Skip to main content
Figure 2 | BMC Developmental Biology

Figure 2

From: Sex-specific DoublesexM expression in subsets of Drosophilasomatic gonad cells

Figure 2

Gonad development. Foregut and hindgut (dark-gray); anterior and posterior midgut (light-gray); somatic gonadal precursors (purple); germ cells (yellow); male-specific somatic gonadal precursors (orange); somatic gonadal precursors of the hub (red); and a previously undescribed group of cells (green) are indicated. (A) Stage 12 embryo. (B) Higher magnification view of the outlined area in A. (C) Stage 13 embryo. (D) Higher magnification view of the outlined area in C. (E) Stage 17 male embryo. (F) Higher magnification view of the outlined area in E. Cartoons of embryonic gonad development were adapted from Hartenstein [52]. During gonad formation (A, B) the germ cells and the associated somatic gonad precursors co-migrate towards abdominal segment 5, where they begin to coalesce to form the gonads [53, 54]. During and after gonad coalescence (C, D), the germ cells are intermingled with the somatic gonad cells [41]. Prior to gonad coalescence male-specific somatic gonadal precursor cells, specified in parasegment 13 in both males and females, are located posterior and ventral to non-sex-specific somatic gonad precursor cells. During stage 13 these cells move toward the gonad in both sexes, but only in males do these cells join the posterior of the coalescing gonad. In females these cell die, making the surviving ones "male-specific" [21]. The anterior somatic gonad also becomes sexually dimorphic early during gonad development (E, F). The hub, a cluster of somatic cells required for germline stem cell maintenance in the adult testis, forms anteriorly in the male embryonic gonad [29]. Later in stage 17, we saw another group of cells envelop the embryonic testis (E, F). The identity of these cells is uncertain, but they may be the precursors of the testis sheath [17].

Back to article page