Skip to main content
Figure 1 | BMC Developmental Biology

Figure 1

From: Tissue-specific requirements for specific domains in the FERM protein Moe/Epb4.1l5 during early zebrafish development

Figure 1

Injection of moe mRNA rescues defects in moe- embryos. (A-B) At 60 hpf, in wild-type embryos, the floor of the diencephalic ventricle is visible (A, white arrow head), the RPE is uniform, and the body axis is straight. (C, D) In moe- embryos, the ventricles are small or absent, the RPE is patchy, the tail curves and there is pericardial edema (D, arrow). (E, F) In moe- embryos injected with moe mRNA, the floor of the diencephalic ventricle is visible (E, white arrow head), the RPE is uniform, and the body axis is straight but mild pericardial edema persists (F, arrow). Anti-Moe labeling of 60 hpf wild-type embryos (G), moe- embryos (H), and moe- embryos injected with moe mRNA (I): the plexiform labeling in moe- embryos injected with moe mRNA (I, double arrowheads) is largely background. Adherens junctions (ZO-1, green) and panCrb labeling (red) are apically localized at the retina (arrow) and brain ventricle surface (asterix) in wild-type (J) and moe- embryos injected with moe mRNA (L), but are ectopically localized within the developing eye (arrow) and at the presumptive brain midline in moe- mutants with abnormal ventricle formation (asterix, K). High magnification confocal z-projections of TO-PRO-3 nuclear staining, and ZO-1 and panCrb labeling in the retina and brain in wild-type (M, N), moe- (O, P), and moe- embryos injected with moe mRNA (Q, R) at 60 hpf. (G, J, H, K, I and L are all single confocal z-sections). Scale bars, 50 μm (G-L), 10 μm (M-R).

Back to article page