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Abstract
Background: The mitochondrial DNA (mtDNA) of the cloned sheep "Dolly" and nine other ovine
clones produced by somatic cell nuclear transfer (SCNT) was reported to consist only of recipient
oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle,
mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA
resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor
mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs
cloned from fetal fibroblasts.

Results: The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy
numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88). The ratio of donor to recipient oocyte
mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS)
PCR (i.e. ARMS-qPCR). For quantification of SNP variants with frequencies below 0.1% we
developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR). We
report the first cases (n = 4 fetuses, n = 3 lambs) of recipient oocyte/nuclear donor mtDNA
heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect
hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring.
Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6) indicating
neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5%) was observed
in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with
three rare amino acid changes compared to the donor including one substitution at an evolutionary
conserved site.

Conclusion: Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-
qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA
into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones tested,
whereby all but one case revealed less than 1% mtDNA contribution from the nuclear donor cell
suggesting neutral segregation.
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Background
Somatic cell nuclear transfer (SCNT) has been used to pro-
duce live clones in 14 mammalian genera ([1,2] and refs
therein). Live animals were also cloned by interspecific
(Bos [3]), and intersubspecific SCNT (mouflon [3], cattle
[4], mice [5] and wild cat [6]). The transmission of donor-
cell mtDNA to the clonal offspring was addressed in four
mammalian species [4,5,7-11].

Mature oocytes in different mammalian species contain
on average 1.74 to 9.5 × 105 mtDNA copies [12-14]. A
threshold of about 100,000 mtDNA copy numbers must
be exceeded for fertilisation to ensue in mouse, human
and pig (reviewed in [15]). In contrast, mtDNA copy
numbers in somatic cells vary substantially ranging from
several hundred to several thousand [14,16-18]. Recipient
oocytes have around 100 to 250 times more mtDNA cop-
ies than donor cells based on copy number ratios of 0.4%
to 0.9% [4,5,8]. Therefore the resultant SCNT clones are
assumed to have nuclear and mitochondrial genomes of
different origins and to be slightly heteroplasmic based on
the quantitative participation of mtDNA from the two
partners and on equal replication of their mitochondrial
genomes. Nucleus donor-derived mtDNA was transmit-
ted to most cattle, mouse or pig clones [4,5,8,10,19,20],
including the germline of one SCNT pig [10]. Quantita-
tive studies on SCNT-derived fetuses and offspring
revealed levels of heteroplasmy between 0 and 13%
[4,5,8,19-21] indicating neutral transmission of mtDNAs
of the nuclear donor and the oocyte recipient. However,
higher contributions up to 40% attributed to a replicative
advantage of donor mtDNA have also been observed [20].
These data demonstrate that donor mtDNA transmission
is not prevented in SCNT and are concordant with the
detection of somatic cell-derived mtDNA in offspring pro-
duced by assisted reproductive techniques like ooplasm

transfer [22]. However, in Dolly and nine other cloned
sheep donor mtDNA could not be detected [7].

The existence of heteroplasmic clones is contrary to the
unimaternal inheritance of mtDNA during mammalian
sexual reproduction [23]. The mechanism of paternal
mitochondrial elimination involves the proteasome of
oocytes, which recognizes mitochondria that have been
ubiquitinated during spermatogenesis [24,25]. For sexu-
ally reproduced mammals there are few exceptions from
this strict exclusion including reports of interspecies
mouse hybrids [26], a human patient with mitochondrial
myopathy [27,28], and the offspring of a single Small-tail
Han sheep crossed to two rams of Dorset breed [29].

In this work, we re-investigated the issue of the failure to
detect donor mtDNA transmission into cloned offspring
in Ovies aries reported previously [7]. In addition to this
previous report, our SNP quantification method included
an intra-assay standard controlling for the detection limit
reached in each run. To further increase discrimination
sensitivity, we developed a restriction endonuclease-
mediated selective quantitative PCR (REMS-qPCR) proto-
col. Both quantification approaches identified donor
mtDNA transmission to ovine clones demonstrating the
lack of a species-specific mechanism preventing transmis-
sion to SCNT sheep. In addition, we analysed complete
mitochondrial genomes for amino acid changes being
specific for high-level heteroplasmy found in another
clone.

Results
Transmission of donor mtDNA to the clonal offspring
We investigated the transmission of nucleus donor cell
mtDNA to twelve ovine SCNT clones (CA1 to CA7, CB1 to
CB3 and CC1 and CC2; in total n = 7 fetuses and n = 5
lambs; Table 1), which were generated from three sources

Table 1: Heteroplasmy in tissues of ovine fetuses and sheep cloned by SCNT from fetal fibroblasts

Clone % donor mtDNA in tissues analysed Source

CA1 n.d. in blood, skin lamb
CA2 blood (0.3), skin (0.3) lamb
CA3 blood (0.6), skin (0.7) lamb
CA4 n.d. in skin, tongue fetus
CA5 brain (46.5), intestine (14.4), kidney (26.2), liver (11), lung (18.4), testis (6.8), tongue (10.4) fetus
CA6 n.d. in amnion, blood, cerebellum, chorioallantois, heart, kidney, liver, lung, muscle, skin, small intestine, umbilicus lamb
CA7 n.d. in placenta, skin, tongue fetus

CB1 n.d. in cells at passage 2 fetus
CB2 cells at passage 2 (0.1) fetus
CB3 cells at passage 2 (0.2) fetus

CC1 cells at passage 0 (0.9) fetus
CC2 skin (0.2), brain (0.3), hind limb muscle (0.2); n.d. in ileum, kidney, liver, lung, spleen, testis lamb

n.d., not detectable
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of primary fetal fibroblasts (A, B and C). Samples were
taken from fetuses (cells or tissues), live lambs (blood and
skin) and from a lamb put down post partum (several tis-
sues) (Table 1).

Culturing cells in vitro under standard, high-glucose con-
ditions with sodium pyruvate and non-dialised fetal
bovine serum supplementation was reported to reduce
mtDNA copy number [30]. To estimate the expected levels
of heteroplasmy in SCNT clones in case of neutral trans-
mission of parental mtDNAs, we quantified the mtDNA
copy numbers per cell for the three primary fetal fibro-
blast donors cultured for several passages under similar
conditions before SCNT. Copy numbers obtained
(donors A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88) were
comparable to those found in somatic cells of murine
fetuses between days 8.5 and 13.5 post conceptionem (349
to 988; [14]) or in ovine fetal primary fibroblasts cultured
long-term (genotype SFF1: 896 ± 55, [31]). However, they
were lower than those found in earlier cultures derived
from the latter genotype (SFF1: 4241 ± 411 to 1168 ± 76,
[31]), in cultured goat fetal fibroblasts at different points
in time (1129 ± 174 to 4276 ± 159, [31]) or in adult
human primary fibroblasts (~1300 [32], 1600 to 2000,
[33], 2400–6000 [16]).

To identify SNPs that could be used for detection of donor
mtDNA transmission by ARMS-qPCR, we sequenced the
mitochondrial control region and the mtDNA genes MT-
ND4L, MT-CO1 and MT-CO3 for the somatic donors and
their clones. The phylogenetic tree constructed with these
sequences demonstrates a random maternal origin of the
biological material (Figure 1). Only the recipient oocytes
used to clone CA1, CA2 and CA3 were derived from the
same maternal lineage or individual. This was addition-
ally confirmed with sequences of the complete mitochon-
drial genome (see below). Donor mtDNA-specific
polymorphisms were selected for assay design of ARMS-
qPCR and the novel REMS-qPCR [Additional file 1]. We
identified seven heteroplasmic sheep clones (n = 3 lambs,
n = 4 fetuses) among the twelve screened. In three cloned
lambs (CA2, CA3, CC2) we found at least two heteroplas-
mic tissues with 0.2 to 0.9% donor mtDNA (Table 1). In
the heteroplasmic cloned fetuses we quantified low
(0.1%, 0.2% and 0.9% in cells isolated from CB2, CB3
and CC1, respectively) or high (6.8% to 46.5% in tissues
of CA5) levels of heteroplasmy (Table 1, Figure 2). There
was no mtDNA substitution associated with transmission
or non-transmission of donor mtDNA to the clones
(Additional file 2, Table 2).

Chimerism in the blood of some bovine fetuses generated
by in vitro techniques was attributed to maternal-fetal
transfer of genetic material across an epitheliochorial pla-
centa [34]. The two blood streams of all chorioallantoic

placental types – epitheliochorial, synepitheliochorial,
endotheliochorial and haemochorial – have areas of com-
parable proximity reducing the diffusion distance [35].
The reduction of interhaemal area varies in part with pla-
cental type [36]. In epitheliochorial (cow) and synepithe-
liochorial (sheep) placentae, capillary indenting of both
trophoblast and uterine epithelium decreases the inter-
haemal distance [37]. Therefore, this issue was assessed in
order to exclude the possibility of foster-mother mtDNA
transfer. Four pairs of foster mother/cloned lamb were
analysed (FM1/CA1, FM2/CA2, FM3/CA3 and FM4/CA6).
Foster mother-specific ARMS-qPCR assays [Additional file
1] were designed on the basis of SNPs identified by
sequencing the mitochondrial control region. We did not
detect any foster-mother mtDNA in these four clones (see
Table 1 for tissues analysed), at a detection limit ranging
from 0.5 to 0.3%. Note that donor-cell-derived hetero-
plasmy in the clone CA2 (0.3%) was quantified at
15,633C. For the heteroplasmic clones where foster-
mother material was not available (clones CB3, CC1 and
CC2), the assignment of mtDNA genotypes to somatic

The majority of the clonal offspring harbours different recipi-ent oocyte-derived mitochondrial genotypesFigure 1
The majority of the clonal offspring harbours differ-
ent recipient oocyte-derived mitochondrial geno-
types. An unrooted phylogenetic tree derived by maximum 
likelihood using TREE-PUZZLE 5.2 with default settings from 
an alignment of concatenated mtDNA sequences (3806 
nucleotides: control region, MT-CO1, MT-CO3, and MT-
ND4L) of the three donor cell lines, their SCNT clones (CA1 
to CA7, CB1 to CB3, and CC1 and CC2) and of an European 
mitochondrial reference genome (GenBank:AF010406). The 
scale bar represents 0.001 substitutions per site, and quartet 
puzzling values are shown (all are >50). The numbers at the 
nodes (quartet puzzling values) indicate the frequencies of 
occurrence for 1,000 replicate trees. Quartet puzzling sup-
port values provide an estimate of support of a given branch 
and can be interpreted in much the same way as bootstrap 
values. CA5 is the most divergent donor A-derived clone 
which is highlighted by the ellipse (see below for amino acid 
changes).
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donor cells was based on quantification of heteroplasmy
at two rare, donor-specific substitutions.

High-level heteroplasmy in clone CA5
We addressed factors which could have been responsible
for the high levels of heteroplasmy determined in CA5
(up to 46.5%, Table 1). First, we assessed the possibility of
a foster mother-derived origin of this high level of hetero-
plasmy. Since biological material from the foster mother
of clone CA5 was unavailable, we inferred donor trans-
mission based on SNP analysis across the entire mito-

chondrial genome. All diagnostic SNPs (n = 34) for the
donor and oocyte-derived mtDNAs were heteroplasmic in
clone CA5, including some found at frequencies < 5% in
the sheep population. Thus, an alternative origin of the
heteroplasmy is exceedingly unlikely.

Next, we assessed the complete mtDNA genomes of donor
A and its clones since polymorphisms in mtDNA can
influence segregation of mammalian mtDNA independ-
ently from nuclear genes [38,39]. No polymorphism cor-
responded to either presence (clones CA2, CA3 and CA5)
or absence (clones CA1, CA4, CA6 and CA7) of donor
mtDNA (Table 2). The highly heteroplasmic clone CA5
possessed the most divergent mtDNA variant of the donor
DA-derived clones. It differed in three rare amino acid
changes not found in other sheep sequences (frequencies
< 5%, Table 2). The change Asn125Asp in the gene MT-
CO3 occurred at a site completely conserved in human (n
= 2600, [40]) and highly conserved among 61 vertebrate
species [Additional file 3]. With the exception of hedge-
hog (Asn125Thr) that seems to be most divergent in this
extramembranous loop important for cytochrome c oxi-
dase activity [41], the only variant occuring at this site in
Mammalia is a Asn/Asp change seen in a few species
([Additional file 3] and data not shown). The other two
amino acid changes found in the clone CA5 (Table 2)
affected less conserved sites [Additional file 3].

Discussion
Here we applied one (ARMS-qPCR) and developed
another (REMS-qPCR) state-of-the-art techniques for
mtDNA quantification to demonstrate donor mtDNA
transmission in somatic sheep clones for the first time (in
7 out of 12 clones analysed). REMS-qPCR revealed a dis-
crimination limit of 0.02%, and is thus one of the most
sensitive methods for quantitative detection of SNP
sequences. It offers increased power for discrimination of
SNP sequences compared to ARMS-qPCR and their varia-
tions [4,8,11,42]. Application of REMS-qPCR was essen-
tial to identify low-level heteroplasmies of 0.1 and 0.2%
in two of the three nuclear donor B-derived clones ana-
lysed in this work (clones CB2 and CB3). These two
clones were derived from the donor B harbouring only
about half of the mtDNA copies per cell determined for
the nuclear donor A (A: 753 ± 54, B: 292 ± 33). The two-
fold higher mtDNA copy number found in the cells of
donor A is concordant with slightly higher levels of heter-
oplasmy found in donor A-derived heteroplasmic clones,
indicating neutral transmission of the donor mtDNA
(clones CA2 and CA3: 0.3–0.7%). These levels of donor
mtDNA-derived heteroplasmy are in agreement with the
general picture that the majority of investigated SCNT-
derived fetuses and offspring displays either undetectable
levels of donor mtDNA or only mild heteroplasmy, which
is consistent with neutral segregation of donor mtDNA

The novel REMS-qPCR improves the quantitative detection limit for low-abundant point mutationsFigure 2
The novel REMS-qPCR improves the quantitative 
detection limit for low-abundant point mutations. 
This method requires pre-PCR cleavage of the high-abundant 
variant (non-target DNA here: recipient-oocyte mtDNA) 
and ARMS-qPCR (non-discriminative (ND) and discrimina-
tive (D) assays) for the low-abundant SNP variant (target 
here: donor mtDNA) at the mutated site. The amplification 
efficiency of the D assay was 91%. Without further optimiza-
tion concerning conditions for enzymatic digestion, quantifi-
cation by REMS-qPCR targeting a single donor-B-specific SNP 
reached a detection limit of 0.02%, i.e. a point mutation dis-
crimination selectivity factor of 5 × 103. It allowed detection 
of heteroplasmy (0.1%) in the donor B-derived clone CB2. 
This could not be detected by conventional ARMS-qPCR dis-
criminating point mutations only down to 0.1% (see: illus-
trated improvement of discrimination). For clarity each plot 
is presented as the mean calculated from duplicate amplifica-
tion reactions. Individual Ct values, i.e. PCR cycle numbers at 
which plots crossed an arbitrarily placed signal threshold, are 
given in the figure key. An independent technical replicate of 
this REMS-qPCR experiment demonstrated reproducibility of 
the method (data not shown).
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[43]. It is highly likely that our improved SNP discrimina-
tion limits finally resulted in detecting donor mtDNA,
which was not detected in an earlier study applying less
discriminative methods [7].

The failure to detect donor mtDNA in seven other sheep
cloned from a fetal fibroblast origin (PDFF2, [7]), i.e. the
same source of somatic donor cells as used here, still
remains unresolved. Again, a low mtDNA copy number
per donor cell in combination with an insufficiently dis-
criminative quantification method can not be excluded.
Likewise, cryopreservation of the donor cell immediately
before SCNT (PDFF2 in [44]) which did not allow the
mitochondria to sufficiently recover from cryopreserva-
tion-induced oxydative stress or damage should be taken
into account. Cryopreservation of oocytes, somatic and
embryonic cells leads to a decrease of the mitochondrial
membrane potential [45-47], which is an indicator of
overall mitochondrial function. Moreover, cryopreserva-
tion is known to be responsible for the increased produc-
tion of reactive oxygen species ([47,48] and refs. therein).
Reactive oxygen species-induced oxidative stress leads to
cell cycle arrest and changes in mtDNA copy number [49].
If donor cells were allowed to "recover" from cryopreser-
vation over several passages before SCNT, the transmis-
sion of their mtDNA was not circumvented [8,50,51].

In this work all clones analysed were produced from early-
passage fetal fibroblasts without cryopreservation.

Mammalian mtDNA segregation is controled by nuclear
and mitochondrial genomes [52,53]. From previous work
it can be concluded that different sources of recipient
oocytes – genetically identical or random – can increase
the chance to produce divergent segregation patterns of
donor mtDNA in SCNT. Genetically identical recipient

oocytes used to produce intersubspecific SCNT mice
resulted in heteroplasmy levels of a few percent (including
a single tissue with 13% heteroplasmy, [5]). In contrast, a
study with genetically random-source recipient oocytes in
cattle included two SCNT clones with a significant
increase of donor mtDNA [20].

We also produced different patterns of donor mtDNA
transmission using an identical nuclear background
(donor A) in combination with recipient oocytes with dif-
ferent mtDNA. Beside undetectable (clones CA1, CA4,
CA6 and CA7) or neutral transmission (clones CA2 and
CA3 possessing the same mtDNA variant), a single case
with a high degree of nuclear donor-derived heteroplasmy
was observed (up to 46.5% in clone CA5, Figure 1 and
Table 1). Heteroplasmies detected in some of the tissues
analysed for the fetus CA5 are higher than those found in
18 heteroplasmic ovine embryos cloned by fusing enucle-
ated oocytes of random genetic origin with ovine fetal pri-
mary fibroblasts (<8.7%, [11]). Our results show that
high-level heteroplasmy can also occur in sheep following
SCNT. Similar results have been obtained earlier for a
bovine fetus and a calf cloned from cumulus cells (fetus:
39% (range: 25–51%), calf: 40% (range 8–59%), [20]).
Authors attributed this high heteroplasmy to a replicative
advantage of donor over recipient-oocyte mtDNA [20]. In
addition to the latter report, this work is the first to pro-
vide mtDNA coding region sequences for a highly hetero-
plasmic SCNT clone and relates the obviously favoured
proliferation of donor mtDNA to a divergent mitochon-
drial genotype (Figure 1, Table 2). Irrespective of the pol-
ymorphism frequency in the local sheep herds used as
recipient-oocyte source or of evolutionary conservation
which are not decisive criteria to classify a variant as
mildly deleterious [54], we speculate that one or several
predicted amino acid changes of this mtDNA variant

Table 2: Polymorphisms in the coding region of the mitochondrial genomes of donor A and its clones

Sample Gene Base or amino
acid change

Localisation of polymorphism % in population
(sequences tested)

Variation in human 
mtDNA5

donor A MT-RNR2 T1114C domain 1 [69] 10 (n = 10) n.a.
donor A MT-TF C41T anticodon stem [70] 0.8 (n = 132) n.a.
donor A MT-CYB Ile238Thr3 transmembrane domain 61 18 (n = 28) Ser/Pro/Phe
CA1-32 MT-ND6 Val154Ile3 transmembrane domain 51 ≤ 13 (n = 8) Val
CA5 MT-CO1 Met466Thr3 transmembrane domain 121 < 5 (n = 21) Met/Val
CA5 MT-CO3 Asn125Asp longest extra-membranous loop1,4 < 5 (n = 21) Asn
CA5 MT-ND4L Met47Thr3 transmembrane domain 21 < 5 (n = 21) Met/Thr/Ile
CA5 MT-RNR1 A810T domain 3 [71] 2.6 (n = 38) n.a.
CA6 MT-TG T134C DHU loop [72] 9.1 (n = 11) n.a.

n.a., not analysed
1According to Swiss Protein families database of alignments and hidden Markov models (Pfam)
2Recipient oocytes used to clone CA1, CA2 and CA3 are of the same mtDNA genotype
3Uncharged amino acids
4hydrophilic loop exposed on the intermembrane space and connecting helices III and IV [41]
5according to Human Mitochondrial Genome Database [40]
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could have caused suboptimal nucleo-mitochondrial
interaction with the nucleus of donor A by affecting func-
tions of the mitochondrially encoded protein subunits
inside and/or outside of the mitochondrion [55].

A certain level of variability in mtDNA segregation has to
be taken into account for embryo reconstruction [56].
However, we believe that the 'non-pathological' mtDNA
variant of CA5 (its recipient-oocyte mtDNA) which
encodes one or several amino acid changes represents a
promising new genetic candidate to study mtDNA prolif-
eration, nucleo-mitochondrial interaction or the selective
preference of some cell types for a given mitochondrial
genotype [39].

In this work mitochondrial genomes with up to about
0.2% sequence divergence were mixed by SCNT. Hetero-
plasmic mice carrying mitochondrial genotypes of Mus
musculus domesticus and Mus musculus brevirostris (NZB
mtDNA [57]) with a sequence divergence of 0.7% (Gen-
Bank:L07095 and J01420; 15 amino acid changes [30])
have been described as normal and healthy, as no overtly
abnormal phenotype was observed [58]. The level of het-
eroplasmy in these mouse models did not appear to affect
the capacity for oxidative phosphorylation at the level of
the organelle [30]. However, differences were detected
when physiological parameters of heteroplasmic mice car-
rying a mixture of the same mtDNA genotypes at levels
between 19 and 56% were studied in greater detail [59].

Conclusion
Following a report describing the potential of sheep SCNT
embryos to harbour donor mtDNA throughout preim-
plantation development [11], this is the first report dem-
onstrating donor mtDNA transmission to fetuses or sheep
cloned by SCNT (7 out of 12 clones analysed). Our data
are concordant with reported heteroplasmy in bovine,
murine and porcine SCNT clones [5,8,10]. Thus, we dem-
onstrate that there is no species-specific effect in sheep,
which prevents transmission of nucleus donor-derived
mtDNA into clonal offspring.

Methods
Biological material
SCNT was performed with MII stage oocytes derived from
superovulated ewes and the following three donor cell
lines at early passages: (i) fetal fibroblast cells at passage 2
of a day-35 Finn Dorset fetus (No. 7G65F4, denoted
donor A; [60]), (ii) fetal fibroblast cells at passage 4–6
derived from a day-26 Black Welsh Mountain fetus
(BLWF1, denoted donor B; [7,61]), and (iii) fetal fibrob-
last cells at passage 3 derived from a day-35 Black Welsh
Mountain fetus (BW6F2, denoted donor C; [60]). SCNT
was performed as reported [61] using serum deprivation
to synchronise donor cells at the G0 phase of the cell

cycle. Fibroblasts from day-35 Finn Dorset and day-26
Black Welsh Mountain fetuses were recovered as described
[61] using standard, high-glucose cell culture conditions
and medium supplementation with sodium pyruvate and
non-dialised fetal calf serum.

In addition to the SCNT clones CA1-CA3, CA5 and CA6
derived from the primary cell line 7G65F4 (see above), we
also analysed genetically engineered clones (CA4 and
CA7) derived from cell lines with random integration or
homologous targeting of a α(1,3)galactosyl transferase
(GGTA1) gene construct, respectively [60]. The cloned
lamb CC2 carries a prion protein (PrP) targeted gene dele-
tion [60].

Early cloned fetuses (35 d: clones CB1, CB2, CB3, CC1; 49
d: clone CA5) were recovered by intentional termination
of pregnancy. The other two cloned fetuses analysed died
in utero (clone CA7, 130 d) or were stillborn (clone CA4,
148 d).

In addition, we analysed DNA of four recipient foster
cows (FM1 to FM4) which carried the clones CA1, CA2,
CA3 and CA6, respectively, to exclude a contribution of
the recipient ewe's mtDNA to the clone (mimicking heter-
oplasmy) due to placental leakage.

Breed information of the biological material is given in
Additional file 4.

DNA isolation
Cell, blood and tissue samples were shipped on dry ice
and stored at -80°C. DNA isolation was performed using
the NucleoSpin® Tissue kit (Macherey & Nagel, Dueren,
Germany).

Short tandem repeat (STR) analysis
We confirmed the nuclear genetic identity of all clones
using a panel of 11 standardized STR loci recommended
by the National Institute for Agricultural Research (INRA,
Paris, France) for parentage control in the sheep (data not
shown). Fluorescence data collection and analysis was
performed as described [4].

Sequence analysis
A primer walking approach was used for cycle sequencing
of PCR products performed in a 96-well format with the
BigDye™ terminator chemistry (Applied Biosystems, Fos-
ter City, USA) as described [62].

Demonstration of mtDNA genotype diversity using 
phylogenetic analysis
The phylogeny of mtDNA control region sequences
(excluding the tandem repeat element IV not present in
the Asian mtDNA) was reconstructed with the program
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TREE-PUZZLE, version 5.2 [63] – a program package for
quartet-based maximum-likelihood phylogenetic analy-
sis. The phylogenetic tree constructed with default settings
was graphically displayed using TREEVIEW, version 1.6.6
[64].

Quantification of mtDNA copy number in donor cells by 
quantitative qPCR
For mtDNA quantification the donor cells were used at
similar passage numbers as used for SCNT (2, 2 and 3 for
donors A, B and C, respectively). The mtDNA copy
number per cell was estimated by TaqMan qPCR taking as
reference the copy number of the diploid nuclear genome.
The MT-CO1 gene and the single copy gene coding for the
ovine gonadotropin-releasing hormone receptor
(GnRHR; [65]) were used as mitochondrial and nuclear
target sequences, respectively, in TaqMan qPCR
(RTPrimerDB assay IDs: 3804 and 3805; [66]). In detail,
334-bp MT-CO1 and 290-bp GnRHR fragments were
designed on the basis of the GenBank sequences
AF010406 and L42937, respectively. Amplicons gener-
ated from genomic DNA (primers: TTGGAGCCCCTGA-
TATAGCATT and GAGAGAAGGAGAAGTACGGCAGTAA
(MT-CO1), and AAAACACTTGACTTTAGCCAACCTG and
TGGTTTACCTGTGGTCCAGCA (GnRHR)) were purified
with the NucleoSpin® Extract II kit (Macherey-Nagel,
Düren, Germany). The copy number of each amplicon
was calculated from the mean of three OD260 values meas-
ured for three different amplicon dilutions on the U-3000
spectrophotometer (Hitatchi, Tokyo, Japan). Amplicons
were titrated and tenfold serially diluted in 5 ng/mL
sheared salmon sperm DNA (Invitrogen, Lofer, Austria).
These concentration standards were used in TaqMan
qPCR to determine the mtDNA copy numbers per cell in
each sample. Quantitative qPCR was performed on the
ABI Prism 7900 HT Sequence Detection System (Applied
Biosystems, Foster City, USA). The copy number of the
nuclear and mitochondrial target sequences for the sam-
ple DNAs was concluded by the ABI Prism SDS software
2.3 (Applied Biosystems, Foster City, USA) from the
respective standard curve which was generated from a
series of tenfold standard dilutions co-amplified in each
run. The linear regression analysis of all standard curves
showed a high correlation (correlation coefficient ≥
0.997). Quantification was performed in two technical
replicates, which started with the generation of the ampli-
con concentration standard and ended with duplicate
amplifications of the mitochondrial and nuclear targets of
each sample performed in independent runs. Finally, the
mtDNA copy number per diploid nuclear genome was
expressed as mean ± standard deviation calculated from
the technical replicates.

Amplification refractory mutation system quantitative 
PCR (ARMS-qPCR)
The ratio of mixed SNP alleles, i.e. the level of hetero-
plasmy, was determined by ARMS-qPCR [4,8,67,68]. This
method is based on qPCR quantification of the total
mtDNA content and of the minor mtDNA variant of each
sample using a non-discriminative and a discriminative
assay, respectively. The percentage of donor mtDNA was
calculated according to the standard curve method [4].
The sensitivity of the ARMS-qPCR assay, i.e. the limit for
detection of a portion of the matching allele above the
background caused by the delayed illegitimate amplifica-
tion from the mismatched allele, was controlled by the
use of a homogenous template carrying the alternative
base for the SNP under study. Homoplasmic mismatching
ovine DNA or if not available for a specific SNP locus, a
synthetic amplicon (MWG Biotech, Ebersberg, Germany)
mixed with 5 ng/mL sheared salmon sperm DNA were
used to control for the amplification from the mismatch-
ing allele. Oligonucleotide sequences of the assays are
provided in [Additional file 1].

Restriction endonuclease-mediated selective quantitative 
PCR (REMS-qPCR)
REMS-qPCR is based on pre-PCR cleavage of the non-tar-
get sequence (here: recipient-oocyte mtDNA) at a given
biallelic SNP site (here: position 16,284) and subsequent
selective amplification of the low-abundant target
mtDNA (here: mitochondrial genotype of the donor). In
detail, 40 ng DNA was digested for 5 minutes with FastDi-
gest™ Mph 1103I (MBI Fermentas, St. Leon-Rot, Ger-
many) and purified with the MSB Spin PCRapace Kit
(Invitek, Berlin, Germany). The low-abundant point
mutation was subsequently quantified at position 16,284
by ARMS-qPCR (assays ND4 and D12, [Additional file 1])
to reduce unspecific amplification from the incompletely
digested non-target mtDNA variant.

Nucleotide sequences
Nucleotide sequences were deposited with the GenBank.
Their accession numbers are listed in Additional file 4.

List of abbreviations used
SCNT: Somatic cell nuclear transfer; ARMS-qPCR: Ampli-
fication refractory mutation system quantitative real-time
PCR; REMS-qPCR: Restriction endonuclease-mediated
selective quantitative real-time PCR.
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