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Abstract

Background: The GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often
functions as a key regulator of lineage specification during development. It is the earliest known marker of the
primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATAG6 is expressed in early cardiac
mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and
endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the
Gataé locus has been associated with certain types of cancer affecting endodermal organs.

Results: We have generated a Gata6™ "¢ knock-in reporter mouse allele for the purpose of labeling GATA6-
expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell
resolution.

Conclusions: Expression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through
mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon
endoderm differentiation. Gata6?? Venu/H26-Venus homozygous embryos did not express GATA6 protein and failed to
specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of
Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein
expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus
with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and
hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such
as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated
known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder,
stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall
bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall,
Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily
visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous
GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the
Gataé locus during development, as well as its silencing or reactivation in cancer or other disease states.
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Background

GATA-binding factor 6 (GATA6) is a member of the
GATA family of zinc finger transcription factors that are
characterized by their DNA binding domain [1]. GATA
factors are highly conserved across vertebrate species,
which include six members of the family [2, 3]. They are
also evolutionarily conserved among invertebrates (D.
melanogaster and C. elegans) where they participate in
heart and endoderm formation [4]. In humans, de novo
mutations in the Gata6 locus cause haploinsufficiency
that is associated with congenital heart malformations
and neonatal diabetes due to pancreatic agenesis [5-10].

During pre-implantation embryo development in mice,
Gatab6 is required for formation of extra-embryonic tis-
sues [11-14]. In the early mouse blastocyst (32—64 cell
stage), GATAG6 protein is uniformly expressed in the
inner cell mass (ICM) and trophectoderm (TE) [12, 15].
By the mid-blastocyst (64—100 cell) stage, expression of
GATAG6 in the ICM becomes restricted in a mosaic
‘salt-and-pepper’ pattern [15, 16] and co-localizes with
GATA4 [15, 17]. At this stage, exclusive enrichment
of GATAG6 serves as the earliest known determinant
of the primitive endoderm (PrE) lineage, which is the
precursor to the parietal endoderm (ParE) and vis-
ceral endoderm (VE) [18-20]. GATAG®6 is necessary for
PrE specification in the mouse embryo, and either
GATA6 or GATA4 are sufficient to promote differenti-
ation into extra-embryonic endoderm from embryonic
stem (ES) cells [13, 14, 21, 22]. Gata6"’" heterozygotes
have delayed PrE specification and a reduction in the
number of cells that adopt a PrE fate at the late blastocyst
stage [13, 14].

Following implantation, strong Gata6 expression con-
tinues in extra-embryonic tissues; namely the ParE
which deposits Reichert’s membrane that lines the par-
ietal yolk sac, and the allantois which will contribute
blood vessels to the umbilical cord [18]. Weaker expres-
sion of Gata6 mRNA can be observed in the VE that
gives rise to the visceral yolk sac and a fraction of the
embryonic gut endoderm, although GATA6 protein
levels in the VE are diminished by gastrulation stages
[18, 19, 23, 24]. Tetraploid embryo complementation,
where only the embryonic tissue was null for Gataé,
demonstrated that GATA6 is indispensible for embry-
onic liver development [25]. Heart development in con-
trast does not require embryonic expression of Gata6,
likely due to compensation by Gata4, which shares 90 %
amino acid sequence homology with the DNA-binding
domain of GATA6 [26] and is also expressed in the
myocardium [25]. When both factors are conditionally
deleted, cardiac progenitors are specified even though
the heart does not form [27]. Gata6" ;Gata4*’~ com-
pound heterozygotes die by E13.5 with cardiovascular
anomalies [28].
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After gastrulation, Gata6 is expressed in the cardiac
crescent at the headfold stage (E7.75), as well as in the
lateral plate mesoderm, primary and secondary heart
fields, and heart tube [18, 27]. By E9.5, Gata6 expression
is restricted to the heart myocardium and gut endoderm
where it persists throughout development [12, 18]. Later
onset of Gata6 expression during development is ob-
served in arterial smooth muscle cells, the bladder, lung
bronchi, and the urogenital ridge; none of which co-
express Gata4 [18]. However, both Gata6 and Gata4 are
expressed throughout the pancreatic epithelium during
early specification and expansion. Then, later in develop-
ment their expression domains become mutually exclu-
sive with Gata6 restricted to cells of the endocrine
pancreas [29, 30]. When either factor alone is condition-
ally ablated in the pancreas, only mild and non-
persisting defects are observed. However, tissue-specific
deletion of both GATA6 and GATA4 factors results in
pancreatic agenesis [31].

In adult organs, Gata6 expression continues in the heart,
lung, stomach, small intestine, liver, bladder, pancreas, ad-
renal glands, ovaries, and skin [18, 32—36]. Developmental
expression of GATAG is extensive in the intestinal epithe-
lium, but later becomes exclusive to the enteroendocrine
lineage of adults [37, 38]. GATAG is also the only GATA
family member that is expressed in adult vascular smooth
muscle cells [32, 39]. Misregulation of GATA6 has been
linked to various tumor expression profiles. Loss of
GATAG is common in ovarian cancer and may lead to de-
differentiation of ovarian epithelial cancer cells and in-
creased occurrence of aneuploidy [40]. Reduced GATA6
activity may directly impact metastatic progression of lung
adenocarcinoma [41], while overexpression of GATAG6 is
associated with poor prognosis in esophageal adenocarcin-
oma [42]. In colorectal cancer, high levels of GATA6 pre-
dict the likelihood of metastasis to the liver [43], and
overexpression may promote survival of oncogenic cells in
gastric cancer [44]. GATAG6 is also a useful marker of
pediatric germ cell tumors [35].

Given the importance of Gata6 as a key regulatory fac-
tor during development as well as in particular adult or-
gans, it would be useful to have a method of identifying
and tracing the fate of Gata6 expressing cells. While other
Gata6 transcriptional LacZ reporters exist [12, 45], a
nuclear-localized fluorescent reporter instead would be
suitable for live imaging and cell sorting. In this report, we
describe a new Gata6'?"V*" knock-in mouse line that
acts as both a loss-of-function and transcriptional reporter
allele. In mice, the bright nuclear-localized H2B-Venus
yellow fluorescent protein reporter correlates well with
endogenous GATA6 protein and recapitulates tissue-
specific expression patterns from pre-implantation stages
of embryonic development to adulthood. Gata6™?% Ve
will be a useful reporter for live imaging the dynamics of
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transcriptional activation in individual cells that are ex-
pressing, or recently have expressed Gata6. It could also
be used for studies and analysis of Gata6 expression
in endoderm and mesoderm lineages in mice, includ-
ing the isolation of these cell populations. Further-
more, expression of Gata6'?%V¥" could be utilized
to assess misregulation of the locus that may occur at
the onset and/or as a consequence of disease states
such as cancer.

Results and discussion

Generation of Gata6"%V¢"s knock-in reporter mice

An enhancer element located -8 kb from the Gata6
transcriptional start site is sufficient to drive expression
of GATAG in the heart and gut [46—48]. To obtain a re-
porter that recapitulates the full spectrum of Gata6
transcriptional control, we targeted the endogenous
Gata6 locus by modification of a EUCOMM knockout-
first construct [49, 50]. Specifically, we targeted H2B-
Venus to the first non-coding intron of the mouse
Gata6 gene, upstream of two alternative translation ini-
tiation codons located 438 bp apart from one another
within Exon 2 (E2, Fig. la) [48]. Targeted Gata6'™"
Venus/+ ES cells were injected into mouse blastocysts to
generate chimeric mice.

Expression of Venus was examined in ES cells, which
normally do not express GATA6. Accordingly, the
Venus reporter was not detected in pluripotent
Gata6™BVers/+ ES cells (Fig. 1b). To determine if
Gata6™5Ve"s’+ performs faithfully as a reporter in
cells, we directed the differentiation of ES cells into
endoderm, which expresses Gata6, using three different
methods. First, Gata6'?%"V¥"“/* ES cells were cultured
under conditions to promote formation of embryoid
bodies, which are suspended aggregates of cells capable
of differentiating into all three germ lineages. Embryoid
bodies did not initially express Venus, however Venus
+ cells were observed by Day 8 in both endoderm cells
located on the surface of the bodies as well as in meso-
derm progenitors located inside (Fig. 1c). Using growth
factors, we also differentiated Gata6™2V"/* ES cells
into definitive endoderm. Upon treatment with Activin
A, GSK3 inhibitor, and the BMP inhibitor Dorsomor-
phin [51], activation of Venus was seen in Gata6™?5"
Venus/+ cells starting at Day 3 and increasing in fre-
quency up to Day 5 (Fig. 1d). Finally, Gata6™?5 Ve /+
ES cells were directed to differentiate towards a PrE
fate by transiently overexpressing GATA4-mCherry,
making use of a single-copy Tet-ON system for indu-
cible gene expression formed by Cold]”e O Gatat
mcherry/s and R26™MTA* alleles present in the back-
ground of reporter ES cells [50, 52, 53]. Upon treat-
ment with Doxycycline for 2 days, induction of
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GATA4-mCherry was sufficient to activate expression
of Venus in Gata6HZB»Venus/+'ColA1TetO»GataéE—mCherry/

*R26M2TTAT ES cells (Fig. le, [50]).

Expression of H2B-Venus reporter is restricted to primi-
tive endoderm
To assess Venus expression in live embryos, Gata
Venus/+ plastocysts were collected at E3.5 and imaged
over the course of 17 h by laser scanning confocal mi-
croscopy. At these stages, Venus was expressed in the
ICM and TE at levels that were bright enough for live
time-lapse imaging (Fig. 2a). Furthermore, differential
levels of nuclear Venus signal within the ICM were de-
tected. To assess differential expression of Venus in each
blastocyst lineage, Gata6™25V*"“/* blastocysts were
fixed at E3.5 (n =4 embryos) and E4.5 (n=3 embryos)
and stained for endogenous GATAG6 (Fig. 2b). Overall,
cells that expressed Venus also expressed GATAS®6,
mainly in the PrE. However, Venus was present in
GATAG6-negative cells in the ICM, possibly due to trans-
lational repression mediated by sequences present in the
wild-type Gata6 mRNA but not the reporter mRNA, or
as a consequence of the longer half-life of the H2B-
Venus reporter compared to GATA6 protein. For ex-
ample, Notch signaling reporter mice also express an
H2B-Venus reporter and, in these mice, the perdurance
of the reporter protein acts as a short-term lineage
tracer of cells receptive to Notch signaling [54].
Perdurance of Venus may explain low-level expression
that continues in the epiblast (Epi) that may be prohibi-
tive for its use as a PrE-only reporter in the blastocyst,
but could remain useful as a short-term lineage tracer.
Confocal z-stacks were segmented using the nuclear seg-
mentation algorithm MINS (Modular Interactive
Nuclear Segmentation) to quantify fluorescence intensity
in single cells. PrE cells (GATAG6 positive) displayed sig-
nificantly higher levels of Venus than Epi cells at both
blastocyst stages (p < 0.01, Fig. 2¢). Furthermore, we ob-
served a highly significant correlation between the level
of GATA6 and Venus protein levels in PrE cells at both
E3.5 (r=0.6581, p<0.001) and E4.5 (r=0.3257, p<
0.001; Fig. 2d). At E3.5, we also observed a weak, al-
though significant correlation (r=0.2512, p <0.05) be-
tween the levels of GATA6 and Venus in Epi cells
(Fig. 2d). The absence of correlation in Epi cells at
E4.5 (r=-0.1793, p =0.957; Fig. 2d) suggests that the
correlation at E3.5 may be due to residual GATA6
protein found in Epi cells at that stage.

H2B-
6

Gata6"?8Ve""s is a loss-of-function allele

To confirm that Gata6™5V*" is a loss-of-function al-
lele for endogenous GATA6, Gata6'?5Vers/H2B-Venus
blastocysts were immunostained for expression of
GATAG (labels the PrE) and NANOG (labels the Epi) at
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Fig. 1 Gata6™*"*" targeting strategy and reporter expression during endoderm differentiation of ES cells. a The wild-type Gata6 and targeted
Gata6™2"e"s alleles. Exon 1-7 (E1-7), non-coding regions (white boxes), open reading frame (black boxes), Engrailed 2 (En2), Neomycin cassette
(NEQ), single polyadenylation sequences (pA), rox sites (grey triangles), loxP sites (black triangles), FRT site (white triangle), start codon (ATG), stop
codon (TAG). Asterisk indicates that the ATG is one of two translational start sites located within Exon 2. b Gata6™""* £S cells do not express
Venus while maintained in the pluripotent state in media containing serum and LIF. ¢ Embryoid body formation from Gata6™* "¢+ ES cells.
Expression of Venus occurs on the surface of embryoid bodies by Day 8. Cryosections stained with Phalloidin showed expression of Venus both
on the surface and inside the embryoid bodies. Scale bar is 100 um. d Growth factor treatment using Activin A directed Gata6 ™5Vt gS cell
differentiation into the endoderm lineage resulting in upregulation of Venus by Day 5. e Overexpression of a single copy of GATA4-mCherry using
the Tet-ON system in Gatag' 25 Venss/+ Coja 1 Tei0-Catad-mCheny/s po g2+ £ calls. Upon treatment with Doxycycline (DOX) for 48 h, cells were driven
to differentiate towards the extraembryonic endoderm lineage resulting in activation of Venus expression. Differential interference contrast (DIC)

E3.5 (Fig. 3a). At this time, GATA6 and NANOG ex-
pression begin to resolve into a mutually exclusive ‘salt-
and-pepper’ expression pattern defining PrE and Epi
precursors respectively. This occurs prior to lineage seg-
regation in which PrE cells are sorted to the surface
while Epi cells remain in the ICM. Gatae'28-Vemus/H2B
Verus homozygous blastocysts did not express GATA6
protein and instead expressed NANOG in all ICM cells
which fail to specify PrE, similar to what was observed
in mutants made with other Gata6 null alleles (Fig. 3a,
[13, 14]. Venus continued to be robustly expressed in

the ICM in the absence of GATAG6 protein, possibly due
to the presence of transcriptional machinery that nor-
mally activates the Gata6 locus despite the inability to
produce GATAG6 protein. Alternatively, it could mean
that downstream factors that typically repress the Gata6
locus are dependent on GATA6 protein. Again, MINS
was employed on confocal z-stacks to quantify fluores-
cence intensity in single cells. As expected, Gata6'*"
Venus/+ heterozygous blastocysts had a reduced number
of cells that adopted a PrE fate (Fig. 3b) [13]. The levels
of Venus in Gata6™?BVers/H2BVerus 1 omozygous
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Fig. 2 Venus and GATAG expression in blastocyst-stage embryos. a Live imaging of Gata6™® ¢+ heterozygous blastocysts for 17 h from
E3.5-E4.25. Venus is expressed both in the ICM and TE. Schematic diagram of E3.5 stage blastocyst depicts ‘salt-and-pepper’ distribution of cells
fated to Prk (GATA6+, blue) and Epi (NANOGH+, red), while TE is indicated as green. By E4.5, PrE and Epi cells have sorted to the exterior versus
interior of the ICM, respectively. b Co-localization of Venus (green) with endogenous immunolabeled GATA6 protein (blue) in fixed Gata6 8 Venus+
embryos. Nuclei are stained with Hoechst (grey). For (@) and (b), images are 5 um projections of whole z-stacks. ¢ Box plots showing the level of Venus
expression in each blastocyst lineage (TE, Trophectoderm; EPI, Epiblast; PRE, Primitive Endoderm) in Gata6™™® "+ heterozygous blastocysts at E3.5
and E4.5. Each dot represents the average level of Venus expression (as logarithm) for each embryo and lineage (n =4 embryos at E3.5; n =3 embryos
at E4.5). PrE cells expressed significantly higher levels of Venus than EPI cells at both stages (ANOVA, with post-hoc Tukey's range test; p < 0.01).
d Scatter plots showing the expression of Venus and endogenous GATAG6 (as logarithms) in ICM cells of all embryos at each stage (blue: PrE;
red: EPI cells). Expression levels of Venus show a positive and significant correlation with those of GATA6 PrE cells (blue) at both E3.5 and E4.5.
A weak correlation between Venus and GATAG6 levels was observed in the EPI of E3.5 but not E4.5 embryos. Pearson’s correlation coefficient and
p values are shown in the graphs next to the corresponding group. ** =p < 0.01 Scale bars =20 um
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Fig. 3 Gatag B VenusH28Venss homozygous blastocysts exhibit a Gataé null phenotype. a Immunofluorescence for GATA6 and NANOG protein in
Gata6™" (+/+; wild-type) Gata6™&"*"*’* (Venus/+; heterozygous) and Gata6™® Ve s/#28Venus (yons/Venus; homozygous) blastocysts at E3.5.
Gatae 25 Venus/H2EVenus 1 rants did not express GATAG protein, and instead expressed NANOG in all ICM cells even though the reporter is
transcriptionally active. Nuclei are stained with Hoechst (blue). b Quantification of cells with epiblast (EPIl, NANOG+) versus PrE (PRE, GATAG+)
identity at E3.5. Cells that did not adopt a clear identity were marked as double positive (DP) for both NANOG and GATAG. Gatag'™?8 Venus/H28venus
homozygotes did not specify PrE, and Gatas'™?%""""* heterozygotes had a relatively reduced number of cells with PrE identity and increased
numbers of double positive cells with undecided identity. Gatag"?® Ve"sH26Vends empryos with both alleles of the reporter, and effectively a Gata6
null, had higher levels of Venus expression compared to Gataé™? """ embryos with only one reporter allele. This would suggest that GATA6

either does not regulate, or negatively feeds back on, Gata6 gene expression.

embryos were higher compared to Gata6™?5 Ve s/t

heterozygous embryos (Fig. 3b). This could be due to bi-
allelic expression of the reporter in homozygous
embryos.

Early post-implantation expression of Gata6''28"e"s

To assess the expression of Gata6'?? "¢ at early post-
implantation stages, Gata6"2""*"’* embryos were col-
lected from E5.5 to E6.0 and immunostained for en-
dogenous GATAG6 protein.

Gata6"™"V"’* embryos were morphologically indis-
tinguishable from wild-type littermates except for their
fluorescence. In wild-type embryos, GATA6 protein was
expressed throughout the extraembryonic VE (exVE)
and embryonic VE (emVE) at E5.5. Venus was also de-
tected in the VE at E5.5, and optical sectioning con-
firmed that the reporter was not active in the Epi or
extra-embryonic ectoderm (Fig. 4a). At E6.0, prior to
formation of the primitive streak that is (referred to as
pre-streak), expression of Venus continued in through-
out the VE. Co-expression of GATA6 and Venus was ob-
served in the emVE on the surface of the embryo, but
neither were detected in the Epi or extra-embryonic
ectoderm (Fig. 4b). However Venus was not activated in
all GATA6+ cells of the VE, resulting in a mosaic pattern
of Venus expression in the exVE (Fig. 4a) that was
also evident at later stages (Figs. 4b, an Fig. 5a). One
possible explanation for this observation could be that
the Gata6 locus is subject to mono-allelic expression
in certain tissues.

Activity of Gata6"?5"*™ during gastrulation

Next, expression of Venus was characterized during gas-
trulation stages. Gastrulation begins at E6.25 when Epi
cells in the proximal posterior portion of the embryo
form the primitive streak (PS). The PS is a region char-
acterized by an epithelial-to-mesenchymal transition
whereby ingression of mesoderm and endoderm progen-
itors results in their migration anterolaterally to populate
the space in between two apposed epithelia, the Epi and
VE. At the early-streak (ES, E6.75) stage, Venus was ob-
served in the ParE (Reichert’s membrane) upon bisection
of decidua that contained Gata6"*V*""’* embryos
(Fig. 6a-b). Expression of Venus was mosaic in the VE at
E6.75 and mid-streak (MS, E7.0) stages of Gata6™E
Venus/+ embryos, and did not always correlate with ex-
pression of endogenous GATA6 (Fig. 5a). It is possible
that expression of Gata6 mRNA and protein are dynam-
ically changing in the VE at these stages. It is also pos-
sible that there are differences in translation regulation
of Gata6 mRNA compared to the reporter mRNA which
lacks the wild-type 3'UTR.

Sections through the PS region at E7.0 revealed Venus
and GATAG expression in cells that had left the Epi epi-
thelium (Fig. 5a). These cells may represent the earliest
cardiac mesoderm progenitors that will populate the pri-
mary and secondary heart fields. To visualize movement
of ingressed cells in vitro, we performed PS explants that
were cultured and time-lapse imaged. The posterior por-
tion of the Epi was dissected from E6.5 embryos, treated
with pancreatin/trypsin enzymatic digestion to remove
the endoderm and wings of mesoderm, and then
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Fig. 4 Co-expression of the Gata6"™?"¢"* reporter with endogenous GATA6 during early post-implantation development. a Wholemount
immunofluorescence for endogenous GATA6 protein (red) on wild-type and Gata
Venus and GATA6 were mostly co-localized in the VE. Corresponding projections showing internal views of the same embryos demonstrated that
neither Venus nor GATAG were expressed in the embryonic or extra-embryonic ectoderm at these stages. b Wholemount immunofluorescence
embryos at E6.0 (pre-streak, PS). The dashed white boxes indicate regions of higher
magnification showing Venus and GATA6 expression in the VE. It should be noted that red fluorescent signal in the apical VE is likely due to
non-specific binding of the GATA6 antibody to the surface of the extraembyonic tissue. Surface and internal views are renderings of z-series
images. Extra-embryonic visceral endoderm (exVE), embryonic visceral endoderm (emVE), proximal (Pr), distal (D), anterior (A), posterior (P). Nuclei

6778 VeNUS embryos at ES5.5. Projected surface views showed that

cultured on fibronectin-coated chamber slides [55, 56].
Mesoderm precursors migrated away in a centrifugal
fashion thus forming what is referred to as a mesoder-
mal sheet that surrounded the original explant. When
DS explants were cultured from Gata6'??""*""’* embryos,
migrating cells expressed Venus, and individual nuclei
could be identified and followed over time (Fig. 5b).

The next stage of development is defined by allantoic
bud formation, axial extension from the node, and ap-
pearance of headfolds. At the late bud (LB, E7.5) and
early headfold (EHE, E7.75) stages, Venus was expressed
mosaically in the exVE and throughout the emVE.
Venus, together with endogenous GATA6, was strongly
expressed in the anterior definitive endoderm, cardiac
crescent, and lateral plate mesoderm (Fig. 7a). Venus ex-
pression continued in the mesoderm, although it did not
appear to coincide with BRACHYURY in the posterior
embryonic and extra-embryonic mesoderm at the early
bud (EB, E7.5) stage, indicating that Venus was labeling
a specific sub-population of mesoderm and/or endoderm

progenitors which was distinct from BRACHYURY la-
beled cells (Fig. 7b). Thus, as cells exit the primitive
streak, they likely downregulate BRACHYURY and acti-
vate GATAS6.

Exclusion of Venus + endoderm cells from the mid-
line was evident in ventral, frontal, and posterior
views of Gata6'™? V"’ embryos at headfold stages
(E7.75) (Fig. 8a). This was confirmed by immuno-
staining for BRACHYURY and FOXA2, two transcrip-
tion factors that are expressed along the midline at
E7.75 [57]. Trace expression of Venus was detectable
in the midline at early headfold (EHF) stages, likely
due to perdurance. However, expression of Venus
mostly did not coincide with that of BRACHYURY or
FOXA2 in the midline (Fig. 8b) as well as in the
streak (data not shown). At this stage (EHF), Venus
was expressed in both the mesenchyme and endo-
derm. Expression in the endoderm was confirmed by
colocalization with FOXA2 in the surface endoderm
(Fig. 8c¢).



Freyer et al. BVIC Developmental Biology (2015) 15:38 Page 8 of 18

A GatabH2e-Venus/+

=) 24 hours =) 48 hours

/ “—
mesodermal
sheet

¥

SRR

180 min

Fig. 5 (See legend on next page.)




Freyer et al. BVIC Developmental Biology (2015) 15:38 Page 9 of 18

( (See figure on previous page.)
Fig. 5 Gata6"”®"*" reporter is expressed in nascent endoderm and mesoderm during gastrulation. a Wholemount immunofluorescence for
endogenous GATAG protein (red) on Gata6™™"*™* embryos at early streak (ES, E6.75) and mid-streak (MS, E7.0). Venus is expressed in a mosaic
pattern in the VE. The PS region is indicated in the posterior portion of the embryo (bracket). Transverse sections through the PS at E7.0 (level of
section indicated by dotted line) are shown below. GATA6 and Venus are expressed in cells that have ingressed from the PS and are migrating
laterally to the anterior of the embryo. Venus and GATAG are not expressed in the Epi, weakly expressed in the VE, and heterogenously expressed
in the intervening mesodermal wings (Mes). The red fluorescent signal in the apical VE that forms a ring around the tissue section is likely due to
non-specific binding of the GATA6 antibody to the surface of the extraembyonic tissue. b PS explants to track movements of migrating Venus +
cells in vitro. The PS region was dissected from the posterior portion of E6.5 Gatas ™22 /enu'* embryos and germ layers were separated by enzymatic
treatment. The PS was plated on FIBRONECTIN-coated glass chamber slides. The PS explants (grey) attach to the glass and mesenchymal cells migrate
outwards to form a mesodermal sheet (green) over the course of several days. Direction of migration is indicated by red dotted arrows. Right-to-left
movement (red arrow) of Venus + cells is indicated as they move away from a Gata6™™® "+ pS explant over the course of 3 h. Images
were captured every 7 min. Proximal (Pr), distal (D), anterior (A), posterior (P), right (R), left (L), primitive streak (PS), mid streak (MS). Nuclei
are stained with Hoechst (blue)

Gata6""?8Ve"s expression in later stage embryos and
adults

From E8.25 (4 somite stage, ss) to E9.5 (23ss), whole-
mount expression of Venus was observed in the heart
and gut endoderm (Fig. 9a-b). Sections through
Gata6"™?V""* embryos at E8.25 revealed strong ex-
pression of the reporter in all regions of the gut, the
heart myocardium, sinus venosus, and yolk sac. Weaker
expression of the reporter was observed in the
pharyngeal mesenchyme. There were some discrepancies

expression. For example, the endocardium and the body
wall, which derives from the lateral mesoderm,
expressed low levels of GATA6, but did not express
Venus. Conversely, GATA6 appeared mostly downregu-
lated in the yolk sac, although Venus reporter expression
was still robust (Fig. 9¢c). While this may reflect delays in
the activation and/or downregulation of the reporter
compared to the endogenous protein, it is also possible
that the reporter may be retained more strongly in cells
that are not actively dividing. Similarly, faster growing

between endogenous GATA6 and Venus reporter tissues may dilute the reporter more rapidly.

7] epiblast
. o
e | I VE
o FoA O, M ParE
exVE
emVE

6H287Vem us

Fig. 6 Expression of Gata reporter in parietal endoderm. a Wholemount brightfield and fluorescence images of a bisected deciduum
containing an £6.75 Gata6™e"* embryo. Nuclear localized expression of Venus was observed in cells of the ParE, part of Reichert’s membrane
that derives from the PrE lineage. b Bissected decidua containing Gata6™# ¥+ embryos at E6.75 were stained for Phalloidin (red) and
cryosectioned. Saggital sections show expression of Venus in the Park and VE. Schematic diagram depicts the layers of Epi (light grey),
extraembryonic ectoderm (exE, dark grey), VE (light blue) and ParE (dark blue). Ectoplacental cone (EPC), parietal endoderm (ParE), visceral
endoderm (VE), extraembryonic VE (exVE), embryonic VE (emVE), proximal (Pr), distal (D), anterior (A), posterior (P)
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allantoic
¥ bud

Ga[aéH)B—\/enus/Jr

Fig. 7 Expression of Venus yellow fluorescence at allantoic bud and headfold stages. a Wholemount immunofluorescence for GATA6 on
embryos at late bud (LB, E7.5) and early headfold (EHF, E7.75) stages. Venus is expressed in the surface endoderm and headfold.

Dashed lines demarcate the border between exVE and emVE. Higher magnification views show low-level mosaic Venus expression in the exVE in
the boxed regions. b Immunofluorescence for BRACHYURY (red) on Gata6™™®"*"’* embryos at early bud (EB, E7.5) stage. Expression of Venus is
observed in lateral and anterior mesoderm and endoderm and is distinct from expression of BRACHYURY. Sections through the extraembryonic
region (B', top row) and embryonic region (B", bottom row) are indicated by dashed lines on the schematic diagram to the right. A close-up of
the region within the dashed white box shows expression of Venus in the emVE and nascent mesoderm (meso), but not in the Epi. Three
embryonic tissue layers (emVE, meso, epi) are delineated by dashed yellow lines. Non-nuclear red fluorescent signal that appears apically on the

VE is thought to be non-specific binding of the GATA6 antibody to the surface of the extraembyonic tissue

By E12.5, expression of Venus was tissue-specific in
Gata6™PVe"s’*  embryos. Low-level expression of
Venus was observed in the midgut epithelium whose de-
rivatives express GATAG later on, but not in the foregut
or hindgut. The heart myocardium and outflow tract
continued to strongly express Venus. Additional sites of
expression detectable at this stage included the stomach
epithelium, pancreas, kidneys, lung epithelia, liver, gall
bladder, urogenital ridge, arterial endothelium, and um-
bilical vessels. Consistent with previous characterizations
of endogenous GATA6 expression [18], Venus was not
observed in certain foregut-derived organs such as the
esophagus and trachea (Fig. 10).

In Gata6™5Ve/* adults, expression of Venus was
observed in organs that have previously been reported to
express Gata6 [18, 32-34, 39]. These include the heart,
lung, pancreas, liver, gall bladder, ovaries, adrenal glands,
stomach, and bladder. Strong expression of Venus

within the skin was also observed (Fig. 11a). Tissue sec-
tions of organs from Gata6™?V"’* mice revealed
Venus expression specifically in the mucosa and meso-
thelium of the corpus region of the stomach and small
intestine, as well as expression within the pancreas and
skin (Fig. 11b). Gata6™?Ve"’* heterozygous adult
mice were not recovered at Mendelian ratios (105
mice in total; 44 heterozygous, 61 wild-type), suggest-
ing that adult Gata6™""*"’* heterozygous mice
may have reduced viability.

Conclusions

Our characterization of the Gata mouse line
suggests that it should serve as a useful tool for single-
cell resolution imaging of Gata6 transcriptional activa-
tion in vivo. Since this is also a loss-of-function allele, it
can, in principle, be used in combination with a condi-
tional (floxed) Gata6 allele to trace the fate of Gata6

6H2B»Venus
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Fig. 8 Venus is expressed in the mesoderm and endoderm on the surface of the embryo, but not in the midline. a Alternative views (ventral,
frontal, posterior) depicting regions of Venus expression (green) in Gata6™™ ¥’ embryos at E7.75. Venus is excluded from the midline. Surface
views are renderings of z-series images. Anterior (A), posterior (P), right (R), left (L), proximal (Pr), distal (D). Nuclei are stained with Hoechst (blue).
b Immunostaining for BRACHYURY (red) labels the midline in Gatag e venus embryos at E7.75. Transverse sections showing mesoderm (meso)
and endoderm (endo) layers. ¢ Immunostaining for FOXA2 (red) shows very high expression in the midline and lower levels of expression in the
surface endoderm in Gata6™ ¢+ embryos at E7.75. Venus (green) coincides with FOXA2 in most cells of the surface endoderm, however it is
not co-expressed in the midline. Transverse sections showing mesoderm (meso) and endoderm (endo) layers
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Fig. 9 Expression of Venus at somite stages. a Frontal and lateral views of wholemount Gata6™2 ¢ embryos merged with brightfield images
at E8.25 (4 somite stage, ss). Venus is expressed in the heart, sinus venosus, and gut endoderm. b Lateral views of wholemount Venus expression
at E9.5 (23ss) in Gata6™" ¥+ embryos. ¢ Immunofluorescence for GATAG (red) on transverse sections through a Gata6™% ¥+ embryo.
Varying levels of GATA6 co-expression with Venus (green) can be seen in the gut endoderm and heart. Some tissues express GATA6 exclusively,
for example the body wall and endocardium, while other tissues express Venus only, such as the yolk sac and weak expression in the pharyngeal

mesoderm. Nuclei are stained with Hoechst (blue)

(null) mutant cells after conditional Cre-mediated abla-  also makes this reporter suitable for live imaging and cell

tion. Bright, nuclear localization of the Venus reporter tracking.
allows for direct imaging of the fluorescent protein in Co-expression of GATA6 and Venus was well corre-

fixed tissue samples without the use of an antibody, and  lated in the embryo from the pre-implantation blastocyst
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Fig. 10 Expression of GataéHZB—Venus

midgut

reporter at E12.5. Lateral view of a wholemount Gata
(top left). Transverse sections at E12.5 showing Venus expression in various endoderm and mesoderm derived organs. Expression is observed in
the midgut epithelium, but not the foregut or hindgut. Venus is also seen in the lung bud epithelium, throughout the heart and outflow tract,
vascular endothelium, portions of the stomach epithelium, pancreas, kidney, liver, gall bladder, urogenital ridge and umbilical vessels. Venus was
not expressed in the esophagus or trachea, Nuclei are stained with Hoechst (grey)
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embryo at E12.5 merged with brightfield

to gastrulation and early somite stages of development.
However, some differences were observed between the
endogenous GATA6 protein versus the Venus-based
transcriptional reporter in terms of levels and
localization. For example, in Gata6'?8 Verus/H2B-Venus
homozygous null blastocysts, Venus continued to report
transcriptional activity in the absence of GATA6 protein.
These data suggest that GATA6 does not feedback on its
own transcription, and identify this transcriptional re-
porter as a readout of Gata6 expression in the absence
of protein function. However, it is also possible that
some cells normally express Gata6 mRNA that is not
translated into protein. In the future, this could be deter-
mined by quantitative real-time PCR or RNA in situ
hybridization to detect Gata6 transcripts in specific cells
in comparison with GATAG6 protein levels. Alternatively,
some of these differences may be due to stability of the
Venus protein, which may pose challenges for certain
experiments. For example, since Gata6 is activated in all
ICM cells prior to the sorting of Epi and PrE lineage
progenitors into two distinct layers, then live imaging of
the PrE lineage may be difficult if low levels of Venus
perdure within Epi progenitors.

In post-implantation embryos, mosaic activation of the
Gata6'5Ve"™s reporter in the exVE at E5.5 may poten-
tially reflect mono-allelic regulation of the Gata6 locus.

This characteristic of the reporter could be utilized
to investigate dynamics of the expansion of cells in
the exVE at early stages of post-implantation devel-
opment that lead up to gastrulation. During gastrula-
tion, Venus brightly labels both mesoderm and
endoderm progenitors and continues to be expressed
in some of their derivatives, such as the cells that
populate the heart field and gut endoderm. During
organogenesis, Venus is expressed in a tissue - spe-
cific manner in organ primordia that normally ex-
press endogenous GATAG.

In adult mice, the Gata6'?% V" allele may prove use-
ful for studies of disease states, such as cancer models,
in which Gata6 activity may be aberrantly regulated. For
example, the reporter may be silenced in tissues that
normally express GATAG6. Alternatively, the reporter
may be ectopically activated and changes in its activity
levels may potentially correlate with progression of dis-
ease. Gata6'*"?""*" may also be used as a bright marker
of specific cell populations within adult organs, such as
in the skin, stomach and small intestine.

Overall, the Gata6™2""*" allele should provide a use-
ful tool for detecting transcriptional activation of the
Gata6 locus that correlates well with endogenous
GATAG6 protein in both embryonic and adult mice, and
can be used for the analysis and isolation of specific cell
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Fig. 11 Expression of Gata reporter in adult organs. a In Gata
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heart, lung, pancreas, liver, gall bladder, ovaries, oviducts, uterus, adrenal glands, corpus region of the stomach, bladder, and skin. Right atrium
(RA), left atrium (LA), right ventricle (RV), left ventricle (LV). b Tissue sections through organs from Gata
demonstrated expression of Venus in the mucosa and mesothelium of the corpus region of the stomach and small intestine, as well as expression
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adult mice at 3 months of age, Venus (green) is expressed in the

6HZB—\/€nus/+ adult mice at 3 months of age

populations that normally express Gata6. Noting the
issue of Venus perdurance, it would be of interest to re-
target the Gata6 locus with a destabilized fluorescent
protein reporter in order to obtain an improved dynamic
readout of Gata6 transcriptional activity, and not only

detect when Gata6 is activated, but also to determine
when the gene is turned off. A destabilized Gata6 tran-
scriptional reporter might be expected to be dimmer,
but accordingly may provide better concordance be-
tween Gata6 gene activity and reporter protein
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fluorescence. For example, the Venus-NLS-PEST (VNP)
fusion protein reporter [58] has a short half-life and has
been successfully used to monitor the transcriptional ac-
tivity of genes, such as Nanog, which are dynamically
expressed [59]. Similarly, if available, a Gata6"™" allele
could be useful for live quantitative imaging of the rapid
changes in Gata6 expression that occur during various
cell lineage specification events involving GATAG6.

Methods

Mice

To make Gata6'™""V*"* mice, a targeting vector was
constructed by modification of a EUCOMM knockout-
first vector [49, 50]. The targeting vector contained an
Engrailed 2 intron and exon with splice acceptor site up-
stream of the H2B-Venus fluorescent protein reporter
[54, 60]. Downstream from this was placed a Neomycin
cassette under the control of a human p-actin promoter,
which was flanked by rox sites for Dre-mediated recom-
bination [61]. Exon 2 was flanked by loxP sites, while an
FRT site positioned upstream of the reporter remained
as a remnant of the original EUCOMM knockout-first
vector design. The H2B-Venus reporter and Neomycin
selection cassette were targeted to Intron 1 of the mouse
Gata6 gene in ES cells of a C57BL6 x 129Sv genetic
background. The ES cell line was based on a previously
described KH2 clone [52], in which an inducible Gata4-
mCherry cDNA had previously been integrated into the
Collal locus [50]. Correct targeting to the Gata6 locus
was determined by long-range PCR amplification of the 5’
arm junction using the LongAmp Taq PCR Kit (NEB,
#e5200) and the following primers: Gata6_genomic_fwd2:
CTTTGAGAGTCTACACCCTTC, RIRN_rev: TGA-
TATCGTGGTATCGTTATGCGCCT (correctly targeted:
~5 kb pro duct). ColAl TetO—Gam4—mCherry/+; R2 6M2rtTA/
*;Gata6™5 V" ES cells were cultured under standard
ES cell conditions; Knockout DMEM (Life Technologies
10829), 10 % FBS (Hyclone), 1 % L-glutamine (Life Tech-
nologies 25030), 1 % non-essential amino acids (Life Tech-
nologies 11140), 1 % sodium pyruvate (Life Technologies
11360), 0.1 % p-mercaptoethanol (Life Technologies
21985), 0.01 % LIF (ESGRO, Millipore ESG1107). ColA1-
TetO»Gata4»mCherry/+;R26M2rtTA/+;Gatﬂ6H2B»Venus/+ Es CellS
from a 129Sv/C57BL6 F1 hybrid (V6.5) background were
then injected into C2]J blastocysts by the Memorial Sloan
Kettering Cancer Center Mouse Genetics Core Facility to
generate chimeric mice. All Gata6™%V"’* mice used in
this study contained the Neomycin selection cassette,
which has not yet been excised by crossing with Dre-
expressing mice [61]. Chimeric males were crossed with
CD-1 (Taconic) wild-type females and screened for germ-
line transmission of all three targeted alleles. The
Gata6™? V" targeted allele was bred away from the
ColA]Tet0-GatatmCherry/s and R26M2 A+ glleles by further
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crosses with CD-1 wild-type females. Primers for genotyp-
ing are as follows: ColA 170" GatatmCherry \Col1a1_3'_fwd:
GCACAGCATTGCGGACATGC, Collal_3’_Mutrev: GC
AGAAGCGCGCCCGTCTGG, Collal_3’_WTrev: CCCT
CCATGTGTGACCAAGG (300 bp wild-type band,
500 bp knock-in band); R26 ™™ ROSA26_int_for:
AAAGTCGCTCTGAGTTGTTAT, rtTA_primer: GCGAA
GAGTTTGTCCTCAACC, ROSA26_int_rev: GGAGCGG-
GAGAAATGGATATG (500 bp wild-type band, 300 bp
knock-in band); Gata6™*"""*, G6V-5A-Fwdl: CCAGG-
GAGCTCTGAGAAAAAG, G6V-Rev: CCTTAGTCACCG
CCTTCTTG, G6V-wtRevy: GTCAGTGAAGAGCAA-
CAGGT (1 kb wild-type band, 1.2 kb knock-in band).
Gata6™5V"+ mice were maintained on a mixed bred
CD-1/129Sv/C57BL6/C2] background in accordance with
the guidelines of the Memorial Sloan Kettering Cancer
Center Institutional Animal Care and Use Committee.
Mice were housed under a 12-h light/dark cycle, and the
date of vaginal plug was considered to be embryonic day
(E) 0.5. Blastocysts were flushed from oviducts using FHM
media (Millipore). The zona pellucida was removed by
short incubation in acid Tyrode’s solution (Sigma).
Embryos were cultured in KSOM-AA media
(Millipore) in a 5 % CO,/37 °C atmosphere for time-
lapse imaging. Blastocysts were staged according to
total cell number and morphology. Post-implantation
embryos were dissected in DMEM/F-12 1:1 with 5 %
newborn calf serum, and stages were verified using
morphological landmarks (E5.5-E7.75) and somite
count (E8.25-9.5) [62].

Embryonic stem cell differentiation

For embryoid body formation, ES cells were resuspended
in hanging drops comprising IMDM medium (Life Tech-
nologies 12440-His 053) supplemented with 10 %
Hyclone FBS, 1 % L-Glutamine, 1 % Penicillin/Strepto-
mycin, 5 % Protein Free Hybridoma Medium II
(PFMHII) (Life Technologies 12040-077), 0.5 mM As-
corbic Acid (Sigma A4403), 4.5x10"* M Monothiogly-
cerol (Sigma M6145), and 200 pg/mL Transferrin (Sigma
T8158). 1 day later, embryoid bodies were re-plated into
non-coated petri dishes and monitored over the course
of 3-7 days for fluorescence. For directed differentiation
into definitive endoderm using growth factors, cells were
incubated in standard ES cell medium (as described
above) supplemented with 1 % N-2 (Life Technologies
17502-048), 2 % B-27 (Life Technologies 17504044),
and 2.5 pM Y-27632 ROCK inhibitor (Tocris 1254) for
24 h. After 24 h, media was changed to standard ESC
media supplemented with 50 ng/mL E. coli Activin A
(Pepro-Tech, 120-14E) and 5 nM GSK3 inhibitor XV
(Calbiochem 361558). After 24 h, media was changed to
standard ESC media supplemented with 2 pM Dorso-
morphin (Sigma P5499) and 50 ng/mL E. coli Activin A



Freyer et al. BVIC Developmental Biology (2015) 15:38

(Pepro-Tech, 120-14E), and changed daily for 1-3 days.
Transient overexpression of GATA4-mCherry was per-
formed using Gata6HZB»Venus/+;ColA1 TetO-Gata4-mCherry/
YR26™MTA ES cells [50] incubated with 1 mg/mL
Doxycycline (Sigma D9891), replaced daily for 48 h.

Image acquisition and processing

ES cells and embryoid bodies were imaged on a Zeiss
Axio Vert.Al inverted microscope with a black and
white camera (Axiocam MRm). Raw data was processed
using Axiovision software and dark field photos were
pseudocolored green in Adobe Photoshop. Fixed blasto-
cysts, wholemount embryos (E5.25-7.75), and tissue sec-
tions were imaged on a Zeiss LSM880 laser scanning
confocal microscope. Blastocysts were imaged along the
entire z-axis with 1 pm z-steps using an EC Plan-
Neofluar 40x/1.30 oil immersion objective. For live im-
aging, blastocysts were imaged with 2 um z-steps and
with 15-min intervals. Blastocysts (on glass bottom
dishes, MatTek) and PS explants (on 2 chamber cover-
glass, Lab-Tek) were imaged on the LSM880 inside a
heated CO, incubation chamber. Raw data was proc-
essed in Zeiss ZEN Black software. Wholemount de-
cidua (E6.5), embryos (E8.25, E9.5, E12.5), and adult
organs were imaged on a Leica M165FC dissecting
microscope with a color camera (Axiocam MRc) and
raw data was processed using Axiovision software.

Immunofluorescence

Blastocysts were fixed for 10 min in 4 % paraformalde-
hyde (PFA) at room temperature and immunostained as
previously described [63]. Wholemount immunofluores-
cence (E5.5 to E7.75) was performed on embryos that
were fixed in 4 % PFA for 20 min at room temperature
followed by 3 washes in PBT (PBS/0.1 % Triton X-100)
and stored at 4 °C. Embryos were permeabilized in 0.5 %
Triton X-100 in PBS, then blocked in 2 % horse serum
in PBT for 45 min at room temperature. Embryos were
then incubated overnight in primary antibody diluted in
block solution, washed 3x5 min in PBT, incubated with
secondary antibody and Hoechst in blocking solution
overnight, followed by washing 3x5 min in PBT then
storage at 4 °C in PBS. For immunofluorescence on sec-
tions, embryoid bodies, halved decidua, and embryos
were fixed in 4 % PFA for 2 h (up to E8.25) or overnight
(E12.5, adult organs), then washed 3x5 min in PBT, in-
cubated in 30 % sucrose at 4 °C overnight, then embed-
ded in O.C.T. (TissueTek). Cryosections were cut at
12 pm thickness. Tissue sections were washed in PBS,
permeabilized for 5 min in 0.5 % PBT, washed in PBS
then PBT, blocked in 5 % fetal bovine serum in PBT for
1 h, incubated with primary antibody in PBT overnight,
washed 3x5 min in PBT, incubated in secondary anti-
body and Hoechst overnight, washed 3x5min in PBT,
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washed in PBS, then coverslipped with Fluoromount G
mounting media (Southern Biotech). Primary antibodies
used were goat anti-GATA6 (R&D Systems AF1700,
1:100), rabbit anti-NANOG (Cosmo Bio, 1:500), goat
anti-BRACHYURY (R&D Systems AF2085, 1:100), and
rabbit anti-FOXA2 (Abcam ab40874, 1:1,000). Secondary
antibodies used were Alexa Fluor donkey anti-goat 568
(Life Technologies, 1:500) and Alexa Fluor goat anti-
rabbit 568 (Life Technologies, 1:500). Fixed nuclei were
stained with Hoechst 33342 (Life Technologies, 1:500).
Venus fluorescence was imaged directly without the use
of antibodies, except for cryosections of adult tissues
that were stained with rabbit anti-GFP (Abcam ab290,
1:500) and Alexa Fluor goat anti-rabbit 488 (Life
Technologies, 1:500).

Quantitative analysis of reporter co-localization in
pre-implantation stage embryos

Blastocyst images were segmented using the algorithm
MINS (Modular Interactive Nuclear Segmentation) for
fluorescence  quantification  (http://katlab-tools.org)
[64]. Confocal z-stacks were processed with MINS for
nuclear segmentation as described [65]. Fluorescence
decay along the z-axis for each nuclei was corrected
using a factor dependent on the position of the nu-
cleus in z, as described [65]. PrE and Epi populations
were identified manually based on the expression of
GATA6 and NANOG, respectively. RStudio was the
implementation of R used for all analyses. CSV file
containing the raw data for Fig. 2 is provided in the
Additional file 1. R-script used for analysis is available
upon request. Pearson’s product moment correlation
was used to assess the correlation between GATA6
and Venus levels in the PrE at each blastocyst stage.
Statistical differences in Venus expression between
blastocyst lineages were tested performing analysis of
variance (ANOVA) on the average fluorescence level
for all cells in each lineage, in each embryo (plotted
in Fig. 2c). Tukey’s range test was used as the post-
hoc test to determine the groups responsible for the
statistical difference.

Primitive streak explants

The posterior region encompassing the primitive
streak (PS) and overlying visceral endoderm was dis-
sected from E6.5 embryos following removal of Reich-
ert’s membrane. The tissue was then incubated for 5-
10 min in 2.5 % pancreatin (Sigma) and 0.5 % trypsin
(Calbiochem), and washed in PBS. The VE overlying
the PS was removed by pipetting, and germ layers
were further separated using Tungsten needles to re-
move the nascent mesodermal wings. PS explants
were plated on 2-well chamber coverglass (Lab-Tek)
that had been coated with FIBRONECTIN from
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bovine plasma (SIGMA F1141, 20 pg/mL incubated
overnight at 37 °C, washed three times with PBS). Ex-
plants were cultured at 37 °C with 5 % CO, in high-
glucose DMEM supplemented with 1 % L-Glutamine,
1 % Penicillin/Streptomycin, and 10 % fetal bovine
serum. Attachment of explants occurred overnight
and growth of the mesodermal sheet occurred over
the course of 2-3 days. Time-lapse imaging was per-
formed on the LSM880 confocal laser scanning
microscope using a CO, incubation chamber heated
to 37 °C.

Endnote

'The Gata6™5V*"“’* mouse line described in this re-
port has been submitted for inclusion in The Jackson
Laboratory Mouse Repository and will be made available
as JAX Stock Number 028096 STOCK Gatab <
tm1(HIST1H2BB/Venus)Hadj>/].

Additional file

[ Additional file 1: Figure 2 raw data. (CSV 163 kb) ]
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