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Abstract
Background: Caste differentiation in social insects is a type of polyphenism that enables division of labor among 
members of a colony. This elaborate social integration has attracted broad interest, although little is known about its 
regulatory mechanisms, especially in Isoptera (termites). In this study, we analyzed soldier differentiation in the damp-
wood termite Hodotermopsis sjostedti, focusing on a possible effector gene for caste development. The gene for an 
actin-binding protein, HsjCib, which shows a high level of expression in developing mandibles during soldier 
differentiation, is characterized in detail.

Results: To examine the HsjCib gene, full-length cDNAs were obtained by rapid amplification of cDNA ends-
polymerase chain reaction (RACE-PCR) and sequencing. Multiple isoforms were identified, and on the basis of the 
results of northern and Southern hybridization analyses, these isoforms were considered to be transcriptional variants 
from a single gene. On the basis of their sequence similarity to homologous genes of other organisms, functions in 
actin assembly were assumed to be different among isoforms. Expression analysis revealed high expression in the head 
during soldier differentiation, which was consistent with their allometric growth. Although isoform expression was 
observed in various tissues, different expression levels were observed among tissues, suggesting the possibility of 
tissue-specific morphogenetic regulation by HsjCib isoforms.

Conclusion: This study revealed the characteristics and dynamics of the HsjCib gene during soldier differentiation as a 
potential representative of downstream effector genes in caste-specific morphogenesis. From the expression patterns 
observed, this gene is considered to be involved in cephalic morphogenesis and neural reorganization, resulting in the 
establishment of caste-specific morphology and behavior.

Background
Social insects constitute complex societies with caste dif-
ferentiation, and in some cases, they form huge colonies
with vast numbers of individuals. The elaborate integra-
tion of insect societies has intrigued researchers for many
years [1]. Termites (Isoptera, Insecta), which flourish in
abundance and diversity in tropical and temperate zones
and constitute one of the major groups of social insects,
also form complex societies that include various castes
[2,3]. The majority of social-insect research has focused
primarily on hymenopterans (ants, bees, and wasps).
Because the social mode and regulatory mechanisms of

termites are different from those of hymenopterans in
many respects [4,5], termites can provide an essential
source of information for understanding the general and
common features of sociality [6-8].

The morphologies of termite soldiers are highly spe-
cialized [9] and their differentiation is regulated through
mutual interactions with other nest mates [10]. Soldiers
are typical examples of the combination of exaggerated
morphology [11] and polyphenism [12]. The regulatory
mechanisms of polyphenism have been studied in various
aspects and such studies have spurred the development
of a new research field that spans the boundary between
ecology and developmental biology [13]. Recently, the
molecular biological approach for the study of social
insects such as the ant [14-16], honey bee [17-22] and ter-
mite [23-38], has become common. Little is known, how-
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ever, about the developmental basis of morphological
modifications among polyphenic castes. Utilization of the
molecular developmental approach with termites, whose
caste development involves large morphological modifi-
cation, has its own advantages and peculiarities [39].

The mode of postembryonic development and caste
differentiation varies among termite lineages [5]. In the
damp-wood termite Hodotermopsis sjostedti, the pseud-
ergate (seventh or older instar apterous individual) has
the potential to develop into one of several castes
[6,40,41] (Fig. 1). Although a genetic factor is known to
influence caste determination in the termite species
Reticulitermes speratus [42], in termites in general it is
recognized that environmental factors during larval or
pseudergate periods determine the developmental fate of
particular castes [10].

Gene expression is believed to be altered before the
molt in particular castes, in preparation for specific mor-
phologies. Juvenile hormone (JH) has been considered to
physiologically control caste differentiation [43]. In many

termite species, application of JH (including JH analogs
[JHA]) results in differentiation into the soldier form.
And thus, the application of JH (or JHA) is a useful mech-
anism by which to investigate caste differentiation
[44,45].

Among termite lineages, a variety of soldier morpholo-
gies are known, which can be classified into several types.
These types include the biting soldier, reaping soldier,
snapping soldier, or nasute soldier [9]. The focal species
in the present study, H. sjostedti, has a typical biting sol-
dier morphology which is considered to be the most basic
and primitive type among termites. During soldier differ-
entiation, allometric growth of the whole head and man-
dibles has been observed [46]. Before the molt, a specific
morphogenesis causes complex folds to be formed in the
epidermal tissues inside the mandibles; this enables rapid
expansion of the mandibles at the time of molt into pre-
soldiers [47]. In a previous study, we screened the genes
expressed in mandibles during soldier differentiation
using the fluorescent differential display method [28].
HsjCib, a homolog of the ciboulot (cib) gene in the fruit fly
Drosophila melanogaster, is one of the identified genes
thought to be involved in morphogenesis. The cib gene
encodes an actin-binding protein and is categorized as a
multimeric β-thymosin [48,49]. It is known to be required
for the central nervous modification during metamor-
phosis by genetic and developmental study [48,50] and to
regulate actin polymerization by in vitro study [48]. In H.
sjostedti, HsjCib in mandibles was the most abundantly
expressed at the stage of 14 days after JHA application,
which is when specific epidermal morphogenesis occurs.

Multimeric β-thymosins, including Cib, have homology
with monomeric vertebrate Thymosin-β. Multimeric β-
thymosin includes two-five WH2 domains (Wiskott-
Aldrich syndrome protein homology domain 2--one of
the actin-binding domains), while Thymosin-β includes
only one WH2 domain [51-54]. Although their homology
is relatively high, the functions of multimeric β-thy-
mosins and those of Thymosin-β are quite different. Mul-
timeric β-thymosins are thought to promote actin
polymerization, whereas Thymosin-β is believed to
sequester actin monomers and inhibit their polymeriza-
tion. Hertzog et al. [55] discussed this distinction, and
concluded that the amino acid residues at the N terminus
of the WH2 domain are responsible for the different
molecular functions. When the amino acid residues at
the structurally important site in Thymosin-β were
replaced with those of Cib, the molecular function was
changed from sequestering to assembly-promoting
[55,56]. Hertzog et al. [55] also proposed a model to pre-
dict WH2 domain function in many proteins by checking
the amino acid residues at the structurally important site.
The possible mechanisms by which structural differences

Figure 1 Castes of the damp-wood termite Hodotermopsis sjost-
edti. A: Alate. B: Soldier. C: Pseudergates. D: Diagram of the caste-dif-
ferentiation pathway, modified from Miura et al. [41]. The highlighted 
text denotes the castes used in the present study, and the non-high-
lighted, parenthesized letters are the short transitional stages used in 
the study. In the "JHA-Treated Pseudergate" category, we prepared 
several time stages after JHA application. Gray arrows indicate transi-
tions with molting, white arrows indicate those without molting, and 
the black arrow indicates hatching.
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translate to functional differences have been discussed
previously by several authors [57-59].

Caste differentiation and polyphenism are often regu-
lated through JH signaling, although the mechanisms that
link JH signaling and morphological modification remain
largely unknown. Characterization of the molecules
involved in these mechanisms will contribute to the
understanding of the regulation of polyphenism. In the
present study, we focused on HsjCib, whose partial
sequence was previously identified [28] as a gene respon-
sible for morphogenesis during soldier differentiation in
response to JH (JHA). We cloned the full-length cDNA of
HsjCib and found multiple isoforms that may serve two
different molecular functions. Here, we reveal the expres-
sion dynamics of HsjCib using quantitative real-time
polymerase chain reaction (qPCR) and in situ hybridiza-
tion and discuss the possible functional differences
among isoforms.

Results
The full-length cDNA sequence and the number of WH2 
domains
On the basis of the partial sequence of HsjCib previously
identified by fluorescent differential display [28], we
amplified both ends of the cDNA using the rapid amplifi-
cation of cDNA ends (RACE) method and sequenced the
full-length cDNAs of HsjCib (Fig 2). The predicted amino
acid sequence of the longest HsjCib isoform was com-
pared to other organisms with known sequences possess-
ing WH2 domains and found that HsjCib contained five
WH2 domains (Fig 2, 3A and 3E). The numbers of WH2
domains in known genes vary among organisms: Droso-
phila Cib, 3; Caenorhabditis Tetrathymosin, 4; the sea
slug Hermissenda CSP24/29, 4/5; and a sea squirt Ciona
Multimeric β-thymosin, 5 [48,49,59,60]. The number of
WH2 domains in insects varies from three to five, the
evolutionary origins and history of duplication/deletion
being unclear (see Additional file 1 and 2). The functional
significance of the number of WH2 domains is still open
to debate [55,57,59].

The structure of isoforms
Five HsjCib isoforms were identified from cDNA cloning
and sequencing. Four isoforms were truncated compared
to the largest isoform (Fig. 3A and 3B). Of the five iso-
forms, three had the same length: one 1245-bp isoform,
three 1131-bp isoforms, and one 1017-bp isoform (acces-
sion nos. AB534909, AB534910, AB534911, AB534912,
AB534913). Exons 2, 3, 4, and 5 each had a length of 114
bp, which corresponded to 38 amino acid residues and
was the same length as a WH2 domain. On the basis of
the results of Southern hybridization, we considered the
identified isoforms to be splice variants from a single
gene (Fig. 3C). The skipping of exons during splicing pre-

dicted isoforms with five, four or three WH2 domains.
The editing sites of the exons were located in the middle
of the WH2 domains, forming a complete WH2 domain
when two incomplete portions of WH2 domains were
spliced together. By northern hybridization, the splice

Figure 2 cDNA and putative amino acid sequences for the lon-
gest isoform of HsjCib. The 1245-bp cDNA, obtained by 5' and 3'-
RACE, contains a putative ORF that encodes a polypeptide of 202 ami-
no acid residues. Boxed sequences indicate putative WH2 domains 
with a different color for each domain. The gray vertical bars indicate 
positions of introns. The gray shadow indicates a fragment from the 
original differential screening [28]. A potential polyadenylation signal is 
underlined.
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variants were observed to be poorly separated and a
broad band was detected (Fig. 3D). Although another
band was observed at around 2.5 kb, we could not con-
clude whether the band represented an uncloned large
isoform, a paralog, or DNA carry-over. The approximate

arrangement of exons was estimated using the PCR frag-
ments from the genomic DNA (Fig. 3A). The borders
between exons and introns were determined by sequenc-
ing both ends of the PCR fragments.

Figure 3 Isoform structure of HsjCib gene. A: The gene structure of HsjCib inferred from PCR amplification of genomic DNA. Coding regions are 
represented in black. Numbers indicate the lengths (bp) of regions. B: Structure of obtained isoforms. Smaller isoforms were thought to skip some 
exons. The gray bar indicates the fragment used as probes in Southern, northern, and in situ hybridization. D1 to D5 indicates putative WH2 domains. 
C: Southern hybridization indicates that HsjCib exists as a single-copy gene on the genome. D: Northern hybridization for HsjCib. Several isoforms seem 
to overlap between the 0.96- and 1.38-kbp markers. The longer fragment around 2.5 kb may be a paralog or an isoform that has not been cloned. E: 
Alignment of putative amino acid sequences of HsjCib with Drosophila Cib and human Thymosin-β4.
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Western blot analysis
Because the expression of mRNA does not provide strict
evidence of actual protein expression, protein expression
was confirmed by western blot analysis (Fig. 4A). The
results were consistent with the expectations for the three
isoform sizes from cDNA cloning. However, the molecu-
lar weights estimated from relative mobility to markers
(32, 28, and 19 kDa) were larger than those estimated
from the predicted amino acid sequences (23, 19, and 14
kDa, as computed with the pl/Mw tool in ExPASy, http://
ca.expasy.org/tools/). We considered two possibilities for
the inconsistency between the electrophoretic mobility
and predicted molecular weights. One possibility was
that posttranslational modifications caused the difference
in mobility. The homolog in Hermissenda, CSP24, is
known to be phosphorylated [61], and several possible
phosphorylation sites were found in the putative amino
acid sequences of HsjCib (Net PhosK 1.0 server, http://
www.cbs.dtu.dk/services/NetPhosK). No possible N-gly-
cosylation site [N-X-S(T)] was found in the amino acid
sequences (Fig. 2).

Although unlikely considering the size relationships,
another possibility was that the three isoform sizes did
not correspond to the three sizes of bands on the western
blot. In that case, the 32-kDa band corresponded to an
uncloned isoform and perhaps to the 2.5-kb band
observed in northern hybridization. In this possibility, the
smallest isoform (isoform 5) derived by cDNA cloning

should have been scarcely expressed. However, cDNA of
isoform 5 was frequently obtained during the cloning
process. Because the isoform sequences resembled each
other, it was unlikely that cross-reactivity of the antibody
to the different isoforms was very different.

In situ hybridization
Because immunohistochemistry did not produce a dis-
tinct signal (the antibody used was known to be ineffec-
tive for immunohistochemistry, T. Préat, personal
communication), we investigated HsjCib expression in
the mandibular tissue by in situ hybridization using 473
bases of the RNA fragment transcribed as a probe in vitro
(Fig. 3B). On cross sections of developing mandibles, we
identified the HsjCib signal in epidermal tissue (Fig. 4).
Although HsjCib was originally observed in the screening
for mandibular expression, the expression was also
observed in many tissues, as shown in the next section
and in Fig. 5.

Functional differences among HsjCib isoforms
HsjCib isoforms 1, 3, and 4 resembled the "sequestering
form," since the functionally important residues in the N-
terminal side WH2 domain [55] were hydrophilic K
(lysine) and Q (glutamine) (hydropathy index -3.9 and -
3.5 according to the calculation method by Kyte and
Doolittle [62]). HsjCib isoforms 2 and 5 resembled the
"assembly-promoting form" because the functional resi-
dues were A (alanine) and T (threonine) (hydropathy
index 1.8 and -0.7), which were somewhat hydrophobic
(Fig. 5A). These resemblances were not perfect, and we
could not assert their precise functions. The features of
the functionally important sites were different among
HsjCib isoforms, meaning that their properties should
have differed from each other. In the sections below, for
simplicity, isoforms 1, 3, and 4 will be referred to as
"sequestering types," and isoforms 2 and 5 will be desig-
nated "assembly-promoting types." This naming conven-
tion should aid in understanding the complicated
expression analyses.

Quantification of expressions by qPCR
To confirm the gene expression pattern, we performed
qPCR for "head" tissues and "thorax + abdomen" tissues
over the time course (temporal pattern) and for several
tissues at the 14 d (14 days after JHA application) stage
(spatial pattern). To detect the isoform joining of exons,
we initially tried to identify every isoform separately by
making primers on the editing points between exons and
introns (see also Fig. 3B). This procedure, however, failed
to discriminate each isoform separately in the prelimi-
nary experiments. Consequently, we discontinued quan-
tifying all the isoforms separately, and instead designed
primers to quantify exons 1 and 2 separately. Exon 1 was
contained in all the isoforms, and its expression amounts

Figure 4 Western blot and in situ hybridization to detect HsjCib 
expression. A: Western blot analysis detected by anti-Drosophila Cib 
antibody against head homogenates of the termite. The antibody de-
tected strong bands in the 14 d (14 days after JHA application) lane and 
weak bands in the PE (normal pseudergate) lane, which were pre-
sumed to correspond to isoforms of HsjCib. B-E: In situ hybridization of 
the HsjCib mRNA in newly formed mandible (14 d stage). Transverse 
paraffin sections (6 μm) were subjected to in situ hybridization with an-
tisense (B and D) and sense (C and E) DIG-labeled RNA probes. Bars in-
dicate 200 μm (B and C) and 20 μm (D and E), respectively. The 
expression of HsjCib was observed in the mandibular epidermis.
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Figure 5 Expression analyses of HsjCib in various stages and tissues. A: Alignment of WH2 domains in various proteins. Black arrows indicate 
structurally important amino acid residues as suggested by Hertzog et al. [55]. According to the Hertzog's model, HsjCib isoforms 2 and 5 are supposed 
to act as assembly-promoting proteins, whereas isoforms 1, 3, and 4 resemble G-actin sequestering proteins. B: Temporal expression pattern of HsjCib 
during caste differentiation. Exon 1 was contained in all isoforms; consequently, the expression levels of exon 1 indicate the sum of the expressions 
of all isoforms. The expression levels of exon 2 were thought to indicate G-actin sequestering isoforms. PE: Pseudergate; 6 h-14 d: pseudergate of 6 h 
to 14 days after JHA application; PS: Presoldier; S: Soldier; SM: Pseudergate before stationary molt; N: Nymph; LN: Late nymph before imaginal molt; A: 
Alate. White arrows indicate two comparable stages in which the times until the next molt are approximately the same. C: Measurement of expression 
levels of exon 1 and exon 2 in the indicated tissues at 14 d after JHA application.
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were equal to those of all HsjCib isoforms (sequestering +
assembly promoting). Exon 2 was contained in isoforms
1, 3, and 4. Since the existence of exon 2 makes a seques-
tering isoform, its expression amount apparently repre-
sents the amount of sequestering isoforms. With this
experiment, note that castes (PE, PS, S, N and A) were
not necessarily in a same intermolt stage, but use of
pooled samples could average their expression levels.

Quantification of exon 1 in termite heads demonstrated
that the expression level gradually increased during sol-
dier differentiation; the highest expression was observed
at the 14 d stage, just prior to the molt to presoldier (Fig.
5B). The expression level was subsequently reduced in
the presoldier, but was again increased in the soldier.
Exon 1 expression was also increased in the SM stage
(pseudergate before the stationary molt), although the
level was lower than that observed at 14 d. A comparison
indicated that the days to molt were approximately the
same between the SM and 14 d stages [28]. Expression
level was not high before the imaginal molt.

Exon 1 expression levels can be correlated to allometri-
cal changes associated with prospective growth [46,47]. It
is notable that expression level of exon 1 was highest in
the head at 14 d when morphogenesis was taking place.
Thorax + abdomen exon 1-expression was generally
lower than that of the head, although at 14 d and in the
SM stage it was higher than expected. During soldier dif-
ferentiation, expression of exon 1 was much higher in the
head samples compared to thorax + abdomen. Expression
levels were similar in both tissues while in stationary molt
(Fig. 5B white arrows). The expression of exon 2 was
much less than that of exon 1 during soldier differentia-
tion, which meant that HsjCib isoforms without exon 2
(assembly-promoting type) were primarily expressed.

Future wing tissue rapidly grows inside the wing bud in
the late nymph stage (LN) [41], but considering the active
morphogenesis taking place, expression levels of exon 1
was not observed to be high. In LN, exon expression was
not very different, which meant that HsjCib isoforms with
exon 2 (sequestering type) were mainly expressed.

Quantification in various tissues at 14 d revealed
HsjCib expression in every tissue that was examined (Fig.
5C). The exon transcript amounts indicated that the pro-
portions of assembly-promoting type splice variant
(amounts of exon 1 minus amounts of exon 2) and
sequestering type splice variant (amounts of exon 2) were
different among tissues. The largest proportion of assem-
bly-promoting type splice variant was observed in the
brain. This corresponded well to Drosophila, in which
Cib is required in the brain during metamorphosis and
for which only the assembly-promoting type is known. In
Hodotermopsis, the behavioral pattern is greatly altered
during soldier differentiation, where HsjCib is possibly
involved in neuronal modification with axon growth. In

mandible and head epidermis, the proportions of seques-
tering type variants were higher. Isoforms with prospec-
tive functions were expressed differentially among
tissues, suggesting that HsjCib regulates cellular morpho-
genesis in diverse ways among various tissues.

Discussion
This study demonstrates that the expression profiles of
HsjCib, acts as a downstream gene in a regulatory path-
way which correlates with tissue morphogenesis occur-
ring in termite soldier differentiation. The genes
underlying caste differentiation of social insects have
been extensively studied, but the present study is the first
report on the detailed expression properties of a possible
effector gene for caste-specific morphogenesis.

Putative function in soldier differentiation
Previously, we demonstrated the expression of HsjCib in
mandibles during soldier development was approxi-
mately 20-fold higher than that in an intermolt (pseuder-
gate) stage [28]. Recent experiments show an almost
ubiquitous expression of the gene throughout the body.
HsjCib expression levels in the thorax + abdomen during
stationary molt was unexpectedly equivalent to that in
soldier differentiation. Although it is not a specific gene
to soldier differentiation, HsjCib is required for every
molt.

Conspicuous morphogenesis in the epidermis and fat
bodies before the presoldier molt of Hodotermopsis cor-
relates closely to elevated HsjCib expression in the head
as well as the thorax + abdomen at the 14 d stage [47,63].
In Drosophila, Cib is involved in neuronal modification
during metamorphosis [48]. During developmental mod-
ification in the brain of Hodotermopsis, neuronal changes
required for soldier behavior occur [64], implicating high
HsjCib expression levels in the axonal growth, retraction
or synaptic development during this stage.

Soldier differentiation is a peculiar developmental
pathway which was acquired only once in the ancestral
lineage of termites [5,39]. The present study showed that
HsjCib has ubiquitous expression, but when considering
its responsiveness to JHA treatment and linkage to pre-
soldier-dependent morphogenesis, the JH-dependent ele-
vation of Cib expression seems to have evolved in the
lineage from an ancestral termite to Hodotermopsis. This
supports the idea that a preexisting gene recruited for
exploitation in soldier differentiation acquired a new reg-
ulatory mechanism and novel way of morphogenesis.

Relationship between functions and sequence difference 
among isoforms
The expression level of the assembly-promoting type
exon tended to be higher than the sequestering type.
These proportional differences imply the control mecha-
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nism of these two types. Further molecular functional
analysis of HsjCib would require protein purification or
recombinant protein synthesis as well as subsequent in
vitro analysis with actin molecules.

RNA interference (RNAi) is also a way to test the func-
tion of HsjCib. However, in our preliminary RNAi experi-
ment did not provide clear results of phenotypic impacts
(see Additional file 1).

The role of HsjCib among cytoskeleton-regulating 
molecules
Actin is one of the fundamental cytoskeletal components;
its assembly and disassembly are the most important pro-
cesses of morphogenesis at the cellular level [65]. This
mechanism was thought to be regulated by various actin-
binding proteins [51]. In the present study, we analyzed
one gene, HsjCib, as a downstream gene in caste differen-
tiation in the termite. Multiple actin-binding proteins
have been shown to regulate cellular morphogenesis in
animals [51,66,67]. In the termite, other proteins, such as
Profilin, ADF/Cofilin and CAP [51,67] in addition to
HsjCib could be cooperatively involved in cellular mor-
phogenesis.

Morphogenetic regulation during soldier differentiation
Cytoskeletal regulators are influenced at multiple levels
by various molecules. In our previous work, regulatory
molecules such as G-protein-related factor RhoGEF and
splicing factor U2AF were revealed to be upregulated in
developing mandibles during soldier differentiation [28].
Considering that soldier differentiation in the termite is
triggered by a high JH titer, these genes would be regu-
lated downstream of the JH-signaling cascade. The
intrinsic JH titer and histological aspects of hormone-
producing glands have been studied extensively in the
focal species [68]. Because the expression of HsjCib was
already altered at 6 h after JHA application, it is conceiv-
able that the expression was directly controlled by JH or
through a small number of regulatory factors. Further
analysis will shed light on the mutual relationships among
these factors and the overall picture of soldier differentia-
tion regulation.

In the black marching termite Hospitalitermes, which is
phylogenetically distant from Hodotermopsis, soldier
mandibles do not develop; instead, a horn-like structure
called a "nasus" is formed during soldier differentiation
[69]. Folding structures of the epidermis and their subse-
quent unfolding and growth after the molt into presoldier
are common mechanisms in biting soldiers (e.g., Hodoter-
mopsis) and nasute soldiers (e.g., Hospitalitermes)
[47,69], suggesting that functions of various genes
(including cib homolog) would be conserved. Extensive
search with expressed sequence tag (EST) analysis, which
has already been performed in Reticulitermes [31,38], will

help to obtain a more comprehensive picture of this
unique morphogenesis.

There is limited knowledge regarding the regulatory
mechanism of the exaggerated morphology and pheno-
typic plasticity of insects [12,70-73]. The generalized
question would be if there is a common molecular bases
among independent lineages of species with exaggerated
morphologies. The regulatory mechanism for phenotype
and their connection to the subsequent processes of mor-
phogenesis are important for understanding phenotypic
evolution.

Conclusion
The present study documents the characteristics of the
termite homolog of an actin-binding protein gene,
HsjCib, which is one of the downstream genes for soldier
differentiation. HsjCib includes up to five WH2 actin-
binding domains, and functional differences in actin
polymerization among isoforms were predicted on the
basis of their similarity to homologous genes of other
organisms. During caste differentiation, multiple iso-
forms were expressed with different quantitative ratios in
various tissues. We propose the high probability that the
functions of these isoforms during soldier differentiation
involve cephalic morphogenesis and neural rearrange-
ment, enabling soldier-specific exaggerated morphology
and defensive behavior.

Methods
Insects and RNA extraction
Colonies of H. sjostedti Holmgren (Isoptera, Termopsi-
dae) were sampled from rotten wood in evergreen forests
on Yakushima Island, Kagoshima Prefecture, Japan, from
May 2003 to 2007. They were kept in the laboratory as
stock colonies at approximately 25˚C under constant
darkness. Total RNA was extracted from various castes
and stages (Fig. 1D) determined by their morphology
[28,40,41]. Soldier differentiation was induced by the
ingestion method of a juvenile hormone analog (JHA,
pyriproxyfen, Sumitomo chemicals) [45], and tissues
were analyzed by RACE, northern hybridization, western
blot and in situ hybridization. The topical application
method of JHA [23] was used for tissue examination via
qPCR. Individuals from one or two colonies were used
for each experiment utilizing seven colonies in total.

Cloning of full-length cDNA by RACE
Total RNA was extracted from the mandibles of 14 d
pseudergates (14 days after JHA application) using an
RNAgents Total RNA Isolation System (Promega). Total
RNA was reverse-transcribed with oligo(dT) primer, and
RACE-PCR was performed using a SMART-RACE Kit
(BD Bioscience). The PCR product was subcloned into
pGEM vector with a pGEM-TA Cloning Kit (Promega).
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Nucleotide sequence was determined with a BigDye Ter-
minator v3.0 Kit and an ABI 310 Genetic Analyzer
(Applied Biosystems).

Southern hybridization
Genomic DNA was extracted from whole insects (with-
out guts) using a Wizard Genomic DNA Extraction Sys-
tem (Promega). Extracted DNA was digested with
restriction enzymes (BamHI or SacI) for 48 h, separated
in an agarose gel, and transferred to a positive-charge
membrane, Hybond N+ (Amersham). The genomic
HsjCib allele was detected by an Alkphos Direct Labelling
and Detection System (Amersham). The 473-bp DNA
fragment was used as a probe, as indicated in Fig. 3B.

Northern hybridization
Total RNA was extracted from 160 individuals of 14d,
using an RNAgents Total RNA Isolation System (Pro-
mega). Poly(A) RNA was isolated from total RNA using a
PolyATract mRNA Isolation System (Promega). Poly(A)
RNA (23 μg) was separated in an agarose gel, and trans-
ferred to a positive-charge membrane, Hybond N+
(Amersham). HsjCib mRNAs were detected by an Alk-
phos Direct Labeling and Detection System (Amersham).
The 473-bp DNA fragment was used as a probe, similar
to Southern hybridization.

Western blot analysis
The heads of each of two normal pseudergates and 14 d
pseudergates were homogenized in lysis buffer, and the
protein quantities were calibrated by optical density (OD)
at 280 nm using a protein quantification mode of a Nano-
Drop ND-1000 spectrophotometer. Proteins were sepa-
rated in a sodium dodecyl sulfate (SDS)-polyacrilamide
gel and electroblotted onto a polyvinyl difluoride mem-
brane (Cosmo Bio). The proteins bound to the membrane
were probed with anti-Drosophila Cib rabbit antiserum at
1:2000 dilution [48] followed by an anti-mouse IgG con-
jugated with horseradish peroxidase at 1:2000 dilution.
Bands were visualized by fluorography with an ECL
Western Blotting Detection System (Amersham).

In situ hybridization
The mandibles were dissected from 14 d pseudergates
and embedded in paraffin, after which cross sections
were made, as described by Koshikawa et al. [47], except
that 4% paraformaldehyde was used instead of FAA for
fixation and all steps were performed under RNase-free
conditions. The target gene in the sections was detected
using an ISHR Starting Kit (Nippon Gene). Briefly, the
DIG-labeled RNA probe was prepared by in vitro tran-
scription from a DNA fragment (473-bp DNA, as indi-
cated in Fig. 3B, plus a T7 or SP6 promoter sequence) and
hybridized to rehydrated sections. The signal was

detected by an alkaline phosphatase-labeled anti-DIG
antibody with NBT/BCIP solution as substrate.

Quantification of expression levels among developmental 
stages
Total RNA was extracted from 14-20 heads and thoraxes
+ abdomens of various castes and transitional stages (Fig.
1D) with an RNAgents Total RNA Isolation Systems (Pro-
mega). Individuals used were essentially from a same col-
ony to unify the genetic background. Reverse
transcription was performed with random hexamers. The
expression levels at different stages were quantified by
qPCR with a Power SYBR Green PCR Master Mix and an
ABI Prism 7000 Sequence Detection System (Applied
Biosystems). As an endogenous control of constitutive
expression, we used 18S rRNA gene sequences
(AF220567). When β-actin was used as an endogenous
control, results were similar to 18S rRNA (data not
shown), but due to high expression in the soldier caste
and inconsistent expression, 18S rRNA was the preferred
control [74]. Primer sequences for qPCR were as follows:
HsjCib-Exon1F, AGGACCTGCCCAAGGTGAA;
HsjCib-Exon1R, CTTCCTGTCTTGAATCCTTCCAA;
HsjCib-Exon2F, GACAACACAGCGAGCTTATTCAA;
HsjCib-Exon2R, GAGTGTTGGTCCGCTTTAACCT;
Hsj18S-F, CTTGCAATTGTTCCCCATGA; and Hsj18S-
R, ACGTAATCAACGCGAGCTTATG. The baseline and
threshold for the Ct (cycle threshold) were set automati-
cally. Each category was tested in triplicate, and standard
errors were calculated by the relative standard curve
method as described in User Bulletin 2 for the ABI Prism
7700 Sequence Detection System (Applied Biosystems).
Statistic significances were analyzed by one-way ANOVA
and Tukey's HSD test (see Additional file 1 and 3).

Quantification of expression level among tissues
Each of seven normal pseudergates and 14 d pseudergates
was dissected for various specific tissues (mandibles,
brain, mandible closer/opener muscle, head epidermis,
leg, fat body, body epidermis, and gut), and total RNA
was extracted from them with an SV Total RNA Extrac-
tion System (Promega). The quantification methods used
were the same as those described above.
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