular mechanisms. First, we compared all the
four time periods with each other. The most differen-
tially expressed genes were found between E35 and E60,
followed by the genes between E45 and E60 (Figure 4A).
And the fold change of all transcripts at E45 and E60
were the most significant (Figure 4B). Considering the
germ tissue samples from E35 were small, and may have
contained tissue from other nearby tissues, we blasted
all the cDNA clones from the E45 and E60 time points
against human genome DNA libraries. Twelve highly
conserved genes were up-regulated (Table 3) and 15
highly conserved genes were down-regulated (Table 4).
These results suggest that the 27 highly conserved genes
may be involved in both miniature pig and Homo sapi-
ens tooth development. Furthermore, 6 down-regulated
(DPY30, ENAH, BORA, DAZAP2, NOP2, and DDX24)
and 2 up-regulated genes (SHANK2, and CAMK2N1) in
miniature pigs had higher homology to Homo sapiens
genes compared with those in the mouse (Table 5).

Discussion

In the present study, we constructed a ¢cDNA library
from miniature pig molar tissue over the period of tooth
development. We then confirmed the fold change of

Table 3 Up-regulated genes from E45 to E60 highly conserved homologous with known Homo sapiens genes

TPM-E45 TPM-E60 log2 Ratio(E60/E45) P-Value  FDR

Annotations

Gene

gdtca_Cluster11155.seq.Contig1 833 5111 261722
gdtca_Cluster8257 36.89 102.71 147727
gdtca_Cluster3981 0.01 19.37 10.91961
gdtca_Cluster13121.seq.Contig1 49.06 101.57 1.04986
gdtca_Cluster11734.seq.Contig1 30.68 9148 157616
gdtca_Cluster11879.seq.Contig1 12.96 28.65 1.14447
gdtca_Cluster7989 0.01 439 8.77808
gdtca_Cluster9754 3.97 13.35 1.74963
gdtca_Cluster11696.seq.Contig1 11.77 24.9 1.08103
gdtca_Cluster6950 264 13.84 239023
gdtca_Cluster5165 0.01 1.95 760733
gdtca_Cluster13166.seq.Contig1 1.85 5.7 1.62344

gi|119599067|schwannomin interacting

0 0 protein 1, isoform CRA_c [Homo sapiens]
0 0 gi[169161838|similar to hCG2040565
[Homo sapiens]
gi[254911081|SH3 and multiple ankyrin
222E-16 296E-15 repeat domains 2 (SHANK2), transcript
variant 2, mMRNACT [Homo sapiens]
318613 326612 91\1 19604964|hypothetical protein MGC2747,
isoform CRA_c [Homo sapiens]
550E-13 520F-12 gilt 195889{16\hCGW992991, isoform CRA_a
[Homo sapiens]
1.12E-10 921E-10 gi[119574191]hCG1983891 [Homo sapiens]
349E-10 2.78E-09 gi|10834656|PP2281 [Homo sapiens]
1.36E-09 1.01E-08 gi|7959776|PRO1489 [Homo sapiens]
032E-09 6.53E-08 9i[221046286|unnamed protein product
[Homo sapiens]
222E-08 15107 911226528280]short coiled-coil protein isoform 1
[Homo sapiens]
5.90E-05 000027 gi|187957136|LOC730130 protein [Homo sapiens]
0.00018  0.0007  gi|6653742|7h3 protein [Homo sapiens]
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Table 4 Down-regulated genes from E45 to E60 highly conserved homologous with known Homo sapiens genes

P-Value FDR Annotations

Gene TPM-E45 TPM-E60 log2 Ratio(E60/E45)
gdtca_Cluster2986 233842 25001 -3.22548
gdtca_Cluster5775 6681.11  1182.18 -2.49864
gdtca_Cluster6915 103321 2282 -2.17876
gdtca_Cluster9994 176.92 24.09 -2.87659
gdtca_Cluster6869 141.88 2295 -262811
gdtca_Cluster12512.seq.Contig1 234 0.65 -5.16993
gdtca_Cluster12827.seq.Contig1 41.12 1042 -1.98048
gdtca_Cluster12105.seq.Contig1 22.21 342 -2.69914
gdtca_Cluster12989seqContig2 ~ 29.88 732 -2.02926
gdtca_Cluster12482.seq.Contig1 6.35 0.01 -9.31061
gdtca_Cluster5336 16.26 4.72 -1.78447
gdtca_Cluster5548 9.26 1.95 -2.24754
gdtca_Cluster11214.seq.Contig1 463 049 -3.2401585391
gdtca_Cluster8769 8.86 2.77 -1.67742
gdtca_Cluster919 793 293 -143642

gi|37953286| transforming growth factor,

0 0 beta 2 (TGFB2) [Homo sapiens]
0 0 i|62897645eukaryotic translation elongation
factor 1 alpha 1 variant [Homo sapiens]
0 0 gi|119625564/hCG1820575 [Homo sapiens]
637E-190 266E-188 gi|168984469|retinoblastoma binding protein 7
’ ‘ [Homo sapiens]
: : gi|14211889|protein dpy-30 homolog
7.23E-139  2.68E-137 [Homo sapiens]
gi|119627667|poly(A) binding protein,
396E-40 893E-39 cytoplasmic 4 (inducible form), isoform CRA_b
[Homo sapiens]
6126-30 115628 gil4507797|ubiquitin-conjugating enzyme E2v2
‘ ' [Homo sapiens]
114623 18760 9i242380880Jhypothetical protein
' ’ [Homo sapiens]
. : gi|34533983|unnamed protein product
832E-23  1.34E-21 [Homo sapiens]
: : gi|166014265|enabled-like protein variant
A444E13 448E12 hMenaDvé [Homo sapiens]
312611 264E-10 gi|158256424|unnamed protein product
' ’ [Homo sapiens]
736E-09 5.19E-08 gi[4929627|CGI-79 protein [Homo sapiens]
920E-07  53E-06 gi[211904140|DAZ-associated protein 2 isoform ¢
' ’ [Homo sapiens]
; : gi|119578911|nuclear transcription factor, X-box
296506 1.598-05 binding 1, isoform CRA_a [Homo sapiens]
792E-05 000035 gi|119609186|nucleolar protein 1, 120kDa

[Homo sapiens]

gene expression using qRT-PCR. Using large-scale se-
quencing and ESTs assemblage, a large pool of unigenes
were found in this library. A total of 13,907 unigenes
were assembled from 17,520 ESTs, indicating that re-
dundancy was only 20.6%. Furthermore, 95% of these
Unigenes contain only one or two ESTs, indicating the
positive effect of cDNA library normalization, which can
be used to identify expressed genes in the future.

Table 5 Genes only expressed in Homo sapiens during
the tooth development course of miniature pigs

Query Gene
Down-regulation gdtca_Cluster6869 DPY30
gdtca_Cluster12482.seq.Contig ENAH
gdtca_Cluster5336 BORA
gdtca_Cluster11214.seq.Contig1 DAZAP2
gdtca_Cluster919 NOP2
gdtca_Cluster9198 DDX24
Up-regulation gdtca_Cluster3981 SHANK2
gdtca_Cluster9754 CAMK2N1

Great progress has been made in the study of molecu-
lar mechanisms during tooth morphogenesis in the past
20 years, and most data were derived from studies on
rodent embryos [19]. However, owing to its similarity to
human anatomy and physiology, pig models are superior
in many aspects for the study of human development,
diseases, and pre-clinical therapies [4-6]. Both domestic
pigs and miniature pigs can be used in medical experi-
mentation, but miniature pigs have many advantages,
including an inherently small size, early sexual matur-
ity, rapid breeding, and ease of management [25,26].
The deciduous molar in the Chinese experimental
miniature pig is oblong in shape and has five or six
main cusps. It is bigger and has different morphology
compared with all other deciduous teeth in the man-
dible, and it lies on the end of mandible body. All these
characteristics contribute to being able to easily and
accurately distinguish and isolate the tooth germ.
There are high correlations between the deciduous and
permanent teeth [27]. Therefore, the deciduous molar
was chosen as the first model tooth to evaluate in
miniature pig tooth development.
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There is little information concerning tooth develop-
ment in large animal models [23,24]. Some sequences in
this cDNA library had high similarity with proteins associ-
ated with dental development such as ameloblastin, ame-
logenin, enamelin, dspp, and dmpl [28-31]. Many genes
involved in tooth development remain to be identified.
For example, unigenes with high homology to known
Homo sapiens genes in this library included FOXD3,
SATB2, ZEB2 (Zinc finger E-box-binding homeobox 2
gene), etc. FOXD3, a member of the forkhead family of
transcriptional regulations, plays a role in maintaining the
epiblast and its derivatives and in establishing pluripotent
ESC lines [32]. SATB2 is a recently cloned member of the
family of special AT-rich binding proteins. Sath2™' ™ice
exhibit both craniofacial abnormalities that resemble those
observed in humans carrying a SATB2 translocation and
defects in osteoblast differentiation and function [33].
ZEB2 has been involved in Mowat-Wilson syndrome
(MWS), a multiple congenital anomaly syndrome charac-
terized by a distinct facial phenotype. MWS is caused by
heterozygous mutations or deletions in ZEB2 [34].

Data from this study will facilitate further dental ex-
periments in the miniature pig model. In the present
study, we found that 12 up-regulated and 15 down-
regulated genes may be involved in the miniature pig’s
tooth development. We also found 6 down-regulated
(DPY30, ENAH, BORA, DAZAP2, NOP2, and DDX24)
and 2 up-regulated genes (SHANK2 and CAMK2N1) in
miniature pigs with higher homology to Homo sapiens
genes compared with those in the mouse. SHANK? is a
member of the Shank family of synaptic proteins that
function as molecular scaffolds in the postsynaptic density
[35]. CAMK2N1 (calcium/calmodulin-dependent protein
kinase II) expresses at high levels in osteogenic cells, and
may be a good marker of osteogenic differentiation in mes-
enchymal stem cells [36]. There is very little known about
these genes and their roles in tooth development. Investi-
gating the functions of these genes in tooth development
in a swine model and humans will be of great interest.

In summary, we evaluated the histological features of
miniature pigs’ deciduous molar development and iden-
tified five primary phases. A miniature pig embryo tooth
c¢DNA library was constructed, which contains approxi-
mately 3.0 x 10° cfu with 17,520 high quality EST se-
quences and 13,907 unigenes. The established ¢cDNA
library provides the basis for further tooth development
studies using this animal model.

Conclusion

Our results not only identify the specific transcriptome
and cDNA profile in developing mandibular deciduous
molars of the miniature pig, but also provide useful in-
formation for investigating the molecular mechanism of
tooth development in the miniature pig.
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Availability of supporting data

The supporting data is available in the Genebank. The li-
brary accession numbers is LIBEST_028375. And the Li-
brary name is developing mandibular deciduous molars
of the miniature pig cDNA library.

Additional files

Additional file 1: Primers used for qRT-PCR.

Additional file 2: Excised mandibular deciduous molar germs from
E35 and to E45 in miniature pig embryos. (A, B) The miniature pig
mandible at E35. Red circles indicate the mandibular deciduous
molar area. (C) One side of the mandible of a E45 miniature pig
embryo. (D) Stripped medial mandible. (E) Mandibular stripped of
excess tissue. (F) Isolated mandibular deciduous molar germs. Green
arrow indicates mandible; red arrow indicates germ.

Additional file 3: Agarose gel electrophoresis of total RNA. Total
RNA was extracted from the mandibular deciduous molar germs at each
developmental stage (E35, E45, E50, E60). Total RNA examined by
electrophoresis on 1.1% agarose gels showed two bright bands at 28S
rRNA and 18S rRNA; the former was equal to or more abundant than the
latter, indicating that little or no RNA degradation or contamination
occurred during isolation.

Additional file 4: Agarose gel electrophoresis of double-stranded
cDNA after PCR. One ug (1 pl) of poly(A)" RNA was used as RNA
template in first-strand synthesis. A volume of 2 pl of single-stranded
cDNA served as a template for primer-extension-based, second-stand
synthesis using 21 thermal cycles. Lane M: DL2000 plus marker (Transgen, 5 pl).
Lane 1: 5 pl sample of the double-stranded cDNA product showing a smear
ranging from 0.1 to 3 kb.

Additional file 5: Agarose gel electrophoresis of the PCR products
from randomly selected cDNA inserts (30 plaques) from the
unamplified cDNA library. The size of PCR products were between 1~ 3 kb
for 30 samples. Lane M: DL2000 plus marker (Transgen).

Additional file 6: Known specific protein matrix expression in mice
searched in the cDNA library during tooth development.

Additional file 7: Known specific transcription factor expression in
mice searched in the cDNA library during tooth development.

Additional file 8: Known growth factor expression in mice searched
in the cDNA library during tooth development.

Additional file 9: Known related receptor expression in mice
searched in the cDNA library during tooth development.
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