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Abstract

Background: During development cell migration takes place prior to differentiation of many cell
types. The chemokine receptor Cxcr4 and its ligand Sdfl are implicated in migration of several cell
lineages, including appendicular muscles.

Results: We dissected the role of sdfl-cxcr4 during skeletal myogenesis. We demonstrated that
the receptor cxcr4a is expressed in the medial-anterior part of somites, suggesting that chemokine
signaling plays a role in this region of the somite. Previous reports emphasized co-operation of
Sdfla and Cxcr4b. We found that during early myogenesis Sdfla co-operates with the second
Cxcr4 of zebrafish — Cxcr4a resulting in the commitment of myoblast to form fast muscle.
Disrupting this chemokine signal caused a reduction in myoD and myf5 expression and fast fiber
formation. In addition, we showed that a dimerization partner of MyoD and Myf5, El2, positively
regulates transcription of cxcr4a and sdfla in contrast to that of Sonic hedgehog, which inhibited
these genes through induction of expression of id2.

Conclusion: We revealed a regulatory feedback mechanism between cxcr4a-sdfla and genes
encoding myogenic regulatory factors, which is involved in differentiation of fast myofibers. This
demonstrated a role of chemokine signaling during development of skeletal muscles.

Background

Several cell movements are associated with somitogenesis,
including the convergence of lateral mesodermal cells
into presomitic mesoderm and later its segmentation.
During somite epithelialization two types of cells are
formed - epithelial border cells and inner mesenchymal
cells. As somite matures, presumptive muscle cells start to
express characteristic muscle-specific proteins (MSP) and
elongate either actively or through fusion to form myofi-

brils [1-13]. The border cells undergo migration/rear-
rangement of their position [14]. The fast muscle cell
elongation is triggered by migration of slow muscle cells
[5], which in turn is dependent upon Hedgehog (Hh) sig-
naling [15-23]. A high level of Hh induces Engrailed-
expressing muscle pioneers, a subset of slow muscle cells
located at the horizontal myoseptum, and a small subset
of fast fibers, the Engrailed-expressing medial fast fibers. A
low level Hh induces superficial slow fibers, which precur-
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sors migrate from their initial position adjacent to the
notochord laterally through the paraxial mesoderm and
become the most superficial muscle fibers [4,24]. Specifi-
cation of most fast muscle in zebrafish does not show
obvious signs of lineage-specific cell migration besides
being involved in more general events of convergence,
mesenchyme-to-epithelial transition (MET) during
somite epithelialization followed later on by cell elonga-
tion during formation of myofibrils. The fast myofibrils
differentiate specifically from the lateral aspect of somites
and this process involves relatively short distance migra-
tion of prospective myoblasts. These cells express a subset
of genes linked to cell migration and at certain A-P levels
are capable of undergoing epithelial-mesenchymal transi-
tion (EMT), migrate and establish appendicular muscles
[reviewed in [25,26]].

Chemokine receptors are members of the superfamily of
seven-transmembrane domain, G-protein coupled recep-
tors. The CXC chemokine receptor CXCR4 [27,28] is used
by HIV-1 for binding to the cell membrane [27,29-31].
SDF-1a [chemokine (C-X-C motif) ligand 12; zebrafish
gene nomenclature committee| and its receptor CXCR4
[chemokine (C-X-C motif) receptor 4; zebrafish gene
nomenclature committee] bind only each other [32-35].
Importantly, a study of the expression of SDF-1a,/CXCR4
in the mouse embryo demonstrated expression of CXCR4
in the presomites [36]. The knockout SDF-1a and CXCR4-
mice are the only known chemokine/chemokine receptor
mutants that display embryonic lethality [37]. They dem-
onstrate defects of cell migration during formation of the
neural tube and heart [38,39]. The Sdf1-Cxcr4 interaction
also plays a role during the chemotaxis of primordial
germ cells in zebrafish in mice [40-42], and sensory cells
in zebrafish [43-47].

Our previous study demonstrated that the zebrafish Cxcr4
is encoded by two related genes expressed in a complex
pattern, including somites [48]. Later on, it was shown
that homologous genes are expressed in human muscle
satellite cells and play a role in cell migration during
tongue and limb myogenesis in mice [49-51]. While this
suggests a role for Cxcr4 in late myogenesis, a role of
Cxcr4 in early somitogenesis still remains to be eluci-
dated. Since the zebrafish mutant of cxcr4b - ody does not
show obvious defects in myogenesis [41], we analyzed the
second receptor - cxcr4a.

Prior to segmentation in zebrafish, myoblasts initiate
expression of myogenic regulatory factors (MRFs) [17]
important for skeletal muscle commitment and myotube
formation [52]. The highly related bHLH proteins MyoD,
Myf5, Myogenin and Mrf4 have a pivotal function in mus-
cle cell specification and differentiation [53-57]. They
share a common dimerization domain and DNA binding
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domain (DBD), the basic helix-loop-helix (bHLH) motif.
MRFs regulate myogenesis after forming heterodimers
with ubiquitous E proteins. These bind to E box, with core
consensus sequence of CANNTG, in the promoter of tar-
get genes [58]. How these proteins initiate the program of
muscle cell differentiation remains to be deciphered
explicitly. Recently, MyoD was shown to have repressive
activity in presence of other cofactors [59].

In this report, we described the involvement of Cxcrda
and Sdfla during formation of fast muscles in zebrafish
and provided in vivo evidence of a role of cxcr4a-sdfla in
the regulation of MRFs during myogenic determination.
The lack of Cxcr4a-Sdfla-mediated signaling leads to
reduction in expression of somitic markers and decrease
in fast myofibrils. The lack of Cxcr4a-Sdfla also affects
migration of slow muscle. This effect could be indirect. In
addition, we show that E12 and MyoD-Myf5 regulate
cxcr4a. This suggested a possible feedback loop between
cxcrda-sdfla axis and myoD/myf5. In addition, we discov-
ered that ectopic Hh represses transcription of cxcr4a and
sdfla through a negative regulator of cell differentiation
Id2. Taken together, our data connect MRFs and chemok-
ines in a regulatory relationship during early myogenesis.

Results

cxcrd4a and sdfla are expressed in a dynamic manner
during formation of fast muscles

Both cxcr4a and cxcr4b are expressed during somitogenesis
[48]. To better understand the role of Cxcr4 and Sdf1 in
the formation of somitic musculature, we re-evaluated the
expression pattern of two sdfl and two cxcr4 genes. sdfla
and sdf1b were cloned by PCR. As detected by WISH, tran-
scripts of both cxcr4a and cxcr4b cover the newly formed
somites almost completely, but the level of expression of
cxcrda is higher than that of cxcr4b (Figures 1A, B; Addi-
tional Figures A1A, B (see Additional file 1)) [reviewed in
[60]]. The most posterior somite, which is still forming,
weakly expresses cxcr4a. The next pair of somites that
already formed expresses cxcr4a at a higher level (Figure
1A). As development proceeds, expression of both cxcr4a
and cxcr4b become restricted to the anterior half of somite
(Figure 1B; Additional Figure A1B (see Additional file 1)).
It persists until about 22 h when it becomes restricted to
the few posterior somites (data not shown). By end of seg-
mentation, cxcrda and cxcr4b transcripts are no longer
detected by WISH.

Since SDF-1a is the only known ligand of CXCR4 [32,34],
we examined the expression pattern of the two zebrafish
sdflgenes. Both sdfla and sdf1b are expressed maternally
(Figure 1L; Additional Figure A1H (see Additional file 1)).
The level of sdfla transcript increases rapidly from the
onset of mid-blastula transition (MBT). In contrast, the
level of sdf1b transcript increases from fertilization.

Page 2 of 14

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:54 http://www.biomedcentral.com/1471-213X/7/54

K

/ Lateral /

Noochord (n) Al

¥ & Y& ¥4

ateral

Notochord {n)

Lateral

5 2 51
somite boundaries
Dorsal view

3 2
somite boundaries
Dorsal view

ladder

0.2 hpf
1.25 hpf
2.25 hpf
4.33 hpf
10.0 hpf
19.0 hpf

sdfta
300bp

Figure |

The dynamic expression of cxcr4a and sdfla during segmentation. Dorsal views (A,C-G,J,K) and lateral views (B,H-I).
(A,B) Expression of cxcr4a in posterior trunk. (D-I) RNA in situ hybridization with sdf/a riboprobe (blue). (A,B) High level of
cxcr4a transcript in newly formed and posterior somites, 13.5 h and 16 h respectively. In somites, cxcr4a expression is
restricted to anterior part. Expression becomes increasingly restricted to anterior part within each somite over time, black
arrows. (C) Overlapping expression domain of cxcr4a with myoD (red) is observed, 14 h. (J) Schematic representation of cxcrda
expression (blue) in posterior somites. (D) sdfl a staining covers almost the entire three anterior-most somites indicated by
white bracket, while in posterior somites expression is restricted to posterior part, |3 h. (E) Expression in early somites, || h.
(F.G) Overlap of expression of sdfla and myoD (red), 14 h. (H) Expression is restricted to the posterior part of each somite,
16.5 h, white arrowheads. (l) Faint expression is detected in forming and newly formed somite, 21 h. (K) Schematic represen-
tation of sdfla expression (blue) in posterior somites. (L) Reverse transcription (RT)-PCR detects continuous presence of
transcript of sdfla during early development. sdfla transcript is present at low levels before mid-blastula transition (MBT). To
confirm results, the PCR products were sequenced. factin was used as a positive control. -RT control using factin primers
without addition of reverse transcriptase, no band was detected (data not shown). Black dashed lines indicate boundary
between somite and newly formed somite (B,l). White lines demarcate the somite boundaries (C,H). Abbreviations: a — ante-
rior; p — posterior; psm — presomitic mesoderm; r — rhombomere; s — somite; SO — forming somite; S| — newly formed somite;
tb — tailbud; ys — yolk sac. Scale bars = 50 um.

During early somitogenesis sdf1a is expressed in the lateral ~ sis, only the posterior somites express sdfla (Figure 1H).
somitic mesoderm (Figure 1E). Later, sdfla expression is  During late segmentation the forming and newly-formed
restricted mainly to the posterior part of somite. However,  somites express sdfla at low level (Figure 1I). By 24 h,
in the anterior most three somites, sdfla transcripts cover  sdfla expression is no longer detected by WISH (data not
almost the entire somite (Figure 1D). At mid-somitogene-  shown).
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The expression level of sdf1b in the somites is low (Addi-
tional Figure A1D (see Additional file 1)). It is first
observed in the adaxial cells and later become restricted to
the posterior part of somite similar to that of sdfla. By
mid-somitogenesis, sdf1b transcripts are restricted to the
dorsal and ventral parts of somites (Additional Figures
A1D-G (see Additional file 1)).

To define how cxcr4 or sdflare expressed in respect to
other markers, we used the two-color WISH. The expres-
sion pattern of both cxcr4a and cxcr4b overlaps almost
entirely with that of myoD in the forming somite and a few
posterior-most somites (cxcr4a), but in more mature
somites both cxcr4s are expressed in the anterior part of
somite and myoD in the posterior part (Figure 1C; Addi-
tional Figure A1C (see Additional file 1)). In contrast to
cxcrda, expression pattern of sdfla overlaps completely
with that of myoD (Figures 1F-G). The expression patterns
of cxcr4a and sdfla are summarized in a diagram (Figures
1J-K). Therefore, cxcrd4a and cxcr4b are co-expressed with
sdfla in the forming and newly formed somites, but not in
more mature somites. This suggests that the chemokine
and its receptor may have both early and late function
during myogenesis.

cxcrda and sdfla function is required for formation of fast
muscles

Based on the fact that cxcr4 is expressed during early somi-
togenesis, we hypothesized that deficiency of Cxcrd or
Sdf1 might affect early myogenesis. To test our hypothe-
sis, we examined somite defects in the mutant ody/-,
which represents a loss of function of Cxcr4b [41]. There
was no obvious somitic defect in ody/- (Additional Figures
A2A-D (see Additional file 2)). This could be due to
redundancy of cxcr4b and cxcr4a (Additional Figures A2E-
J (see Additional file 2)) [48]. We therefore concentrated
our study on Cxcr4a.

Different antisense morpholino oligonucleotides (MOs)
designed to target non-overlapping regions of 5'-UTR of
both cxcr4a and sdfla were injected into one to two-cell
stage embryos (morphants). The universal control MO
and anti-cxcr4a/sdfla MOs with 4-5 base mutations were
injected into embryos used as controls. The morphologi-
cal analysis or acridine orange staining to detect apoptosis
or anti-phosphohistone H3 antibody staining to detect
cell proliferation did not show obvious changes in
somites of morphants (Additional Figure A3 (see Addi-
tional file 3) and data not shown). In contrast, myoD
expression in cxcr4 morphants is much reduced in the
paraxial cells (Figures 2A, C). Expression of another myo-
genic bHLH gene, myf5, was similarly affected in somites
(Figure 2G; Additional Figures A2K-M (see Additional file
2)). Three MOs that targeted 5'UTR of cxcr4a caused a sim-
ilar phenotype (data not shown). Taken together, these
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Figure 2

Cxcr4 signaling is required for transcription of myo-
genic genes in the paraxial mesoderm. Dorsal (A-H)
and lateral views (I-K). 13 h embryos hybridized with (A-D)
myoD, (E-H) myf5 and (I-K) mylz2 riboprobes. (A,B) mcxcrda
(n = 52/52) and msdfla morphants (n = 50/61) as controls.
Embryos show expression pattern of myoD. (C) cxcrda (n =
48/50) morphants show myoD transcription is reduced in the
paraxial mesoderm, while expression in adaxial cells is
unchanged. (D) sdfla (n = 50/61) morphants show similar
reduction of myoD in the paraxial cells but not adaxial cells.
Black lines and arrows indicate size of expression domain. In
addition, intensity of staining in lateral mesoderm is substan-
tially reduced. (E,F) mexcr4a (n = 36/36) and msdfla (n = 49/
58) morphants as controls. Embryos show characteristic
expression pattern of myf5 in the adaxial cells, somitic meso-
derm and presomitic mesoderm. (G) cxcr4a (n = 43/47) mor-
phants have myf5 reduced in both somites and forming
somites. (H) sdfla (n = 56/71) morphants cause similar
effects to Cxcr4a knock down. Black brackets indicate a
region where pattern and intensity of myf5 staining in the
newly formed and forming somites were reduced. (I-K) Con-
trol (n = 30). Reduced mylz2 transcription in cxcr4a (n = 30)
and sdfla (n = 30) morphants. Abbreviation: ad — adaxial
cells.

results suggested that Cxcr4a plays a role in early myogen-
esis.

Next we decided to evaluate which of the two ligands,
Sdf1a or Sdf1b, co-operates with Cxcr4a during myogene-
sis. In Sdfla morphants expression of myoD and myf5 was
down-regulated in somites (Figures 2D, H). In contrast,
overall expression of myoD and myf5 was unaffected in
Sdf1b morphants even although in some of them somites
were slightly elongated (data not shown). Furthermore,
we designed sdfla-EI-MO which targets the second intron
of sdfla causing missplicing of sdfla transcripts as con-
firmed by electrophoresis and sequencing (Additional
Figure A4B (see Additional file 4) and data not shown).
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Formation of fast muscle requires Cxcr4a and Sdfla.
Lateral views (A-F), cross-section (G,H), sagittal section (1))
and dorsal views. (A) Birefringence revealed by polarized
light in cxcr4a (Il) and sdfla (lll) morphants was reduced
compared to control (I), 30 h. (B) Schematic illustrating black
box region used for imaging. Start of yolk sac extension as a
guide for the center of frame, indicated by dashed line in dia-
gram of zebrafish embryo. (C-F) Single confocal images taken
at level of the somite boundary as a guide of depth. Myosin
light chain transgenic line, 51 h. (C,D) mcxcr4a (n = 87/87)
and msdf/a (n = 31/35) morphants developed normally. (E,F)
In representative cxcrda (n = 63/71) and sdfla (n = 73/82)
morphants, reduction of GFP signal was observed. (G-))
Transmission electron micrograph of cross (G,H) and sagittal
(1)) sections in trunk region of control and cxcr4a morphants
respectively, 36 h. A representative cxcr4a morphant clearly
shows a reduction in muscle fibrils. (1,)) Black arrows indicate
lack or absence of sarcoplasmic reticulum and muscle fibers
in some areas of cxcr4a morphant. For clarity, this region of
section (J) was selected where there are at least some mus-
cle fibers. Abbreviations: HM — horizontal myoseptum; ys —
yolk sac and yse — yolk sac extension. Scale bars = 500 nm.

'I HWM

The phenotype of sdfla-EI-MO morphants is similar to
that of 5'UTR-sdf1a morphants. In addition, expression of
genes encoding myosin light chain (mylz2) and myosin
heavy chain (myhz1) decreased in cxcr4a and sdfla mor-
phants (Figures 2J-K), whereas expression of the early
myocyte marker pax7 was relatively normal (data not
shown). Taken together, these experiments showed that
knockdown of Sdfla causes reduction in myoD and myf5
transcription, a phenomenon similar to that of Cxcrda
knockdown. Thus, sdf1a is necessary for early myogenesis.

We then analyzed cxcr4a and sdfla morphants in more
details. Both cxcr4a and sdfla morphants have reduced
birefringency in myotomes (Figure 3A). In addition,
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Figure 4

Slow muscle migration defects in cxcr4a and sdfla
morphants. Confocal images of embryos stained for slow
myosin using F59 antibody. Dorsal (A-C;G-I) and lateral (D-
F) views of embryonic trunk between the fourth and tenth
somites. (A-C) Adaxial cells in cxcr4a and sdfl a morphants
are identical to that in controls, 19 h. (D-I) Embryos at 25 h.
(D-F) Z-stacked images of ten frames. (G-I) Z-stacked images
of two frames. (D) Distinct and properly aligned slow fibers
are seen in control embryo. (E,F) Gaps are seen in myotomes
of representative cxcr4a and sdf/a morphant, indicated by
white arrows. (G) Control. (H,l) Loss of fiber at the superfi-
cial layer and misrouted slow muscle, indicated by white
arrows in representative cxcr4a and sdf/a morphant respec-
tively. Other misrouted slow fibers in morphants are in dif-
ferent planes (data not shown).

transgenic mylz2-GFP morphants of cxcr4a and sdf1a show
reduced GFP expression (Figures 3B-F). This prompted us
to check the ultrastructure of muscle fibers in morphants
using transmission electron microscopy (TEM). Both
cross and sagittal sections illustrated that myofibrils were
reduced in cxcr4a morphants (Figures 3G-J). Taken
together, these results indicated that deficiency in Sdfla-
Cxcr4a mediated signaling caused abnormal development
of skeletal muscles. The affected somitic cells most likely
remained undifferentiated.

Loss of cxc4a and sdfla function affects slow muscle
migration

It was previously shown that development of slow muscle
is closely associated with that of fast muscle and that a
change in adhesion within the myotome disrupts migra-
tion of slow myoblasts [1]. We tested whether perturba-
tion of either Cxcr4a or Sdfla affects slow muscle. To
eliminate the possibility of early defects in slow myob-
lasts, we analyzed cxcr4a and sdfla morphants at 19 hpf,
when the posterior adaxial cells have not yet completed
their migration. The adaxial cells in both control embryos
and morphants (cxcr4a and sdfla) were adjacent to the
notochord (Figures 4A-C). A mild decrease in F59 anti-
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Figure 5

Knockdown of E-box factors affects cxcr4a and sdfla
transcription. Dorsal views (A-F). Embryos between 13—-14
h were analyzed. (A,D) Control showing cxcr4a (n = 20) and
sdfla (n = 20) expression respectively. (B,E) Double myoD-
myf5 morphants demonstrate reduction of cxcr4a (n = 15/20)
and sdfla (n = 16/20) transcription respectively. This indi-
cates cooperative function of MyoD and Myf5. (C,F) el2
morphants have vast reduction of cxcr4a (n = 20/20) and
sdfla (n = 20/20) transcription, this confirms that EI2 is a
major regulating factor. Black arrow in F indicates sdf/ a stain-
ing in the non somitic lateral mesoderm. Abbreviation: n —
notochord.

body staining in morphants is presumably due to a slight
developmental delay. This correlates with the normal
myoD staining in the adaxial cells (see Figures 2A-D).
Normally by 25 hpf slow muscle cells migrate to the lat-
eral edge of somite and align to form myofibrils (Figures
4D, G). In cxcr4a and sdfla morphants this process was
affected (Figures 4E-F, H-I). Taken together, these results
show that while early specification of slow muscle in both
cxcrda and sdfla morphants remain normal, the myofi-
brils were affected.

myoD and myf5 are required co-operatively for the
expression of cxcr4a and sdfla

In mammals, the primary MRFs, Myf5 and MyoD, are
involved in both myoblast specification and differentia-
tion [61]. The early expression of cxcr4a or sdf1a correlates
with that of myoD or myf5. Therefore, we speculated that
the knockdown of MyoD or Myf5 could cause a change in
cxcrda/sdfla transcription. Neither injection of the two
different myoD MO designed against distinct regions at 5'-
UTR nor the splice site MO against the first intron of myoD
(myoD-EI-MO), which effectively inhibits splicing of
myoD (Additional Figures A4C-F (see Additional file 4))

http://www.biomedcentral.com/1471-213X/7/54

caused significant changes in transcription of cxcr4a and
sdfla (data not shown).

Similarly, the splice site MO against the first intron of
myf5 (myf5-EI-MO), which caused effective missplicing of
myf5 (Additional Figures A4G-J (see Additional file 4)),
did not affect expression of cxcr4a or sdfla (data not
shown). This could be due to redundancy of myf5 and
myoD [62]. To explore whether these genes can regulate
expression of cxcr4 or sdfl cooperatively, we co-injected
myoD and myf5 MOs. Analysis of myoD-myf5 double mor-
phants using cxcr4a and sdfla probes demonstrated that
transcription of these two genes has decreased signifi-
cantly (compare Figures 5A to 5B and 5D to 5E). The tis-
sue-specific bHLH proteins act after forming dimers with
ubiquitously expressed bHLH proteins such as E12. These
dimers act as positive regulators of gene transcription. We
knocked down E12 using a splice MO (Additional Figures
A4K-N (see Additional file 4)). This resulted in strong
decrease of cxcr4a and sdfla transcription (Figures 5C, F).
Other signaling cascades such as Delta-Notch were unaf-
fected by this treatment (Additional Figures A2N-O (see
Additional file 2)). Taken together, these results suggest
that myogenic factors, MyoD and Myf5 may co-opera-
tively contribute to the regulation of cxcr4a or sdf1a.

myoD and myf5 positively regulate cxcr4a transcription
To verify the idea that early MRFs could regulate expres-
sion of cxcrda/sdf1a, we injected mRNA of myoD or myf5
into only one cell of the two-cell stage embryo and
assayed for cxcr4a and sdf1a expression during somitogen-
esis (Figure 6A). To ascertain that mRNA is indeed asym-
metrically distributed, the mRNA was co-injected with
Fluorescein-Dextran. Only embryos with one-sided distri-
bution of Fluorescein-Dextran were selected for analysis.
Ectopic overexpression of myoD caused increased tran-
scription of cxcrda (Figures 6C, C'). For detailed analysis
these embryos were carefully oriented and sectioned.
Analysis of sections confirmed observations made on
whole mounts (Figures 6J-J"'). Image-Pro® Plus software
was used to evaluate the changes in transcriptional inten-
sities over distance (Figure 61). Similarly, ectopic overex-
pression of myf5 and e12 caused increased transcription of
cxcrda (Figures 6D, D', E, E', K, L-L"', M, N-N"").

The negative HLH proteins Id1-4 compete with the posi-
tive bHLH factors for dimerization with E12 and E47 by
forming inactive dimers. This results in inhibition of tran-
scription of genes — targets of positive MRFs [63,64]. Over-
expression of id2 [65] in a one-sided fashion resulted in
the downregulation of cxcr4a or sdfla transcription (Fig-
ures 6F, F', O, P-P""). Taken together, these data suggest
that myoD or myf5 act in parallel with their co-factors to
regulate transcription of cxcr4a or sdf1a.
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Figure 6

MRFs and co-factors are required for cxcrda transcription. (A) Schematic showing the outcome of two-cell stage injec-
tion. Blue represents a signal of cxcr4a in situ hybridization. Red circles represent fluorescein-dextran on injected side. In con-
trol uninjected embryos, transcription analysis with antisense probes will appear symmetrical on left and right sides of flat
mount zebrafish embryo. Staining will not differ significantly between left and right sides in both uninjected embryos and con-
trol fluorescein-dextran injected embryos. All comparisons were done between opposing pairs of somites. For each set of
experiment, a minimum of three embryos between | 1-14 h were analyzed using cryosectioning. The uninjected side acts as the
internal control. Embryos stained with cxcr4a riboprobe. (B-F') Dorsal views. (B'-F') Composite images of the bright-field and
fluorescent image showing one sided distribution of mMRNA expressing cells. Increased level of cxcr4a transcript can be seen
after misexpression of myoD (n = 46) (C,C"), myf5 (n = 35) (D,D') and e/ 2 (n = 36) (E,E'). Decreased expression of cxcr4a was
observed after misexpression of id2 (n = 27) (F,F"). Black arrows indicate sites of effects. Embryos are carefully aligned for
cross section. (H,J,L,N,P) Transverse sections at the level of somites. (H')J',L',N',P) Fluorescein-Dextran to indicate location and
proper one-sided injection. (H")",L",N",P") DAPI staining. (H"')",L"",N"™,P"") Composite images of bright-field and fluorescent
images indicate exact site of effect. An increase of cxcr4a transcript after misexpression of myoD (]), myf5 (L), E/2 (N) and
decrease after misexpression of id2 (P). White dotted lines demarcate area of staining while black dotted lines define where
relative intensities of staining were measured. (G,l,K,M,0) Graphs from Image-Pro Plus software. Control, G. Changes of rela-
tive intensity, indicated by peaks in [,K,M and O respectively.
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Figure 7

Shh signaling represses expression of cxcrda and
sdfla. Dorsal views (A-P). Ectopic overexpression of shh
mRNA (100 pg) and PKI mRNA (100 pg). Embryos between
I 1-14 h were analyzed. (A-H) Overexpression of shh (A-D)
or PKI (E-H) in the somite represses expression of cxcr4a
and sdfla. (1,J; M,N) Control for el 2 and id2 transcription by
fluorescent-dextran injection. (K,L;O,P) Overexpression of
PKI increases transcription of e/ 2 and id2.

MyoD, Myf5 and Sdf1 act within a context of Hedgehog
(Hh) signaling [22,66-69]. We asked what connection
between Cxcr4a-Sdfla and Shh exists during formation of
skeletal muscles. Since transcripts of cxcr4a and sdf1a were
absent from the adaxial cells, we reasoned that this could
be due to inhibitory influence of the notochord mediated
by Hh. In addition, previously Hh gain-of-function exper-
iments demonstrated transformation of fast myoblasts
into slow muscle [6,16,18,20,24]. Thus, we postulated
that Hh probably inhibits expression of cxcr4a and sdfla.
To check this idea, we injected mRNA of shh or PKI. In
agreement with previous reports, this caused an increase
in myoD and myf5 expression (Additional Figures ASA-H
(see Additional file 5)) [17,70,71]. Second, ectopic expres-
sion of shh or PKI caused decrease of transcription of
cxcrda (Figures 7A-B, E-F) and sdfla (Figures 7C-D, G-
H). This could be due to reduction of positive regulators
of cxcrda-sdfia transcription or increase of inhibitors.
Alternatively, it could also lead to changes in relative lev-
els between both positive and negative regulators. Indeed,
overexpression of PKI resulted in increased levels of tran-
scription of both positive (e12, Figures 7K-L) and nega-
tive (id2, Figures 7O-P) regulators of cxcr4a-sdfla. Taken
together, these results suggest that Hh signaling negatively
controls expression of cxcr4a and sdfla.

http://www.biomedcentral.com/1471-213X/7/54

Discussion

We have demonstrated that expression of chemokine
receptor Cxcrda and its ligand Sdf1a in paraxial mesoderm
is required during formation of fast muscles. This defines
a much earlier role for these molecules in myogenesis
comparing to that described in previous reports on the
migration of progenitors of the appendicular muscles
[25,51,72]. In the gain-of-function (GOF) experiments,
based on implantation of SDF1-containing beads into
chick limb, the down-regulation of MyoD expression has
been observed [51]. Such an outcome differs from that in
our observations. This conflict probably demonstrates
that an outcome of SDF1 signaling could be the context-
and/or concentration-dependent as implied earlier [36].
Furthermore, the different methodological approaches
have been used to collect data. We relied on the loss-of-
function (LOF) approach, which similar to recent experi-
ments with SDF1 inhibitor [73] demonstrated a positive
regulatory role of SDF1-Cxcrd axis upstream of MyoD.
Taken together, results of LOF experiments in chick [73]
and our results in zebrafish support the positive regula-
tory role of Cxcr4-Sdf1 upstream of MRFs during commit-
ment of fast myocytes.

Functional differences within pairs of Sdfls and Cxcr4s
Our data show that the both pairs of genes encoding Sdf1
and Cxcr4 have overlapping expression in somites. Nei-
ther cxcr4b nor sdf1b MO alone have obvious effect on for-
mation of fast muscles. There are no defects in this tissue
in ody mutant. Thus, it appears that Cxcr4a-Sdfla axis
alone is fully capable of supporting fast myogenesis,
whereas Cxcrdb or Sdf1b perhaps can only partially com-
pensate for the loss of this activity.

Cxcrda-Sdfl a signaling during myogenesis

Both CXCR4 and SDF1 knockout mice exhibit a complex
phenotype [74,75]. Despite the fact that they have been
available for analysis for a long time, no defects in trunk
muscles were detected [50]. Perhaps potential abnormali-
ties in this tissue are too subtle compared to a plethora of
more obvious defects elsewhere. Alternatively, an appar-
ent change in regulatory machinery of Cxcr4 and Sdfl
expression between fish and mice, with respect to these
proteins in fast muscle development of fish, could explain
the differences that we have detected.

We never observed a complete absence of fast fibers in
morphants. This could be due to other factors such as an
incomplete knockdown or activity of paralogous genes,
cxcrdb and sdf1b, which might partially compensate for
the reduction of function of Cxcr4a and Sdfla. Our data
suggest that Cxcr4a-Sdfla signaling plays no role in tail-
bud mesoderm and starts to become necessary just before
formation of somite border. It has been proposed that
Cxcrdb in the lateral line primordium is involved in coor-
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dination of internal cell movement [76]. Similarly,
Cxcr4a-Sdfla could be instrumental in coordinating a
short distance movement of fast myocytes.

cxcrda and sdf1a are not expressed in the adaxial cells and
these cells express myoD and myf5 normally in the cxcr4a
or sdfla morphants. Thus, the defect of slow myofibrils
observed in these morphants is likely an indirect one. It
could be caused by abnormality of fast myocytes. This is
in line with earlier data suggesting that migration of slow
myocytes depends on fast myocytes [5].

Cxcrd4a-Sdfla and regulation of MRFs expression

The early expression pattern of sdfla-cxcr4a in somites is
very similar to that of myoD and myf5, but later on cxcrda
expression becomes restricted to the less differentiated
anterior part of somite in contrast to MRFs expressed in
the posterior more differentiated part of somite. This sug-
gested that developmental events involving Cxcr4 precede
induction of expression of myoD-myf5. Indeed, our func-
tional analysis illustrated a requirement of Cxcr4 for regu-
lation of expression of MRFs. Thus activation of MRFs
expression by sdf1a-cxcrda signaling during fast myogene-
sis occurs concurrently with the process of somite epithe-
lialization and may play a role during this process.

MREFs positively regulate expression of cxcr4a and sdfla
Until now there has been little evidence that MRFs could
regulate expression of components of chemokine signal-
ing [76,77]. Here for a first time we provided evidence that
MRFs regulate transcription of cxcr4a and sdfla. At the
same time our results are consistent with previous reports
that the MRFs are partially redundant as myogenic deter-
minants [78]. And yet the double MyoD-Myf5 knock-
down caused only partial reduction in the expression of
cxcrda and sdfla. Perhaps some other regulatory factors
such as Myocyte Enhancer Factor 2 (MEF2) act in parallel
[54]. Alternatively, these data reflect an incomplete
knockdown of MyoD-Myf5.

To act, MRFs form a dimer with E12 and E47, which are
products of alternative splicing of E2A transcripts. They
belong to a distinct class of ubiquitously expressed bHLH
proteins of the E-protein family. The MRF/E protein het-
erodimers bind to a conserved DNA sequence, CANNTG,
also known as the E-box, located in regulatory regions of
many muscle-specific genes [80-82]. The promoter region
of human CXCR4 contains an E-box sequence [83]. Simi-
larly, we found two E-boxes in close proximity within a 2
kb stretch of cxcr4a 5'-untranslated region (our unpub-
lished data). The upstream regulatory sequences of many
muscle-specific genes, including MLC1/3 [84], acetylcho-
line receptor alpha [85], MCK [86] and myoD [87], con-
tain multiple E-box sites. In general, at least two E-box
sites are required for the activation of these genes by the
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MRFs [88,89]. These results support an idea that MRFs
could directly regulate expression of cxcr4.

Feedback loop between Cxcr4-Sdfl and MRFs

The expression pattern of Sdf1 genes overlaps with that of
MRFs. Since Sdfla expressed in the posterior part of
somite probably interacts with Cxcrda expressed in the
anterior part of somite, this provides a missing link to
complete the feedback regulation loop between Cxcr4-
MRFs-Sdf1 that could be operating to link cascades of
genes involved in chemokine signaling and myogenic dif-
ferentiation. However, further investigation will be
needed to understand the biochemical interactions.

Conclusion

In summary, our analysis of the developmental role of
zebrafish Cxcr4-Sdf1 has led to the identification of the
ligand-receptor pair essential for development of trunk
muscles. This reveals a novel role of Sdf1-Cxcr4 in differ-
entiation of fast myocytes of the trunk. Thus the chemok-
ine signaling mediated by Sdf1-Cxcr4 emerged as an
important regulatory pathway involved in myogenesis.

Methods

Zebrdfish strains and maintenance

Adult zebrafish (Danio rerio) was maintained at 28.5°C as
described [10]. The zebrafish AB line (ZIRC) was used as
a wild-type fish. The odysseus (0dy/10049/cxcrdb) mutants
and myosin light chain 2 (mylz2-GFP) transgenics were
described [6,41]. Pigment formation was blocked with 1-
phenyl-2-thiourea (PTU) [65].

Whole mount in situ hybridization (WISH) and
immunohistochemistry

WISH was performed using single-stranded RNA probes
labeled with digoxigenin-UTP or fluorescein-UTP (Boe-
hringer Mannheim, Germany) by established protocol.
The zebrafish probes cxcrda, cxcr4b [48], myoD [90], myf5
[17,91], myhzl and mylz2 [13] have been described previ-
ously. Full-length sdfla and sdf1b cDNA were obtained by
RT-PCR using total RNA and primers designed based on
sequence of the EST clones (BM184435 and BM070896),
respectively. F59 Mab (1:25) [92] and secondary goat
anti-mouse IgG antibody - Alexa Fluor 488 (1:1000;
Molecular Probes, USA) was used to detect slow myosin
heavy chain.

RT-PCR

Total RNA was isolated from 14 h embryos using RNeasy”
Mini Kit (Qiagen, Germany). cDNA for reverse transcrip-
tion (RT)-PCR analysis was synthesized using Qiagen®
OneStep RT-PCR kit (Qiagen, Germany) and Peltier Ther-
mal Cycler - 200 (MJ Research, USA) according to the
manufacturer's instructions. For mRNA splicing analysis,
25 ng of total RNA samples treated with DNAse I was
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used. RT-PCR conditions were as follows: Reverse tran-
scription 50°C, 30 mins; PCR activation step 95°C, 15
mins; Denaturation 94°C, 1 min; Annealing 59°C, 1 min;
Extension 72°C, 1 min; Cycles from Denaturation to
Extension were repeated 39 times; Final Extension 72°C,
15 mins. 10 pl of RT-PCR products were loaded into each
well for gel-electrophoresis. The sequences of primers for
introns of sdf1a, myoD, myf5 and e12 were as follows: For-
ward sdf1a-2EI-F 5' ACA GTC AAC ACA GTC CCA CAG 3}
Reverse sdf1a-2EI-R 5' GIT GAT GGC GTT CIT CAG GTA
3'; Forward myoD-1EI-F 5' CTG AGC AAG GTC AAC GAC
GCT 3'; Reverse myoD-1EI-R 5' TGA AGT AAG AGC TGT
CAT AGC TG 3'; Forward myf5-1EI-F 5' GCA CTA CGC
CGCTGC ACCT 3'; Reverse myf5-1EI-R 5' GCG TCA AAG
TTG TAG CTA TTC C 3'; Forward EFlaphaF900 5' CGC
CCC TGC CAA TGT AAC CA 3'; Reverse EFlalphaR1388
5'TTG CCA GCA CCA CCG ATTTTC 3".

Morpholino (MO) Injections

MOs were obtained from Gene Tools, LLC (USA). The
antisense sequences were designed to bind to the 5'UTR
region including the initiation methionine or sequence
between exon-intron (EI) junctions. To minimize the pos-
sibility of non-specific effects, we designed and used at
least two MOs targeting non-overlapping sequences for
each gene. MO sequences were as follows: Cr4a-1-MO 5'
ATA AGC CAT CTC TAA AAG ACT TCT C 3'; Cr4a-2-MO
5' GAC TTC TCC CGT TCC TTC AGT CTC C 3'; Cr4a-3-
MO 5' ACA GIT TAA ATA CCT CIC TCG CGC G 34
mCr4a-1-MO 5' ATA AAC CAT ATC TAA GAG ACGTCT
C3';S1a-1-MO 5' TGC AGT GTG AAG AAG AGATCC GCA
C3'; S1a-2-MO 5' TTG AGA TCC ATG TIT GCA GTG TGA
A3'[40]; S1a-3-MO 5' ATC ACT TTG AGA TCC ATG TIT
GCA 3' [43]; mS1a-2-MO 5' TTAAGA TAC ATG TIT GAA
GTGTAA A3'; S1a-EI-MO 5' GTG CAG ATA CTCACATGA
CIT GGA A 3'; myoD-1-MO 5' TGC GAT AAC AAG GGG
GCG TGA TIT T 3'; myoD-2-MO 5' GTA AGA CAA AGT
CCT TCA GAT CCC G 3'; myoD-EI-MO 5' GIT TCT CAC-
CAT GCC ATC AGA GCA G 3'; myf5-EI-MO 5' GTC ATA
TITACC ATG CTC TCT GAG C3'; e12-1EI-MO 5' GAA
AAC ACACCG GCC ACA TTA GAA G 3'; e12-3EI-MO 5'
TTC ACA CTC ACC AGG CCC GGC AGA C 3'; UMO or
control MO 5' CCT CTT ACC TCA GTT ACA ATT TAT A 3'
[93]. Bold letters either represent base change or region in
intron. MOs were diluted using 1x Danieau's solution to
1 mM stock solution or to proper concentration for injec-
tion (0.46-1.5 pmole) and injected into the yolk stream
of 1-2 cell stage embryos using a nanoinjecter (WPI,
USA). Since several MO give the same results only repre-
sentative morphants were photographed.

Expression constructs and RNA

cxcrda  (AY057095),  cxcrdb  (AY057094),  sdfla
(BM184435), sdfib (BM070896), myoD (Z36945), myf5
(AF270789), and id2 (DQ186992) were all cloned into
PCRscript (Clontech). Primers used for cloning: Forward
cxcrda (F) 5' ATG GCT TAT TAC GAA CAC ATC GT 34
Reverse cxcr4a (R) 5' TTA ACT AGA GTG AAA GCT TGA
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GAT 3'; Forward cxcr4b (F) 5' ATG GAATITTAC GAT AGC
ATC 3'; Reverse cxcr4b (R) 5' CTA ACT CGT CAG TGC ACT
GGA 3'; Forward sdf1a (F) 5' ATG GAT CTC AAA GTG ATC
GT 3'; Reverse sdfla (R) 5' TTA GAC CTG CTG CTG TTG
GGC 3'; Forward sdf1b (F) 5' ATG GAT AGC AAA GTA GTA
GCG C 3'; Reverse sdf1b (R) 5' TTA CTC TGA GCG TIT
CTT CIT TAT 3'; Forward myoD (F) 5' ATG GAG TTG TCG
GAT ATC CCC 3'; Reverse myoD (R) 5' GCA CTT GAT AAA
TGG TTIT CC 3'; Forward myf5 (F) 5' ATG GAC GTA TTC
TCC ACA TC 3'; Reverse myf5 (R) 5' TCA CAG TAC GTG
GTA AACTGGT 3'; Forward id2 (F) 5' ATG AAG GCA ATA
AGC CCA GTG A 3'; Reverse id2 (R) 5' TTA ACG GTA AAG
TGT CCT GCT G 3'. For microinjection of mRNA, con-
structs were linearized with Sac II and capped mRNA was
synthesized by in wvitro transcription with T7 RNA
polymerase using mMessage mMachine kit (Ambion,
USA). Poly-A was added using poly-A polymerase (GE
Healthcare, UK). E12 expression construct was provided
by Dr. J. Campos-Ortega. Zebrafish sonic hedgehog (Shh)
and PKI RNA were transcribed from plasmid pPSP64T-
zfshh and pPSP64T-PKI provided by Dr. M. Hammer-
schmidt. The RNA (100 pg) was co-injected into the yolk
of 1-2-cell stage embryos with lysine fixable Fluorescein
Dextran or Texas Red (70 kDa, Molecular Probes, USA).

Cryosectioning and photography

Cryosectioning of embryos was described [65]. Some sec-
tions were stained with 1.5 ml of diluted 3.5 uM DAPI (4',
6-diamidine-2-phenylidole-dihydrochloride) for 20 min
and washed in PBS 2x 20 min. Axiophot 2 compound
microscope or laser scanning confocal microscope LSM
510 (Zeiss, Germany) with software supplied by the man-
ufacturers or AX70 (Olympus, Japan) were used for pho-
tography. For image processing Adobe® Photoshop 5.5
and measuring of relative intensities Image-Pro® Plus 4.5.1
software was used.

Light Microscopy

For analysis of birefringency of the axial skeletal muscle
the Olympus Light dissecting microscope equipped with
polarizer (Olympus, Japan) was used as described [94]. A
plane of polarization was standard in all analysis.

Electron-microscopy

Embryos were processed using standard protocols [95],
embedded in 100% spurr resin and polymerized at 65°C
overnight. Ultra-thin sections were cut on a Reichert-Jung
ultramicrotome (Germany) and examined under the
transmission electron microscope JEM1010 (JEOL, Japan)
at 100 kv.
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Additional material

Additional file 1

Additional Figure A1 The dynamic expression of cxcrdb and sdf1b
during segmentation. Dorsal views (A, C-F) and lateral views (B,G). (A)
cxcrdb is expressed in the tailbud region, adaxial cells, paraxial meso-
derm, 13.5 h. (B) Expression of cxcrdb is reduced as differentiation pro-
ceed, strong expression is in forming and newly formed somites, 18 h. (C)
Two color in situ for myoD (red) and cxcrdb (blue) reveals partial over-
lapping expression of cxcrdb and myoD, 14 h. White lines demarcate the
somite boundaries. (E) sdf1b transcription starts early in the adaxial
cells, 10 h. (D,F) Expression in somites is relatively weak; some part of
adaxial and paraxial mesoderm express sdf1b at 14 h and 14.5 h respec-
tively. (G) sdf1b transcription localizes in dorsal and ventral regions of
somites as indicated by black arrowheads, 16.5 h. (H) Reverse transcrip-
tion (RT)-PCR detects continuous presence of transcript of sdf1b during
early development. sdf1b transcript is present before mid-blastula transi-
tion (MBT). To confirm results, products were sequenced. 3-actin was
used as positive control. -RT control using B-actin primers without addi-
tion of reverse transcriptase, no band was detected (data not shown).
Abbreviations: ad — adaxial cells; d — dorsal; Im — lateral mesoderm; mn
— motoneurons; ncc — neural crest cells; ps — presomite; psm — presomitic
mesoderm; s — somite; SO — forming somite; S1 — newly formed somite; tb
— tailbud; v — ventral; ys — yolk sac. Scale bars = 50 um.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-54-S1.jpeg]

Additional file 2

Additional Figure A2 Control experiments. Dorsal views (A-O). (A,B)
Embryos double stained with myoD (red) and vasa (blue), 14 h. vasa
riboprobe ensures that ody"/-was correctly identified since mutant embryos
appear phenotypically normal. No significant change in myoD was
observed in ody/-. Arrows indicate the cluster of primodial germ cells
(PGCs). (C,D) Embryos double stained with myf5 (blue) and vasa
(red), 14 h. No significant change was detected in the paraxial meso-
derm. Insets showing normal cluster of PGCs in ody sib and PGCs were
found along midline in head region of ody"-. (E-J) Two sets of experiment
(E-G and H-J) demonstrating redundancy in function between cxcrda
and cxcrdb. A lower dosage of cxcrda MO was used to obtain normal
myoD staining but disrupted myoD in paraxial mesoderm in ody 7.
vasa (red) helps to identify ody /. White arrowheads in ] indicate ectopic
expression of myoD. (K-M) cxcrda and sdf1a morphants show normal
transcription of myf5 in tailbud domain, 14 h. (N,O) A representative
e12 morphant stained with deltaC as a control for cxcrda and sdfla
transcriptional analysis, 14 hpf. Somites are formed in these morphants
and notch pathway is unaffected.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-54-S2.jpeg]

Additional file 3

Additional Figure A3 Range of phenotypes in morphants. (A) Control.
(B) cxcrda morphants. (C) sdf1a morphants. cxcrda and sdf1a MOs act
in a dosage dependent manner.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-54-S3.jpeg]
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Additional file 4

Additional Figure A4 Efficiency of splice site MOs. (A,C,G,K) f-actin
primers used in +RT control. Splice site MOs inhibit splicing in sdf1a (B),
myoD (D), myf5 with degradation (H) and e12 (L). Total RNA from
control (lanel,5), 0.46 pmole/embryo (lane2,6), 0.92 pmole/embryo
(lane 3,7), 2.3 pmole/embryo(lane4,8). Splice product sizes are indicated
by white asterisks. (E,F) mylz2 riboprobe staining on control (n = 20/20)
and myoD-EIl morphant (n = 19/20) respectively [96]. (I,]) myogenin
riboprobe staining on control (n = 20/20) and myf5-El morphant (n =
18/20) respectively [97]. (M,N) sdfla riboprobe staining on E12-EI
morphant (n = 20/20)and morphant rescued with e12 mRNA (n = 10/
16).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-54-S4.jpeg|

Additional file 5

Additional Figure A5 Control experiments for in vivo effects of PKI on
the induction of myogenic transcription. (A,B) Fluorescent-dextran
injected embryos stained with myoD (n = 10), 14 h. (C,D) PKl injected
embryos with robust myoD (n = 10), 14 h. (E,F) Fluorescent-dextran
injected embryos stained with myf5 (n = 10), 14 h. (G,H) PKl injected
embryos with augmented myf5 (n =10), 14 h.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-54-85.jpeg]
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