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Abstract
Background: The Pax6 transcription factor is expressed during development in the eyes and in
specific CNS regions, where it is essential for normal cell proliferation and differentiation. Mice
lacking one or both copies of the Pax6 gene model closely humans with loss-of-function mutations
in the PAX6 locus. The sequence of the Pax6/PAX6 protein is identical in mice and humans and
previous studies have shown structural conservation of the gene's regulatory regions.

Results: We generated a transgenic mouse expressing green fluorescent protein (GFP) and
neomycin resistance under the control of the entire complement of human PAX6 regulatory
elements using a modified yeast artificial chromosome (YAC). Expression of GFP was studied in
embryos from 9.5 days on and was confined to cells known to express Pax6. GFP expression was
sufficiently strong that expressing cells could be distinguished from non-expressing cells using flow
cytometry.

Conclusion: This work demonstrates the functional conservation of the regulatory elements
controlling Pax6/PAX6 expression in mice and humans. The transgene provides an excellent tool
for studying the functions of different Pax6/PAX6 regulatory elements in controlling Pax6
expression in animals that are otherwise normal. It will allow the analysis and isolation of cells in
which Pax6 is activated, irrespective of the status of the endogenous locus.

Background
Pax6 is a transcription factor containing an N-terminal
DNA binding domain, a paired domain, separated by a
glycine-rich linker sequence from a second DNA binding
domain, a homeodomain, and a C-terminal proline-ser-
ine-threonine-rich transregulatory domain. It is highly
conserved in very diverse species. In mammals, it is
expressed during development in the eye, in specific

regions of the CNS, in the nasal placodes and olfactory
epithelium and in the pancreas [1-3]. Haploinsufficiency
for Pax6 function (Pax6+/-) in the mouse results in the
Small eye (Sey) phenotype [4]. Homozygotes (Pax6-/-) die
perinatally with no eyes and many brain abnormalities [3-
14]. PAX6 haploinsufficiency also causes eye and brain
defects in humans [15,16].
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Normal development requires not only that Pax6 be
present in certain cells at certain times but also that it be
present in the correct amounts. Schedl et al. [17] showed
that severe eye abnormalities are caused not only by
under-expression but also by over-expression of Pax6 in
mice. Bishop et al. [18,19] and Muzio et al. [20] provided
evidence that graded expression of Pax6 across the devel-
oping neocortex of mice is essential for the correct specifi-
cation of its major areas. Such findings imply that Pax6
expression is tightly regulated and that different levels are
maintained in different regions as they grow.

Work on humans has indicated that the PAX6 regulatory
elements extend over more than two hundred kilobases
[21-24]. The locus is highly conserved, both in the coding
regions (human and mouse proteins are identical) and
also in the non-coding regions, where similar long-range
control elements have been identified in mouse and Fugu
by genomic sequence comparisons and DNaseI hypersen-

sitivity analysis [24-26]. A YAC (named Y593) containing
420 kb of the human coding sequence and flanking
regions, extending beyond its putative regulatory ele-
ments, rescues the mouse Pax6-/- phenotype, whereas a
YAC containing 110 kb less flanking sequence does not
[17,24]. In the work described here, we modified Y593 by
introducing tau-GFP and neomycin resistance cassettes so
that they would be controlled by the gene's regulatory ele-
ments and would prevent the production of PAX6 protein
from the translational start site in exon 4 (Fig. 1). This new
YAC (called Y1123) was then used to generate transgenic
mice.

Results
Initial characterization of transgenic mice
Y593 was successfully modified as illustrated in Fig. 1 and
as described in Methods to generate Y1123. This YAC was
used to generate transgenic mice. Three fertile transgenic
founders, named DTy22, DTy42 and DTy54, were identi-
fied. They all appeared phenotypically normal and suc-
cessfully transmitted a tau-GFP-expressing Y1123
transgene to their offspring. PCR with primers marked in
Fig. 1 (sequences in Methods) was used to examine the
minimum extent of incorporation of Y1123: the results
indicated that only DTy54 had incorporated at least the
majority of Y1123, whereas DTy22 and DTy42 had incor-
porated truncated versions. Neither DTy22 nor DTy42
recapitulated the full expression pattern of Pax6. It was
possible to identify DTy54 and DTy42 transgenic mice
using a hand-held torch emitting blue light, of the wave-
length required to excite GFP, and an appropriate filter, as
described in [27]. This revealed GFP expression in the eyes
of living DTy54 and DTy42 mice; the eyes of DTy22 mice
did not express GFP. DTy42 mice expressed GFP only in
the eyes. Using DTy54 mice, Y1123 was crossed into
embryos that were either Pax6+/- or Pax6-/-. Unlike the
unmodified YAC Y593 [17], Y1123 produced no rescue of
either the eye or brain defects in these mutants, confirm-
ing its predicted lack of function.

Quantitative PCR (qPCR) was used to compare relative
fluorescence intensities following amplification with
primers specific for human PAX6 and mouse Pax6 or for
human PAX6 and mouse Pax3. Intensities following
amplification for mouse Pax6 and Pax3 were halved (since
there are two copies of each in the mouse genome). The
ratios between the intensities from PAX6 and half the
intensities from Pax6 and Pax3 are shown in Table 1. We
conclude that one copy of Y1123 (or a part of Y1123 in
DTy22 and DTy42) had integrated into the genome of
each founder. Fluorescent in situ hybridization (FISH)
using the entire FAT5 cosmid (Fig. 1) as a probe [17] on
blood smears from DTy54 showed a single signal per cell,
confirming that there were not multiple sites of integra-
tion. DTy22 and DTy42 were not studied further here.

Generation of YAC Y1123 and DTy54 transgenic miceFigure 1
Generation of YAC Y1123 and DTy54 transgenic 
mice. (A) Construct pDT-1 contained sequences expressing 
tau-GFP and conferring neomycin (neo) resistance, separated 
by an internal ribosomal entry site (IRES), terminated with 
polyadenylation and C2MAZ (pAC2m) sequences and 
flanked by 5' and 3' homology regions (5'HR and 3'HR). (B-C) 
Homologous recombination resulted in the introduction of 
this construct at the translation initiation site (ATG) in exon 
4 of the human PAX6 locus, contained in YAC Y593 [17], to 
produce YAC Y1123. Successful integration of the modified 
PAX6 locus into the mouse genome was checked on South-
ern blots using cosmid FAT5 [17] as a probe and by PCR 
using primers indicated by filled circles in C (sequences in 
Methods). The modification was designed such that the tau-
GFP and neomycin resistance cassettes would be controlled 
by the gene's regulatory elements and would prevent the 
production of PAX6 protein from the translational start site 
in exon 4. The position of the ELP4 gene is marked.
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Expression of tau-GFP in DTy54 mice
To test whether the tau-GFP expression in DTy54 mice
was consistent with the established Pax6 expression pat-
tern, embryos were collected at embryonic day (E) 9.5,
10.5, 12.5, 14.5 and 16.5 and eyes were taken from adults.
Expression of tau-GFP was seen in the eyes at all ages;
examples are shown at E9.5 (Fig. 2A,B), E10.5 (Fig. 2D)
and E14.5 (Fig. 3A,B). Expression was present in the retina
and lens, as expected, and allowed cellular processes to be
visualised due to cytoplasmic labelling by tau-GFP. Partic-
ularly striking was label in the axonal projections of reti-
nal ganglion cells, which could be seen in the optic nerve
(Fig. 3B–D) and followed through the optic chiasm into
the optic tract (Fig. 3E). Elsewhere, tau-GFP expression
was confined to regions known to express Pax6
[1,6,7,9,10]. As expected, expression at E9.5–10.5 was in
the forebrain (in the telencephalic and diencephalic vesi-
cles), with a sharp posterior boundary of expression at the
diencephalic/mesencephalic boundary [7,10], and also in
the hindbrain and spinal cord (Fig. 2). Figure 3F shows a
parasagittal section through the brain at E14.5: expression
was in the cerebral cortex, prethalamus (also known as the
ventral thalamus), pretectum, the basal plate in the region
of the pons [28] and in the cerebellar primordium [11].
The intensity of label in the cerebral cortex was graded
from high rostrally to low caudally (Fig. 3F), in line with
the known gradient of expression of Pax6, which is shown
using an anti-Pax6 antibody in Fig. 3M[18,20]. Similar to
earlier ages, there was a sharp posterior boundary of
expression at the border between pretectum and midbrain
(arrow in Fig. 3F) [7,10]. In coronal sections, expression
of tau-GFP was seen in the pineal gland (Fig. 3G) and
nearby in the posterior commissure (not shown), which
are also sites of Pax6 expression [14]. There was expres-
sion in the prethalamus (Fig. 3H) in a pattern similar to
that shown with an anti-Pax6 antibody (Fig. 3L). In the
pallium (Fig. 3H), there was a boundary of expression at
the border between the pallium and subpallium, in agree-
ment with the known boundary of Pax6 expression (Fig.
3K) [7,10]. Label was seen running ventrally to the amy-
gdaloid region (Fig. 3H), mirroring the known expression
of Pax6 in this area [9,29]. In the cerebral cortex, tau-GFP
was seen in the radial processes of cells located on the ven-

tricular side of the cortical wall (Fig. 3I); again, this was
anticipated since Pax6 is known to be expressed in radial
glial cells [30]. There was expression in the olfactory epi-
thelium (Fig. 3J) [1,2].

Immunhistochemistry with anti-Pax6 and anti-GFP anti-
bodies confirmed the presence of GFP in Pax6-expressing
regions. An example of co-localization at E12.5 is shown
in Fig. 4: Pax6 is expressed on the pallial side of the pal-
lial/subpallial border (Fig. 4A), as is tau-GFP (Fig. 4B,C).
Overall, we concluded that the patterns of label with tau-
GFP are exactly as anticipated on the basis of the known
expression of Pax6 and that regional differences in the
intensity of label in the cerebral cortex reflect known dif-
ferences in the level of expression of Pax6.

Analysis of DTy54 brains with flow cytometry
One of the potential uses of this transgenic mouse is to
allow the isolation of Pax6-expressing cells. We demon-
strated that this is possible using flow cytometry on disso-
ciated cells from the brains of E14.5 embryos. The
telencephalic vesicles were removed and each was cut into
dorsal, lateral and ventral components. Data are shown in
Fig. 5. Analysis of non-transgenic embryos provided fre-
quency distributions of background fluorescence intensity
(Fig. 5A). A gate was set to cover intensities above the
upper limit of the fluorescence seen in these controls, on
the basis that cells falling within this gate in transgenic
embryos (Fig. 5B–D) were certain to be expressing tau-
GFP. In samples from dorsal telencephalon of DTy54
embryos (Fig. 5B), a large proportion of cells had fluores-
cence levels within the gate. There were also large num-
bers of cells whose fluorescence intensities were not
within the gate but were higher than the average intensity
in non-transgenic controls. It is likely that these are cells
expressing GFP at lower levels; for example, many may be
in the process of down-regulating the transgene as they
differentiate, which is the pattern of expression of Pax6
[1,6,12]. A similar picture was seen in samples from the
lateral and ventral telencephalon (Fig. 5C,D). The average
fluorescence intensity of cells within the gate was higher
in the lateral telencephalon than in the dorsal telen-
cephalon (peak shifted to the right in Fig. 5C compared to

Table 1: Numbers of copies of integrated transgenes This was estimated from the average of the ratios between fluorescence 
intensities using primers for human PAX6 and 0.5 × the fluorescence intensities using primers for mouse Pax3 or Pax6 in qPCR 
reactions on a constant amount of DNA from each of a series of embryos. Each qPCR reaction was repeated three times on each 
animal.

Lines Average ratios (± SD) Numbers of animals

PAX6/0.5 × Pax3 PAX6/0.5 × Pax6

DTy54 0.8 ± 0.2 0.9 ± 0.4 7
DTy22 1.3 ± 0.5 1.0 ± 0.5 6
DTy42 1.4 ± 0.5 1.2 ± 0.5 8
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Fig. 5B), which agrees with the brighter fluorescence of
cells in this region in sections (Fig. 3H). The proportion of
cells within the gate was smallest in samples from the ven-
tral telencephalon (Fig. 5D), which agrees with the fact
that fewer cells in this region express Pax6 (Fig. 3H).

Discussion
In DTy54, the modified YAC that had integrated into the
mouse genome did not affect the endogenous Pax6 locus,
unlike an alternative strategy involving the insertion of a
reporter gene into the endogenous locus [3]. The

YAC1123 transgene can be crossed onto mice with any
Pax6 status (e.g. Pax6+/+, Pax6+/-, Pax6-/-, Pax6loxP/loxP) to
identify and isolate those cells in which Pax6 is being acti-
vated by upstream factors. In addition to generating a use-
ful new tool for understanding the role of Pax6, our results
demonstrate that the elements regulating the human
PAX6 gene present in Y1123 and Y593 [17] are necessary
and sufficient to recapitulate accurately the expression of
Pax6 in mice. This indicates that these elements are not
only structurally [24,25] but also functionally highly con-
served. In their original study of mice containing human
PAX6-expressing YACs, Schedl et al. [17] suggested func-
tional conservation of the regulatory elements controlling
the human and mouse genes on the basis that the human
locus is able to complement the Sey mutation in mouse.
The introduction of PAX6-producing transgenes corrected
the eye defects in heterozygotes and rescued homozygotes
from perinatal death. It remained unclear, however, how
accurately the human regulatory elements reproduce the
pattern of endogenous mouse Pax6 expression. Although
Y593 must have caused re-expression of the missing factor
in those cells that normally express it, thereby rescuing
their abnormal phenotypes, additional ectopic expression
from Y593 might have gone undetected. Our current work
complements that of Schedl et al. [17] by demonstrating
a remarkable conservation of function of the Pax6/PAX6
regulatory elements in the two species.

Recently, Kim and Lauderdale [31] described the genera-
tion of a bacterial artificial chromosome (BAC) transgenic
reporter mouse containing 160 kb of mouse genomic
DNA from around the mouse Pax6 gene. Unlike the YAC
transgene described here, the BAC transgene did not gen-
erate expression in diencephalic and olfactory cells that
are known to express Pax6. A likely explanation for this
difference is that the shorter BAC transgene is missing
some important regulatory elements. Figure 6 compares
YAC Y593 (which spans the same genomic interval as its
derivative, YAC Y1123) with BAC mBAC293d08 [31].
BAC mBAC293d08 lacks the genomic region between
ELP4 exons 4 and 7 that comprises part of the down-
stream regulatory region (DRR) in the human. LAGAN/
VISTA pairwise alignment identifies five highly conserved
regions that could contain regulatory elements responsi-
ble for differences in expression between the transgenic
reporter mice carrying mBAC293d08 and Y1123 (Fig. 6).

Conclusion
This work provides further evidence that the Pax6/PAX6
regulatory elements are highly conserved not only struc-
turally but also functionally in mice and humans. Y1123
provides an excellent tool for studying the functions of
different Pax6/PAX6 regulatory elements and will allow
the analysis and isolation of cells in which Pax6 is acti-
vated, irrespective of the status of the endogenous locus.

Expression of tau-GFP in DTy54 transgenic mice at E9.5–10.5Figure 2
Expression of tau-GFP in DTy54 transgenic mice at 
E9.5–10.5. (A) Whole E9.5 DTy54 embryo showing expres-
sion in the eye, forebrain (telencephalon, tel, and dien-
cephalon, di), hindbrain (hb) and spinal cord (sc). (B) Whole 
E9.5 wild-type embryo showing lack of expression. (C) Paras-
agittal section through an E10.5 DTy54 embryo showing 
expression in the cerebral cortex (cc), diencephalon and 
hindbrain. (D) Whole E10.5 DTy54 embryo showing expres-
sion in the eye, forebrain (telencephalon, tel, and dien-
cephalon, di), hindbrain (hb) and spinal cord (sc). Scale bars: 
A-C, 200 µm; D, 500 µm.
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Expression of tau-GFP in DTy54 transgenic mice at E14.5Figure 3
Expression of tau-GFP in DTy54 transgenic mice at E14.5. (A-E) Sections showing tau-GFP in the eye and optic tract. 
The optic nerve (on) contains tau-GFP (B-D). Axons containing tau-GFP are seen emerging from the retina at the optic nerve 
head (C) and forming the optic chiasm (E). (F) Parasagittal section through the brain at E14.5 showing tau-GFP in the cerebral 
cortex (cc), prethalamus (pth), pretectum (pt), optic chiasm (oc), basal plate of the pons (po) and primordial cerebellum (c). 
Arrow points to the posterior boundary of the pretectum. (G-I) Coronal sections at E14.5 showing tau-GFP in the brain: (G) 
the pineal gland, (H) the pallium (p), subpallium (sp) and prethalamus and (I) the cerebral cortex. (J) Section through the olfac-
tory epithelium (oe). (K-M) Expression of Pax6 shown with immunohistochemistry on coronal sections. Scale bars: A,B 200 
µm; C, 20 µm; D,E,G,H,J-L, 300 µm; F,M, 900 µm; I, 50 µm.
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Expression of tau-GFP in DTy54 transgenic mice at E12.5Figure 4
Expression of tau-GFP in DTy54 transgenic mice at E12.5. Coronal sections through the pallial/subpallial border of 
E12.5 embryos stained with antibodies against Pax6 (A) and GFP (B); images are merged in C. Scale bar: 200 µm.
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Methods
Generation of the DTy54 transgenic mouse
All work on mice followed current Home Office (UK) reg-
ulations stipulated in the Animals (Scientific Procedures)
Act 1986. An overview of the strategy is illustrated in Fig.
1. We inserted a tau-GFP reporter cassette and a neomycin
resistance cassette, linked by an internal ribosomal entry
site (IRES), in frame into the translation start site in exon
4 of the PAX6 gene in YAC Y593 [17] by homologous
recombination using a yeast URA3 selectable marker. The
manipulated YAC (named Y1123) was then used to gen-
erate transgenic mice.

Integration of YAC Y593 into yeast window strain W3
Before modifying the parental YAC Y593 with the reporter
construct, it was introduced into a yeast window strain.
This was necessary because Y593 co-migrates with similar

sized endogenous yeast chromosomes in pulse field gel
electrophoresis, making it difficult to isolate from the
endogenous chromosomes. Each window strain contains
defined alterations in its karyotype, which provide a large
size interval, or window, devoid of endogenous chromo-
somes [32,33]. Window strain W3 was mated with Y593
using the kar-cross method [34,35]. Y593, in addition to
the PAX6 gene locus, contains the genes allowing yeast
cells to produce adenine and tryptophan. By removing
adenine hemisulfate salt and tryptophan from the growth
medium, it was possible to select for yeast colonies
expressing these genes and, therefore, containing Y593.

Integration of reporter cassette into Y593 by homologous 
recombination
Y593 was modified to generate a new YAC (named
Y1123) using the plasmid pDT-1 (Fig. 7), which con-
tained the following elements (Figs. 1, 7). (i) Coding
sequence for tau-GFP fusion protein; the microtubule
binding protein tau would allow the visualisation of the
processes of expressing cells [13]. (ii) An IRES followed by
an optimised Kozak translation consensus start site
(IRESKozak) to allow the translation of two cis genes from
a single transcript [36]. (iii) A neomycin resistance (neo)
cassette to allow G418-based selection of expressing cells.
(iv) A polyadenylation (pA) site to allow polyadenylation
of the tau-GFP-IRES-neo mRNA. (v) A C2MAZ site to slow
RNA polymerase II [37] and promote transcription termi-
nation; the aim was to further reduce the chances of tran-
scription of the entire targeted locus, which might have
reduced marker expression through splicing around exon
4.

Once Y593 had been moved into the window strain it was
transformed with the bacterial construct pDT-1 using
modified lithium acetate yeast transformation. W3 has a
defective URA3 gene and is unable to survive pyrimidine
starvation. Since pDT-1 contained the yeast gene URA3
(Fig. 7), any cell harbouring Y593 into which pDT-1 had
recombined survived pyrimidine starvation and was
selected by the omission of uracil from the growth
medium.

Several colonies were picked and screened for the likely
presence of a complete pDT-1 using PCR for parts of pDT-
1 distant from the URA3 gene and with Southern blots. Of
18 clones screened, one showed correct first round recom-
bination. This clone was grown in the presence of 5-
fluoroorotic acid (5-FOA), which prevents yeast cells con-
taining the URA3 gene from growing and provides selec-
tion for removal of the URA3 gene by internal
homologous recombination [38,39]. Nine clones were
picked from the 5-FOA plate, designated 1121 to 1129,
and Southern blots were done to identify correct clones.
One clone (1123) was identified as correct, giving a suc-

Expression of tau-GFP in DTy54 transgenic mice at E14.5 quantified with flow cytometryFigure 5
Expression of tau-GFP in DTy54 transgenic mice at 
E14.5 quantified with flow cytometry. Frequency histo-
grams of cell number against GFP fluorescence for samples of 
cells from (A) the telencephalon of non-transgenic controls 
and (B-D) the dorsal, lateral and ventral parts of DTy54 
embryos.
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cess rate of about 11%. PCR combined with restriction
digests on some of the PCR products was used to confirm
that the individual parts of the reporter cassette were
present in the clone. The junction between PAX6 and
tauGFP was checked by sequencing in both directions,
confirming that the PAX6 ATG in exon 4 was followed
immediately by tauGFP.

Microinjection of Y1123 and initial assessment of transgenic mice
Y1123 DNA was isolated for microinjection using alter-
nating contour-clamped homogeneous electric field pulse
field gel electrophoresis [40]. Injected one-cell embryos
(from crosses of C57Bl/6 and CBA mice) were either
replaced immediately into pseudopregnant female mice
or first cultured overnight until two-cell. About 5% of
injected one-cell embryos were born. Subsequent breed-
ing was such that all mice carrying Y1123 studied here
were hemizygous for the transgene. Southern blotting
with a full-length cDNA probe was used to confirm that
the modified PAX6 coding region had integrated. PCR
with primers shown in Fig. 1 was used to confirm the
extent of incorporation of Y1123. The primer sequences
were:

3163F AAGCCATTTTGTTGGTGAGC

3163R TTCCAGTTATACAGGGGCTGA

3140F AAGGTGCCCAGCCTAATTCT

3140R TCGTCTCGATCTCCTGACCT

5003F CAGAGGGAGGACCTCTCAGG

5003R TTTGCCTTTAGGGCTCACTG

3004F CTTCCCTGGCTACCATGTCT

3004R CGGCCCAGTGAATTAGAAAA

3080F TGAAAATGCAAACAGGTTCC

3080R AAGCCGTCAGACCACTTTTG

5083F TGAGAGCTGTGCAGAGCAGA

5083R GAAAGCAAAACCCTGGACAA

5405F GCCATCTGAAAGCTGAGGAG

5405R CCAGCCTACCTTGACATGCT

5395F GACACGCTGGTCACCAAGTA

5395R TTACAGCGGACCCCTCTTC

FISH on blood smears, with cosmid FAT5 as a probe
(marked as CFAT5 in Fig. 1) and methods described in
Schedl et al. [17], was used to search for possible multiple
integration sites. Quantitative PCR (qPCR; QuantiTect
SYBR Green PCR Kit, Qiagen) was used to identify the
number of copies of Y1123 present in the genome, using
three sets of primers, one specific for human PAX6, one
specific for mouse Pax6 and one specific for mouse Pax3.
The latter two sets were standards (detecting genes with
copy numbers of 2) against which to compare the inten-
sity of the product from Y1123. The three sets of primers
were as follows: (i) human PAX6 specific primers
(PAX6HumF CCGTGTGCCTCAACCGTA, PAX6HumR
CACGGTTTACTGGGTCTGG); (ii) mouse Pax6 specific
primers (Pax6MouF CGCAAATACACCTTTGCTCA,
Pax6MouR GAGGGTTTCCTGGATCTGG); (iii) mouse
Pax3 specific primers (Pax3MouF AAGCAGCGCAGGAG-
CAGAACC, Pax3MouR CCTCGGTAAGCTTCGCCCTCT).
These three sets of primers allowed the amplification of
sequences of similar length with similar reaction kinetics.
Conditions were such that the fluorescence intensity was
related linearly to the amount of starting DNA; once this
had been established, 300 ng of DNA was used in each
qPCR reaction. By comparing the fluorescence generated
with sets two and three against the fluorescence generated
when the same amount of DNA was used with set one, the
number of PAX6 gene copies was calculated. Each reaction
was repeated three times on each of a series of embryos.

Assessing the transgene's expression
Pregnant females were killed at various ages by cervical
dislocation and embryos were fixed overnight in ice cold
4% paraformaldehyde and embedded in 4% low melting
point agarose (the day of the vaginal plug was designated
E0.5). Vibratome sections were cut at 200 µm, counter-
stained with TOPRO3 (Molecular Probes, NL), mounted
on glass slides and imaged using a Leica confocal micro-
scope. For immunohistochemistry, tissue was fixed over-
night in 4% paraformaldehyde, transferred to 15%
sucrose, embedded in 7.5% gelatin/15% sucrose in phos-
phate buffered saline and placed in 30% sucrose over-
night. Cryostat sections (15 µm) were cut and transferred
to 20% goat serum in phosphate buffered saline contain-
ing 0.1%Triton-X for 30 min at room temperature. Sec-
tions were incubated with mouse anti-Pax6 ascites
(1:5000; Developmental Studies Hybridoma Bank) and
rabbit anti-GFP antibody (1:10000; Abcam) overnight at
4°C and for 1 hr at room temperature the following day.
Secondary antibodies were goat anti-mouse and goat anti-
rabbit Alexa fluor 568 and 488 respectively (1:150; Molec-
ular Probes), applied for 1 hr at room temperature.

Flow cytometry
Telencephalic tissue from E14.5 wild-type and DTy54
embryos were dissociated with papain (Papain Dissocia-
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tion System, Worthington Biochemical). Cells in suspen-
sion were analysed on a Beckman-Coulter XL flow
cytometer (10,000–20,000 cells were analysed per sam-
ple).

Abbreviations
BAC, bacterial artificial chromosome; c, cerebellum; cc,
cerebral cortex; di, diencephalon; DRR, downstream regu-
latory region; E, embryonic day; 5-FOA, 5-fluoroorotic
acid; FISH, fluorescent in situ hybridization; GFP, green
fluorescent protein; hb, hindbrain; HR, homology region;
IRES, internal ribosomal entry site; neo, neomycin resist-

Genomic comparison of YAC Y593 and BAC mBAC293d08Figure 6
Genomic comparison of YAC Y593 and BAC mBAC293d08. (A) The PAX6 gene is located centrally in Y593 [17]. The 
3' end of Y593 is marked by exon 4 of the ELP4 gene. YAC Y593 has not been end-sequenced but is known to reside between 
the STS markers AFM324yh5 ~20 kb 5' and D11S4662 ~17 kb 3' to the YAC and is approximately 420 kb in length. The DRR 
(downstream regulatory region) is defined at the 5' end by the SIMO breakpoint and at the 3' end by ELP4 exon 4 [31]. Mouse 
BAC mBAC293d08 spans the region 12 kb 5' to exon 0 of Pax6 through to approximately 0.6 kb before ELP4 exon7 and is 160 
kb in length [31]. It therefore lacks the genomic region between ELP4 exons 4 and 7 that comprise part of the DRR region in 
the human. (B) LAGAN/VISTA pairwise alignment of human and mouse genomic intervals spanning the region from SIMO to 
ELP4 exon 4 [41,42]. The 3' extent of mBAC293d08 is shown by the blue bar and of Y593 by the green bar. Regions shaded 
pink demark regions of >50% sequence identity over a window of 100 bp. In the 3' region common to Y593 and Y1123, but 
absent from mBAC293d08, rankVISTA analysis identifies five non-coding regions that are evolving more slowly than a modelled 
neutrally evolving base sequence (1: 199 bp p = 2.2e-03, 2: 466 bp p = 1.3e-07, 3: 223 bp p = 8.3e-04, 4: 509 bp p = 1.0e-12 and 
5: 1564 bp p = 1.6e-42) [43]. These highly conserved regions could contain regulatory elements responsible for differences in 
expression between the transgenic reporter mice carrying mBAC293d08 and Y1123.
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