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Abstract

Background: In eukaryotic cells, RNA-binding proteins (RBPs) contribute to gene expression by
regulating the form, abundance, and stability of both coding and non-coding RNA. In the vertebrate
brain, RBPs account for many distinctive features of RNA processing such as activity-dependent
transcript localization and localized protein synthesis. Several RBPs with activities that are
important for the proper function of adult brain have been identified, but how many RBPs exist and
where these genes are expressed in the developing brain is uncharacterized.

Results: Here we describe a comprehensive catalogue of the unique RBPs encoded in the mouse
genome and provide an online database of RBP expression in developing brain. We identified 380
putative RBPs in the mouse genome. Using in situ hybridization, we visualized the expression of 323
of these RBP genes in the brains of developing mice at embryonic day 13.5, when critical fate choice
decisions are made and at PO, when major structural components of the adult brain are apparent.
We demonstrate i) that 16 of the 323 RBPs examined show neural-specific expression at the stages
we examined, and ii) that a far larger subset (221) shows regionally restricted expression in the
brain. Of the regionally restricted RBPs, we describe one group that is preferentially expressed in
the EI3.5 ventricular areas and a second group that shows spatially restricted expression in post-
mitotic regions of the embryonic brain. Additionally, we find a subset of RBPs that share the same
complex pattern of expression, in proliferating regions of the embryonic and postnatal NS and
peripheral tissues.

Conclusion: Our data show that, in contrast to their proposed ubiquitous involvement in gene
regulation, most RBPs are not uniformly expressed. Here we demonstrate the region-specific
expression of RBPs in proliferating vs. post-mitotic brain regions as well as cell-type-specific RBP
expression. We identify uncharacterized RBPs that exhibit neural-specific expression as well as
novel RBPs that show expression in non-neural tissues. The data presented here and in an online
database provide a visual filter for the functional analysis of individual RBPs.
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Background

The ordered production and differentiation of cell types
that occurs during nervous system (NS) development
relies upon tightly regulated gene expression. In neural
cells, spatial and temporal gene regulation occurs through
both transcriptional and post-transcriptional mecha-
nisms. While the transcriptional networks that direct neu-
ral cell fate and govern cell shape, position, and
connectivity have been well studied [1-3], the post-tran-
scriptional influences on neural development and gene
expression are less well understood.

At the core of post-transcriptional gene regulation are
RNA-binding proteins (RBPs). Proteins containing canon-
ical RNA-binding domains (RBDs) are involved in numer-
ous steps of nuclear and cytoplasmic RNA processing [4].
Through mRNA capping, splicing, editing, polyadenyla-
tion and nonsense-mediated decay, RBPs modulate the
diversity of transcribed genes [4-6]. RBPs also affect the
processing of non-coding RNAs [7]. Specific RBPs addi-
tionally enable asymmetric RNA distribution and transla-
tional regulation [8-10], two phenomena that are critical
for affecting localized protein synthesis [11,12].

The importance of post-transcriptional processing in NS
gene regulation is underscored by functional examples of
specific RBPs [13,14]. For instance, the neuronal-specific
factor Nova-1 regulates splicing of pre-mRNAs that
encode components of inhibitory synapses [15]. Mice
lacking Nova-1 die postnatally due to aberrant regulation
of apoptotic neuronal death [16]. As a second example,
RBPs encoded by the quaking and Musashi loci promote
glial cell fate [17] and CNS stem cell self-renewal [18] by
stabilizing transcripts involved in cell differentiation.
Thirdly, the fragile X mental retardation protein, members
of the ELAV/Hu protein family, and the Staufen proteins
are involved in targeting and translational regulation of
dendritic transcripts [19-21]. Additionally, the finding
that long-term memory requires de novo protein synthesis
highlights the significance of post-transcriptional proc-
esses in neural function [22,23].

Despite our knowledge of several key RBPs, much of the
understanding of RBPs in the brain comes from studies of
adult animals or neural cell lines. Thus, how the func-
tional class of RBPs contributes to the positioning,
growth, and diversification of cells in the developing
brain is not well understood. One step towards increasing
our understanding RBPs is to resolve where they are
expressed. Here, we utilize the approach of in situ hybrid-
ization mapping [24-26] to investigate the expression of
323 RBPs within the developing mouse brain. Two stages
of development were characterized, embryonic day 13.5
(E13.5), when critical cellular fate choice decisions are
made and postnatal day 0 (P0), when the major structural
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components of the brain are apparent. We find that, in
contrast to their proposed ubiquitous involvement in
gene regulation, most RBPs are not uniformly expressed.
The majority of RBPs profiled demonstrates spatially
restricted expression in the brain or in other peripheral tis-
sues examined. The data presented here and in an online
database afford a visual filter for the functional analysis of
individual RBPs in the developing mammalian NS.

Results

Mouse RBPs were identified according to gene sequence
The RNA recognition motif (RRM), the hnRNP K-homol-
ogy (KH) domain, and the double-stranded RNA-binding
domain (dsRM) are evolutionarily conserved, well-char-
acterized domains known to bind either single or double-
stranded RNA [27-29]. Sequence similarity searches and
structural analyses of these domains have led to the ability
to predict other RBPs based on primary coding sequence
[29]. To identify unique genomic loci that encode puta-
tive RBPs in the mouse genome, we analyzed existing pub-
lic [30,31] and private [32] databases for sequences
containing one or more RBD. Candidates were classified
as RBPs only if their predicted protein sequence contained
a Protein Families Database (Pfam)-defined RBD [31].

We identified 290 genes harboring one or more RRM, KH,
or dsRM sequences. We also identified 32 genes encoding
other domains shown to interact with RNA, including the
zinc knuckle, G-patch, PIWI, DEAD box RNA helicase,
and TUDOR domains. Finally, as the absence of a canon-
ical RBD does not preclude interaction with RNA, we
sought 58 additional genes known or predicted to be asso-
ciated with RNA processing. In total, this collection con-
tains 380 putative RBPs. Additional file 1 lists the number
of genes, per RBD, identified and analyzed by in situ
hybridization. A list of all genes and primer sequences is
given in Additional file 2.

RBP expression in the developing mouse brain was
analyzed by in situ hybridization

To localize RBP expression, we preformed in situ hybridi-
zation on whole head tissue sections of E13.5 embryos
and PO mice. We designed gene-specific primers to pro-
duce 400-700 bp probes for 340 candidate RBPs. These
primer sets were used to perform PCR on cDNA prepared
from embryonic or PO mouse brains. A small number of
probes were obtained from mouse intestine, liver, kidney,
or testes cDNA. 323 genes (95%) showed positive PCR
products (data not shown). Following subcloning, anti-
sense digoxygenin-labeled riboprobes were prepared and
hybridized against coronal head and transverse upper-
body sections (to include the brain and spinal cord,
respectively). Digital images of the entire in situ hybridiza-
tion set have been deposited in the Mahoney RNA-Bind-
ing Protein Expression Database [33].
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RBP expression in proliferative zones of the E13.5 mouse forebrain. In situ hybridization patterns for four RBPs on
sections through the forebrain of EI13.5 mice. Labels indicate Locuslink gene names. All images show the same magnification.

RBPs exhibit restricted expression in the developing mouse
brain

Several neural-specific RBPs have been identified, yet how
many others demonstrate this degree of specificity is
unknown. Of the genes examined we found 16 RBPs
(listed in Additional file 2) that exhibit NS-restricted
expression in the tissues analyzed. Among this list are
known examples of neuronal-specific RBPs including
Nova-1 [34], the ELAV/Hu proteins B, C, and D [35], and
Ataxin 2 binding protein 1 (A2bp1) [36] but additionally
include putative RBPs for which expression has not been
reported. With the exception of one gene that was only
detected at E13.5, all (15/16) of these RBPs appear brain
or NS-specific at both developmental stages in the tissues
analyzed. Overall, these RBP encoding genes are not lim-
ited in expression to one brain region but are found in
multiple brain or NS structures.

RBPs show spatially restricted expression in anatomically
distinct brain regions

We find that greater than half of the RBPs profiled exhibit
spatially restricted expression. Of the 323 genes exam-
ined, 221 demonstrate localized, enriched expression in
one or more discrete brain regions in addition to detecta-
ble expression in non-NS tissues. We divided the E13.5
and PO CNS into five and eight general areas for annota-
tion, respectively: the E13.5 precortical area, the striatum
(and other basal ganglia), the periventrical areas, hind-
brain, and spinal cord, as well as the PO cortex, striatum,
hippocampus, thalamus, hypothalamus, midbrain, hind-
brain, and spinal cord. The presence or absence of expres-
sion for each RBP was analyzed visually at each location
and is annotated in Additional file 3. Very few of the 221

RBPs with spatially restricted expression patterns were
expressed in only one brain region, however most (73%)
showed restricted expression at both developmental
stages (Additional file 3).

We observe multiple RBPs that demonstrate region-spe-
cific expression in the E13.5 ventricular areas. Shown in
Figure 1 are representative RBP genes that are transcribed
in mitotically-active cells in the neuroepithelia of the
developing telencephalon. Among the RBPs expressed in
this region occupied by neural progenitor cells, we find
examples of mRNA export factors in addition to putative
splicing factors and transcriptional regulators (Fig. 1). In
all instances, expression in the embryonic lateral ventricu-
lar zone is accompanied by expression in the periventricu-
lar areas of the 3rd and 4th E13.5 ventricles and often by
heightened expression in the PO subventricular zone [33].
Notably, we observed this pattern of expression for the
dsRM-containing Musashi proteins [33]. Our results are
consistent with the documented expression of Msil and
Msi2 [37,38].

Multiple RBPs show restricted expression in post-mitotic
regions of embryonic brain. Presented in Figure 2 are
examples of four putative RBPs that demonstrate region-
specific expression in areas containing post-mitotic neu-
rons. Transcripts of the genes encoding the RRM protein
Brunol6 and the predicted =zinc-knuckle protein
1500031HO04Rik appear pan-neuronal at both develop-
mental stages (Fig. 2A, 2B and [33]). Expression of the
RRM-containing RIKEN gene 4930565A21 is most pro-
nounced in the ventral telencephalon, while
D11Bwg0517e is found in the precortical layer, the
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RBP expression in post-mitotic areas of the E13.5 mouse forebrain. In situ hybridization patterns for four RBPs on
sections through the forebrain of E13.5 mice. Labels indicate Locuslink gene names. bg, basal ganglia; hy, hypothalamus; nc, neo-

cortex. All images show the same magnification.

thalamic area and hindbrain (Fig. 2C, 2D and [33]).
Among the genes that occupy post-mitotic regions of the
developing brain we additionally observe members of the
ELAV/Hu family as well as other RBPs that have well-doc-
umented neuronal expression [34,35].

RBPs demonstrate cell-type specific expression in the PO
mouse retina

As our in situ hybridization analyses were performed on
sections through whole head, we were able to visualize
RBP expression in the developing retina. The vertebrate
retina provides a distinctive system for studying CNS
development as its seven major neural cell types are read-
ily distinguished from one another by their morphology
and laminar position [39]. Shown in Figure 3 are exam-
ples of the diversity of RBP expression in the PO retina. The
RRM-containing A2bpl1 is expressed in the retinal gan-
glion cell layer (GCL), which contains primarily retinal
ganglion cells and a small number of displaced amacrine
cells (Fig 3A, 3B). The KH-domain encoding gene
poly(rC) binding protein 3 (Pcbp3) shows dramatically
enriched expression in the inner nuclear layer (INL) (Fig.
3C and 3D), possibly indicating localization to the bipo-
lar neuron cell bodies that occupy the scleral portion of
the INL. Notably, both A2bp1 and Pcbp3 show restricted
expression in post-mitotic regions of the E13.5 and PO
brain [24,36]. Transcripts of the RRM-encoding scaffold
attachment factor B (Safb) and of the three-RRM contain-
ing SPOC gene Rbm15 are expressed in the outer neurob-
lastic layer of the retina (Fig. 3E-H). Safb, but not Rbm15,
is additionally expressed in the GCL, possibly in the
Muiiller glia. Both Safb and Rbm15 show enriched expres-

sion in neuroepithelia of the ventricular zone (Fig. 1 and

[33]).

A systems-based view of RBP expression

Gene regulation by RBPs is believed to occur through
coordinated, combinatorial interactions with RNA. Dur-
ing the course of this study we identified multiple RBPs
that are coordinately expressed in the brain and other tis-
sues. We find 48 genes (listed in Additional file 4) that
show elevated expression in proliferating areas of the
embryonic and postnatal brain as well as in postnatal
nasal epithelia, teeth, and thymus. Presented in Figure 4
are expression data for snRNP E and Son, two representa-
tive examples of this "synexpression group" of genes that
share a similar, complex pattern of expression. Further
examples are shown in Additional file 5. This same expres-
sion distribution has been observed for the polypyrimi-
dine tract-binding protein, PTBP1, and our data are
consistent with previous findings [40]. Notably, the pro-
tein products of many of the genes listed are understood
to interact either physically or genetically.

RBPs show restricted expression in non-NS tissues

As our analyses were performed on whole head and upper
thoracic tissues, our data provide detailed information
about RBP expression in developing cranial facial tissues.
We identified putative RBPs that display tissue-restricted
expression in non-NS structures (listed in Additional file
3). Figure 5 presents in situ hybridization results for two
RRM-encoding transcripts that show highly restricted
expression in different epithelial tissues. The Riken gene
2210008M09 is transcribed in epithelia covering the
facial skeleton (Fig. 5A, 5B), while the gene BC013481 is
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Diversity of RBP expression in major cellular sub-
types of the PO retina. In situ hybridization for four repre-
sentative RBPs that exhibit laminar-specific expression in the
PO mouse retina. Labels indicate Locuslink gene names. A, B)
A2bpl, C, D) Pcbp3, E, F) Safb, G, H) Rbm|5. Panels A, C, E,
and G show the same magnification. Panels B, D, F, and H
show the same magnification. gcl, granule cell layer; inl, inner
nuclear layer, onbl; outer neuroblastic layer.

expressed in the choroid plexus (Fig. 5C) and in the lining
of the intestine and placenta (Fig. 5D, 5E).

Discussion

Neural cells utilize multiple forms of post-transcriptional
gene regulation. While RBPs are believed to be potent
modulators of post-transcriptional processes, little is
known about how this functional class is expressed in the
developing brain. As a first step towards increasing our
knowledge of RBPs we chose to investigate the spatial and
temporal expression of genes that encode motifs known

http://www.biomedcentral.com/1471-213X/5/14
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Figure 4

Representative examples of RBP synexpression in
E13.5 and PO mouse tissues. snRNP E and Son are tran-
scribed in the perventricular areas of the E13.5 brain (A, E),
in the PO subventricular area of the lateral ventricle (B, F), in
the external granule layer of the PO cerebellum (C, G), as
well as in postnatal developing teeth (D, H).

to interact with RNA. We find a small set of RBPs that
show neural-specific expression in the tissues analyzed.
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In situ hybridization profiling uncovers the non-neu-
ral, restricted expression of novel RBPs. Data from ISH
performed on (A, C) coronal EI3.5 and on (B, D, E) EI5 sag-
ittal sections are presented for RRM-encoding RBPS. A, B)
The Riken gene 2210008M09 is transcribed in epithelia cov-
ering the facial skeleton. C-E) BCO1348| is detected in the
choroid plexus, in the intestinal lining, and in the lining of the
placenta. Panels C-E show the same magnification.

An even greater number of RBP genes however demon-
strate spatially restricted expression in distinct regions of
the developing brain.

Within the CNS, most of the RBPs examined show non-
uniform, heightened expression in anatomically discrete
structures. Tissue differences in the expression levels of
individual genes could indicate distinctive protein
requirements among cell types, beyond that of tissue-spe-
cific RBPs [41]. There is precedent for differential require-
ments of individual RBPs, as tissue-specific RNA splicing
is achieved partly through combinatorial, stoichiometric
differences among splicing factors within various cells
[42]. Tt is from this local enrichment within different cell
types or tissues that we can begin to hypothesize as to the
functional significance of individual genes as well as to
the importance of groups of similarly expressed RBPs.

Our study has identified RBPs that display spatially
restricted expression in distinct regions of the developing
mouse brain. One set of RBPs (Fig. 1) is found in the
E13.5 ventricular areas. A second set demonstrates spa-
tially restricted expression in post-mitotic regions of E13.5

http://www.biomedcentral.com/1471-213X/5/14

brain (Fig. 2). Based on their pattern of expression, these
RBPs may have roles in neural proliferation, cell fate
choice and cell migration, or in neuronal function, respec-
tively. We also identified novel RBPs that are expressed in
tissues of mesodermal and endodermal origin (Fig. 5).
The highly restricted expression of these genes may indi-
cate an explicit role for these RBPs in their respective epi-
thelia. Additionally, the cell-type specificity RBPs found in
the PO retina (Fig. 3) illustrates the diversity of RBP expres-
sion. The specialized expression of these RBPs may be
indicative of a dedicated function in the specified tissues.

By visual inspection of in situ hybridization data, we find
a subset of RBPs that are coordinately expressed in multi-
ple tissue types. These genes display heightened expres-
sion in the periventricular areas of the E13.5 brain and
spinal cord as well as marked expression in the external
granule layer of the PO cerebellum, the lateral subventricu-
lar zones, and in teeth, nasal epithelia, and thymus (Fig.
4, Additional file 5, [33]). While not excluded from post-
mitotic tissues, these RBPs are predominately expressed in
structures that are undergoing cell division.

Notably, the term 'synexpression group' has been used to
describe collections of genes that function in a common
process and share a similar complex spatial expression
pattern in multiple tissues [43]. Among the synexpression
group identified here we find examples of RBPs that are
known to interact either physically or genetically (Addi-
tional file 4). For example, PTBP1 binds the splicing
factors PSF [44] and hnRNP L [45] while SF2/ASF and
hnRNP A1 select for 5' exon or exclusion or inclusion,
respectively [46]. Our data provide visual support to a
growing body of evidence that functionally-related tran-
scripts are post-transcriptionally co-regulated [47].

Although the significance of certain splicing and mRNA
export factor enrichment in proliferating regions is not
known, data from multiple studies point to a role for RBPs
in cell proliferation. During hippocampal development
expression levels of RBPs were found to be high and then
to dramatically decrease, as neurons transition from a pro-
liferating to a post-mitotic state [48]. A number of RBPs
were also identified as highly expressed in a molecular
characterization of gastric epithelial progenitor cells
[49,50]. Furthermore, protein levels of hnRNPs and
snRNPs were found to be down-regulated upon stimu-
lated growth inhibition of myeloid cells [51]. Therefore, it
is likely that a role for RBPs during cell proliferation and
cell fate determination exists in multiple tissue types.

Conclusion

In summary, the data presented here provide new insight
into how a distinct functional gene class is expressed in
the developing NS. We find that RBPs demonstrate
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region-specific as well as cell-type specific expression. In
addition, we find that specific, proliferating regions of the
embryonic and postnatal NS and peripheral tissues are
similar in the expression of certain RBPs. These data serve
as a starting point for functional investigations into the
roles of RBPs in neural development and physiology.

Methods

In silico RBP identification

Putative RBP gene sequences were identified by homol-
ogy-based whole genome screening using public and pri-
vate databases: Celera Panther Families, Protein Families
Database (Pfam), and Genbank [30-32]. Classification as
an RBP was based on the presence of one or more RRM,
KH, or dsRMs, as defined by Pfam databases [31]. Data-
bases were also mined for zinc-knuckle, G-patch, PIWI,
DEAD-box helicase and Tudor domain-containing
sequences and for known factors involved in mRNA splic-
ing, editing, transport, and stability. Genes with multiple
RNA-binding domains were assigned to a single sub-
family. Unique gene identity was verified by LocusID
numbers. As of March 1, 2004, a total of 357 unique genes
were identified from these sources. An additional 26 RRM,
KH, and dsRM proteins have been identified as of March
7,2005.

PCR primer design

PCR primer pairs were designed for each identified RNA-
binding protein locus. PCR primer sequences were
designed with approximately 60% GC content, spanning
400-700 base pairs of primarily the gene's coding
sequence. Additional primer pairs were designed for tar-
gets that did not initially yield PCR products.

Cloning

Total RNA was obtained from E13.5, PO, or adult C57/BL6
mouse brains (Charles River Laboratories) by Trizol
extraction (Invitrogen). Reverse transcription was per-
formed using Superscript II reverse transcriptase and
oligo-dT (Invitrogen). PCR was performed with cDNA
templates using 40 cycles, 60-65°C annealing tempera-
ture, and Platinum Taq (Invitrogen) as polymerase. For a
few genes, PCR was performed with cDNA templates pre-
pared from adult brain, kidney, gut, liver, or testis tissues.
Positive PCR products were cloned into TA cloning vectors
(Invitrogen) and verified by restriction digest or DNA
sequencing.

Probe synthesis

Gene fragments from verified plasmids were amplified by
PCR using plasmid specific primers. Digoxigenin-labeled
RNA probes were made, using PCR products as template
and T7 or SP6 RNA polymerases (Roche). cRNA probes
were ethanol precipitated and quantified by
spectrophotometry.

http://www.biomedcentral.com/1471-213X/5/14

Tissue preparation

E13.5 embryos were directly fixed overnight in 4% para-
formaldehyde (0.1M PBS). PO mice were transcardially
perfused with 4% paraformaldehyde (0.1M PBS) and
postfixed overnight at 4 ° C. After fixation, embryos and PO
mice were transferred to 20% sucrose overnight. The head,
neck, and trunk were embedded separately in OCT (Tis-
sue-Tek) on dry ice and stored at -80°C. Serial cryostat sec-
tions (14 um) were cut and mounted on Superfrost Plus
slides (Fisher). Ten and twenty adjacent sets of sections
were prepared from E13.5 embryos and PO mice, respec-
tively, and were stored at -20° C until use.

Section in situ hybridization

In situ hybridization was performed according to Gray et
al. [25]. Following pretreatment (Proteinase K), slides
were pre-hybridized for 1h at 65°C in hybridization solu-
tion (50% formamide (Ambion), 5X SSC, 0.3 mg/ml yeast
tRNA (Sigma), 100 pg/ml heparin (Sigma), 1X Denhardt's
(Sigma), 0.1% tween, 5 mM EDTA). PO and E13.5 brain
sections were hybridized overnight with labeled RNA
probe(0.8-1.2 pg/ml) at 65°C, washed in 2X SSC at
67°C, incubated with RNase A (1 pug/ml, 2X SSC) at 37°C,
washed in 0.2X SSC at 65°C, blocked in PBS with 10%
lamb sera, and incubated in alkaline phosphatase labeled
anti-DIG antibody (Roche) (1:2000, 10% sera) overnight.
Sections were washed and color was visualized using NBT
and BCIP in alkaline phosphatase buffer (100 mM Tris pH
9.5, 50 mM MgCl2, 100 mM NacCl, 0.1% tween-20) con-
taining 75 pg/ml NBT (BioRad), 600 pug/ml BCIP (Roche).
Staining was stopped after visual inspection. Sections
were washed, fixed in 4% paraformaldehyde, and cover-
slipped in glycerol [25].

Image acquisition and RBP expression database

Images were acquired and analyzed as described [25].
Images were either scanned using a Nikon Coolscan 8000
slide scanner (4000 DPI) or digitally acquired using a
Leica digital camera. Image levels have been modified in
Photoshop (Adobe) for clarity. Full resolution scanned
images were compressed using JPEG compression, quality
10, and have been deposited in the Mahoney RNA-Bind-
ing Protein Expression Database [33].

Authors' contributions

AEM prepared tissue samples, performed data analysis
and drafted the manuscript. EM performed data analysis
and both EM and SR generated reagents, tissue samples,
digitized the raw data, and helped build the website. CS
contributed to the design of the study and prepared tissue
samples. CDS and PAS conceived of the study, partici-
pated in its design and coordination and helped prepare
the manuscript. All authors read and approved of the
manuscript.
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Additional File 1

RNA-binding proteins identified in silico and profiled by in situ
hybridization. List of annotated RNA-binding domains and the number
of family members that were identified in silico and analyzed by in situ
hybridization.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-5-14-S1.xls]

Additional File 2

List of 380 genes identified as putative RBPs in the mouse genome and
analyzed in this study. Columns indicate LocusID, gene name, type of
RBD, primer sequences used to isolate the target cDNA, the size of the
c¢DNA fragment, the presence call by PCR from E13.5 and PO brain
¢DNA, cloning status ('c' indicates cloned, 'u' indicates uncloned, ‘'small'
indicates that the target gene had less than 400 bp of unique sequence,
'na' indicates that cloning was not attempted), the RNA polymerase used
to generate the anti-sense riboprobe, the tissue from which the cDNA was
isolated (if not from E13.5 or PO mouse brain), and whether the gene was
analyzed by in situ hybridization ('x' indicates yes).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-5-14-52.xls]

Additional File 3

Complete list of gene expression patterns for all in situ hybridizations
performed. Of the 323 RBPs examined, 221 showed restricted expression
patterns in the brain. The remaining genes either show restricted expres-
sion in non-neural tissues, ubiquitous expression that is difficult to distin-
guish from background, or no expression. Caution is needed in
interpreting the results. First, non-expression could be due to the sensitivity
limit of non-radioactive in situ hybridization. Second, the background
level of individual probes may differ. Third, some probes with high back-
ground hybridization may mask the real expression of the transcript.
Fourth, we cannot rule out the possibility that some probes may show var-
iable levels of background hybridization in different brain areas, resulting
in a false positive signal. Columns A-D describe the LocusID, gene name,
type of RBD, and number (internal Mahoney reference number). Col-
umns E and, L (E13.5, PO "Informativity"): "1" for restricted expression
in the nervous system and "0" for either ubiquitous expression that is dif-
ficult to distinguish from background or no expression. As noted in Gray
et al [25], some of the genes in the "0" category show uneven signals in
different brain regions and are also annotated in the subsequent columns.
Columns F and M (E13.5, PO "Specificity"): "1" for restricted expression
in neural tissues only, "2" for restricted expression in neural tissue with
distinguishable expression in non-neural tissue, "3" for ubiquitous or no
expression, and "4" for expression in non-neural tissues only. Columns G-
K and N-U (E13.5, PO "Expression"): "2" for expression, "1" for ubig-
uitous expression or background, "0" for no expression.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-5-14-83 xls]

Additional File 4

RNA-binding proteins belonging to a synexpression group. Complete
list of RBPs that demonstrate a similar complex pattern of expression. Col-
umns A-D describe the LocusID, gene name, type of RBD, and number
(internal Mahoney reference number).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-5-14-S4 xls]|

Additional File 5

Examples of RBP synexpression in E13.5 and PO mouse tissues. Addi-
tional examples of RBPs that share a similar pattern of expression. Shown
are in situ hybridization results of expression in the periventricular areas
of the E13.5 brain (A, E, I, M, Q), in the subventricular area of the PO
lateral ventricle (B, F, J, N, R), in the external granule layer of the PO
cerebellum (C, G, K, O, S), as well as in postnatal developing teeth (D,
H, L P, T). A-D) Refbpl, E-H) hnRNP A1, I-L) PTBP1, M-P) Sfpq, Q-
R) Hnrpl. Panels A, B, E, F, I, ], M, N, Q, R show the same magnifica-
tion. Panels C, D, G, H, K, L, O, P, S, T show the same magnification.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-5-14-S5.png]|
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