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Abstract

Background: Hox genes encode transcription factors that are involved in pattern formation in
the skeleton, and recent evidence suggests that they also play a role in the regulation of
endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied
in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse
ribs.

Results: Cultured cells were characterized on the basis of morphology (light microscopy) and
production of cartilage-specific extracellular matrix (sulfated proteoglycans and type Il Collagen).
Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X
Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry.
Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage
maturation in vivo [1], were able to proliferate and differentiate normally in our culture systems.
This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited
significant molecular differences as measured by real-time quantitative PCR.

Conclusions: The results demonstrate that primary rib chondrocytes behave similar to published
reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox
genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from
Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8
overexpression in vivo is reversible in vitro.

Background the anlagen, which are initially immature, undergo an or-
Endochondral ossification is the process by which mesen-  dered differentiation program [2](also called chondrocyte
chymal cells condense at specific sites and differentiate  maturation [3]): the chondrocytes proliferate, become
into chondrocytes, forming the cartilage anlagen that are  pre-hypertrophic, and then undergo hypertrophy and ma-
the model for the future bone. The cells in the center of  trix calcification. The calcified cartilage is then invaded by
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blood vessels that bring osteoblasts and osteoclasts, and
bone is formed. Each step of cartilage maturation occurs
in a precise and tightly regulated manner [4]. Disruptions
of this process cause abnormalities in cartilage and bone
formation [5,6]. Endochondral ossification occurs in em-
bryonic skeletal formation, in skeletal growth and fracture
healing.

Homeobox genes of the Hox class are required for proper
patterning of skeletal elements [7]. The functional role of
Hox genes in skeletal growth and development has been
clearly demonstrated, but how they control the differenti-
ation of specific tissues is not well understood. Hox genes
encode transcription factors that regulate the expression
of yet unidentified target genes [8]. In order to identify
such target genes and to better understand the role of Hox
genes in cartilage differentiation and maturation, we es-
tablished in vitro culture systems for primary mouse rib
chondrocytes.

Previously, we generated transgenic mice that overexpress
the homeobox transcription factor Hoxc-8 in the thoracic
region, where Hoxc-8 is normally expressed ([1] and un-
published results). The transgenic mice exhibit profound
cartilage defects, predominantly in ribs and vertebral col-
umn, and severity of defects depends on transgene dosage.
The abnormal cartilage is characterized by an accumula-
tion of proliferating chondrocytes and reduced cartilage
maturation. The structural rigidity of rib cartilage is greatly
compromised, fatally interfering with pulmonary func-
tion, and vertebral cartilage is so weak that the skeleton of-
ten disassembles during skeletal preparation [1]. These
results suggest that Hoxc-8 continues to regulate skeletal
development well beyond pattern formation in a tissue-
specific manner, presumably by controlling the progres-
sion of cells along the chondrocyte differentiation path-
way. We found a similar phenotype upon overexpression
of Hoxd-4 in our transgenic system (Kappen, manuscript
in preparation), whereas overexpression of the LIM-
homeodomain transcription factor Isl-1 did not cause ab-
normalities in cartilage but other developmental defects
[1,9]. The observation that cartilage is affected by misreg-
ulation of Hoxc-8 and Hoxd-4, but not by a divergent
homeobox gene, indicates that the capacity to regulate
cartilage differentiation is specific to homeobox genes of
the Hox subclass. It also suggests that Hox genes could be
involved in human chondrodysplasias and other cartilage
disorders. We envisioned that well-defined in vitro culture
systems would allow us to further characterize the cellular
and molecular basis of abnormal chondrocyte differentia-
tion in Hox transgenic mice. Detailed knowledge of regu-
latory mechanisms in endochondral ossification will be
essential for strategies to manipulate chondrocyte prolif-
eration, differentiation and maturation in skeletal growth
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and development, osteochondrodysplasias and fracture
healing.

The in vitro chondrocyte culture systems we utilized here
consisted of high-density cultures of primary rib chondro-
cytes from neonatal mice. The micromass culture system
[10] provides the three-dimensional environment needed
for chondrogenesis, cartilage maturation and hypertro-
phy. The system also allows the investigation of the con-
tinuous program of differentiation, maturation and
hypertrophy in the same culture. The cellular phenotype
in culture was characterized by morphology and extra-cel-
lular matrix (ECM) production. Chondrocyte maturation
was assessed on the basis of cell proliferation, cellular
hypertrophy, alkaline phosphase activity and expression
of Collagen type II and type X. Apoptosis was investigated
by TUNEL (terminal deoxynucleotidyl transferase-medi-
ated deoxyuridine triposphate nick end labeling). High
density bulk cultures were used to assess the capacity of
chondrocytes from Hoxc-8 transgenic mice for cell prolif-
eration and differentiation. Proliferation of chondrocytes
in vivo was assayed by BrdU incorporation, and gene ex-
pression was analyzed by real-time quantitative PCR.

Results

We previously reported [1] that Hoxc-8 transgenic mice
exhibit profound defects in cartilage, particularly in the
rib cage and vertebral column. The cartilage is structurally
insufficient and weak, contains fewer hypertrophic
chondrocytes, displays much reduced staining for sulfated
proteoglycans, and consists predominantly of immature
chondrocytes, with a high fraction of proliferating cells.
These results point to a role of Hoxc-8 in regulation of car-
tilage maturation and chondrocyte differentiation. A sim-
ilar phenotype is found in Hoxd-4 transgenic mice ([1]
and Kappen, manuscript in preparation) indicating that
Hox transcription factors regulate chondrocyte develop-
ment. To examine this function in more detail, we em-
ployed a culture system that facilitates chondrocyte
maturation and cartilage formation, and closely recapitu-
lates the in vivo situation [11]. The micromass system has
been used extensively for studies of cartilage formation
from limb mesenchyme [10-13] and also for culture of
chondrocytes in high density [14]. Here, we have adapted
the system to neonatal mouse rib chondrocytes, to study
the role of Hoxc-8 in chondrocyte maturation.

As established previously, chondrocytes in micromass cul-
ture are able to progress along their differentiation path-
way to hypertrophy [14]. In cultures of neonatal rib
chondrocytes, we find essentially the same results. As
shown in Figure 1, histology (Panels A and E) and immu-
nohistochemistry for Collagens Il and X (Figure 1, Panels
C, D and G, H) revealed appropriate cellular morphology,
as well as increase in cell size towards hypertrophy (Figure
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Micromass cultures of primary rib chondrocytes. Morphology of micromass cultures was examined at day 3 (A-D) and
day |5 (E-H) by light microscopy of paraffin-embedded sections stained with hematoxylin and eosin (A and E), Alcian blue (B
and F), Collagen Il (C, G), and Collagen X (D, H). Cell proliferation was assessed by BrdU uptake as detected by immunohisto-

chemistry on days 3 (1), 6 (), 8 (K) and day I5 (L), respectively.

1, Panels E, G, H), and extracellular matrix production
(Figure 1, Panel F). BrdU incorporation identified prolif-
erating cells early in the culture (Figure 1, Panels J, K),
while virtually no dividing cells were detected by day 15
(Figure 1, Panel L). The proportion of proliferating cells
was lower at the beginning of the culture (Figure 2, Panel
A), reflecting our observation that cells may need about
1-2 days to adapt to the culture conditions. Maximal pro-
liferation was found on days 3 and 4, consistent with the
presence of predominantly proliferating cells in the cul-
ture (compare Figure 2, Panel A and Figure 1, Panel I).
Manifesting their progression to hypertrophy, the size of
cells increased (Figure 2, Panel B), with the majority of
cells progressed to hypertrophy by day 15 (see also Figure
1). Concommittant with cartilage ECM deposition, there
was an increase in Alkaline Phosphotase activity (Figure 2,
Panel C). As cells matured towards hypertrophy, there was
also increased cell death in our micromass cultures (Fig-
ure 2, Panel D). Apoptosis, as assessed by TUNEL, was
present from day 3 on, and the percentage of positive cells
increased with time in culture. Similar results were report-
ed by other authors [15-17]. These results demonstrate
that the cultured rib chondrocytes behaved in a similar
manner as chondrocytes in vivo. Taken together, primary
rib chondrocytes from mouse neonates grown in micro-

mass culture display cellular differentiation, proliferation,
maturation and hypertrophy, recapitulating the chondro-
cyte maturation program in vivo. These results establish
the utility of this in vitro system to investigate the role of
Hox genes and other transcription factors in endochon-
dral ossification.

Rib chondrocytes from neonatal Hoxc-8 transgenic mice
were cultured in the micromass system, and the cultures
were examined for the same parameters described above.
Figure 3 shows that Hoxc-8 transgenic chondrocytes mor-
phologically appeared normal and were able to produce
Collagens II and X, and sulfated proteoglycans (Panels C,
G, 1, D, H, J and B, F respectively). There was no discerna-
ble difference in the ability of Hoxc-8 transgenic chondro-
cytes to grow or mature in this system (compare to Figure
1, Panels A-H). These data indicate that chondrocytes
from Hoxc-8 transgenic mice have the capacity to differen-
tiate and mature normally under the culture conditions
described here. This finding was unexpected in light of the
severe cartilage defects in Hoxc-8 transgenic mice [1].
However, the possibility remained that, despite apparent-
ly normal maturation, proliferation of chondrocytes
could be affected by the Hoxc-8 overexpression. Such an
effect would be consistent with the accumulation of im-
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Quantitative parameters of primary rib chondrocytes in micromass culture. Panel A: Cell Proliferation was
assessed by BrdU incorporation as detected by immunohistochemistry on sections of micromass cultures harvested after 24
hours of BrdU exposure. At day |5, no positive cells were detected (see also Figure |, Panel L). The major phase of growth
occurs between days 3 and 4, 72 to 96 hours after plating. Panel B: Cell size of chondrocytes was measured by photomicrogra-
phy on sections, and mean cell size increases over time. Panel C: Alkaline phosphotase activity in protein extracts from micro-
mass cultures was measured as the release of p-nitrophenol from p-nitrophenylphosphate by absorbance at 405 nm. One unit
of enzyme activity will produce one p mole of p-nitrophenol per minute. Panel D: Apoptosis was assessed by TUNEL staining
on sections from micromass cultures, and was found to increase over time.

mature, proliferating chondrocytes in Hoxc-8 transgenetic
mice [1]. We therefore characterized cell proliferation in
Hoxc-8 transgenic chondrocytes.

In vivo labeling with BrdU was performed to investigate
the proliferative status of chondrocytes in Hoxc-8 trans-
genic mice. Previously, we [1] found that upon overex-
pression of Hoxc-8, the vertebral cartilages accumulate
immature chondrocytes, and we showed that these cells
are proliferating cells by virtue of staining for Proliferating
Cell Nuclear Antigen (PCNA). The accumulation of prolif-
erating chondrocytes could be explained in four different
scenarios: (i) There is a block in differentiation that pre-
vents cells from entering hypertrophy. The proportion of
hypertrophic cells was indeed reduced in Hoxc-8 trans-
genic mice, but progression to hypertrophy was not com-

pletely inhibited. (ii) There is increased recruitment of
precursor cells into the chondrocyte cell lineage. This
proposition is difficult to investigate, and no evidence is
available at this stage. (iii) The rate of cell division is in-
creased. Then, the cell cycle duration of proliferating
chondrocytes should be shorter. (iv) The cell cycle time of
proliferating chondrocytes is lengthened, resulting in a
greater number of cells in the steady-state pool of prolifer-
ating cells. To distinguish these latter two possibilities, we
analyzed BrdU incorporation into chondrocytes in Hoxc-
8 transgenic mice in vivo. Multiple sections were examined
from each embryo and showed incorporation of BrdU
four hours after labeling. Figure 4 shows representative re-
sults for the immunohistochemical detection of BrdU in-
corporation in cartilage structures (Panels A, D). To
directly compare cell proliferation between embryos of
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Figure 3

Micromass cultures of Hoxc-8 transgenic cells. Primary rib chondrocytes were prepared from newborn mice and cul-
tured in micromass as described. Histological staining with (Hematoxylin & Eosin Panels A, E), and Alcian Blue, (Panels B, F) and
immunohistochemical detection of Collagen Il (Panels C, G, 1) and Collagen X (Panels D, H, ]) on sections prepared on day 2
(Panels A-D), day 5 (Panels E-H), and day 7 (Panels I, J) do not indicate differences to control chondrocyte cultures (see Figure
I) even at early timepoints after plating.
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different genotype, sections of vertebral centers were as-
sessed for BrdU incorporation. Figure 4, Panel E shows re-
sults from embryos isolated at day 15.75 post coitum. The
differences in cell number/section of vertebral center indi-
cate that individual embryos were more progressed in
overall growth than others, and thus had larger vertebral
centers with more cells overall. Maturation was consistent
within a given litter (compare samples 1, 2, to 7, 8 and 5,
6to 11, 12, respectively). The fraction of cells positive for
BrdU incorporation was between 7.8 and 14.4%, with a
trend towards lower rates of incorporation in develop-
mentally older embryos with higher Hoxc-8 transgene ex-
pression levels (TA/TA TR/+; Figure 4, Panel F). While
additional measurements at later stages of development
would be needed to confirm whether this is a continuous
trend for cartilage development in late pregnancy in Hoxc-
8 overexpressing animals, these results were initially unex-
pected: The phenotype of Hoxc-8 transgenic animals at
17.5 days (approximately 2 days later than assayed here)
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Figure 4
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is characterized by accumulation of proliferating cells. In-
tuitively, the expectation would be that greater rates of
BrdU incorporation should be found. However, accumu-
lation of proliferating cells can also result from a slow-
down of the cell cycle, in form of a lower rate of BrdU in-
corporation. It is intriguing to note that reduced BrdU in-
corporation is particularly detected in developmentally
older animals where the vertebral centers are made up of
a larger number of cells, reflecting a longer duration since
commitment of the precursors to chondrocyte fate. It
should also be noted that both genotypes assayed here de-
velop cartilage defects, which may explain the relatively
moderate differences. A prediction from these data is that
on subsequent days, or upon longer labeling intervals,
even lower rates of BrdU incorporation should be detect-
ed. Quantification of such findings, and in vivo measure-
ments of cell cycle duration, however, require pulse-chase
experiments [18,19], which involve large numbers of ani-
mals and are very time-consuming.

7 _“.‘.1\‘1' D

e YY) W

BrdU labeled cells
®

%
-

< TA/+TR/+
2 * TATATR/+

o 500 1000 1500
total number of cells/section

BrdU incorporation in Hoxc-8 transgenic animals. Incorporation of BrdU in Hoxc-8 transgenic animals was detected by
Horseradish Peroxidase (HRP) immunohistochemistry on sections from embryonic day 15.75 animals. Sections were cut at 5
pm thickness and counterstained with Hematoxylin. Quantitation of BrdU incorporation was obtained by counting cells in the
vertebral centers on multiple sections from the same individual (see Methods). Panel A: Cartilage of the humerus (50 X magni-
fication). Panel B: Cartilage of the third rib (200 x). Panel C: Cartilage of the sixth rib (400 x). Panel D: Hypertrophic cells of
the scapula (200 x). BrdU incorporation was only detected in proliferating and prehypertrophic, but not in hypertrophic cells.
Panel E: BrdU incorporation (dark colored bars) in vertebral center chondrocytes (light colored bars: cells without BrdU
incorporation) of embryos at embryonic day 15.5 to 16.5. Data were obtained from animals with moderate (blue; genotype
TA/+ TR/+) and high (red; genotype TA/TA TR/+) Hoxc-8 expression. Panel F: Fraction of cells labeled by BrdU incorporation
as a function of size of vertebral centers in animals with moderate (blue, open symbol) and high (red, closed symbol) Hoxc-8
transgene expression levels (genotypes correspond to colors as before).
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Figure 5
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Primary mouse rib chondrocytes in high density bulk cultures. Panel A: Representative culture at 14 days stained with
Alcian Blue (100 X magnification); Panel B: Cartilage nodule (200 x); Panel C: Hypertrophic cells (200 x); Panel D: Growth
curve for primary rib chondrocytes in high-density bulk culture. The linear phase of growth occurs between 48 and 96 hours of
plating. From the slope of the curve a mean doubling time of 17 hours (distance between the two green or the two purple

lines, respectively) during the linear phase can be calculated.

Instead, we sought to investigate the proliferative capacity
of chondrocytes from Hoxc-8 transgenic mice by using in
vitro assays. We performed cell cycle assays on primary
chondrocytes isolated from rib cages of transgenic and
control neonates. Chondrocytes were placed into high
density bulk cultures [20], where they initially continued
to proliferate, and later differentiated, with cartilage nod-
ules present by 14 days after plating. Figure 5 shows rep-
resentative cultures (Figure 5, Panels A-C), and the growth
curve for rib chondrocytes in high density bulk cultures
(Figure 5, Panel D). From this, we were able to estimate a
mean doubling time of 17-19 hours. This conforms well
to previous published measurements for chick limb
chondrocytes [21] and rat chondrocytes in vitro [22]. The
linear phase of growth was observed between days 3 and
4, and therefore the 72 hour time point was chosen for
analysis of cell cycle kinetics of Hoxc-8 transgenic
chondrocytes in vitro. First, we established the Fluores-
cence Activated Cell Sorting (FACS) assay using mouse
embryonic fibroblasts, and then we assayed rib chondro-
cytes from Hoxc-8 transgenic and control mice in high
density bulk cultures. From these cultures, cells were re-
moved at various timepoints after BrdU incorporation
and subjected to Flow cytometry. Figure 6 (Panels A-E")
shows a typical result for fibroblasts. The same readout
was used for cultures of primary rib chondrocytes (Figure
6, Panels F-O). As cells go through the cell cycle, DNA
content increases, and this is reflected in a concomitant
increase in BrdU incorporation. Upon division, the signal
for DNA content is reduced by half, while overall BrdU in-
corporation increases with every subsequent cell cycle.
These assays allowed us to determine the fraction of cells
in each stage of the cell cycle (Figure 7, Panel A), and

established FACS analysis as a valuable tool for the analy-
sis of chondrocyte proliferation.

Interestingly, when primary chondrocytes from Hoxc-8
transgenic mice were assayed, they showed the same cell
cycle kinetics as chondrocytes from control animals. Es-
sentially similar proportions of cells in S phase were
found in all cultures (Figure 7, Panel B). This was regard-
less of levels of expression of the Hoxc-8 transgene (Figure
7, Panel B) which increases with increasing transgene
dosage [1,23]. These data indicate that, after appropriate
time in culture, transgenic chondrocytes were able to pro-
liferate normally, at least over the 24 hours duration of the
assay.

Given our inability to distinguish Hoxc-8 transgenic cells
from controls by parameters for either cell differentiation
or proliferation, we sought to determine which molecular
differences exist in our transgenic mice associated with the
documented deficiencies in cartilage maturation [1]. To
this end, we analyzed gene expression in freshly isolated
primary rib chondrocytes from Hoxc-8 transgenic animals
[1]. Real-time quantitative PCR was performed. As shown
in Figure 8, Hoxc-8 expression is elevated in Hoxc-8 trans-
genic mice, as expected [23]. Differences also exist be-
tween controls and transgenics in expression levels for
several genes involved in cartilage development. For ex-
ample, Collagen II expression (splice form A) is increased,
as is Thh mRNA, and Bmp-4 and p107 expression are de-
creased. Taken together, these results establish alterations
in gene expression upon overexpression of the Hoxc-8
transgene in the developing skeleton.
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Figure 6

Cell proliferation assays by Fluorescence Activated Cell Sorting (FACS). Cell proliferation assays were done with
BrdU incorporation, which was detected by staining of isolated nuclei with a FITC-fluorochrome-coupled monoclonal anti-
body. DNA content in nuclei was determined on the basis of fluorescence intensity for Propidium lodide. The approach was
first validated for primary embryonic fibroblast cultures (Panels A-E") and then applied to primary chondrocytes (Panels F-O).
Cells were incubated (Panels A, B) in standard medium (DMEM, 10% FCS, high glucose), or in medium with BrdU (Panels C, D,
E) for 18 hours, and removed from the dishes by trypsinization. Preparation of nuclei and staining for BrdU and Propidium
lodide were done as described in the methods. The fluorescent signals in samples A and B (Panels A', A", B', B") were very low,
as expected for cells without BrdU incorporation and without Pl labeling. Sample C showed no green fluorescence (Panel C')
due to absence of the BrdU-specific antibody during staining. Yet Propidium lodide (Panel C") labels two populations of nuclei,
those with In DNA content (peak at medium red fluorescence intensity) and those with 2n DNA content (high red fluores-
cence intensity) that are in S-Phase. Sample D was labeled only for BrdU incorporation and shows the majority of nuclei unla-
beled (Panel D; low green fluorescence intensity) while a smaller fraction incorporated BrdU (Panel D', high green fluorescence
intensity). No signal for DNA content was obtained (Panel D") consistent with absence of Pl. Sample E was double-labeled and
showed signal for both BrdU (Panel E') and Pl (Panel E"). Panels F-O: Cell cycle analysis of primary rib chondrocytes incubated
after 72 hours of culture with BrdU for various length of time. Panels F-J: Contour plots display fluorescence intensity for BrdU
incorporation (Y-axis) and DNA content (X-axis), with contours representing increasingly higher number of cells with a given
fluorescence intensity (orange, highest cell number; green lowest cell number). DNA content and BrdU incorporation increase
with DNA synthesis, and DNA content is reduced by half at cell division. Cell that recently underwent DNA synthesis are
intensely labeled for BrdU (FITC, Y-axis), and may have 2n DNA content (high Propidium lodide, X-axis) before, and In DNA
content (low Propidium lodide) after cell division. The proportion of cells in the BrdUhi Pllow group will increase with multiple
cell divisions. Panels K-O: Dot plot representation of the same data with gating to quantitate fractions of cells in each group:
cells with high intensity for BrdU-staining are in S-phase, cells with high Propidium lodide but low BrdU-staining intensity are in
G,/M-phase, and cells low for both Propidium lodide and BrdU-staining are in G| phase of the cell cycle.
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Proliferation studies for Hoxc-8 transgenic cells. From the data in Figure 6, the proportion of cells in each phase of the
cell cycle can be estimated, and a representative graph is shown in Panel A (turquoise: G-phase; green: G,/M-phase; pink: S-
phase). With increasing time of incubation, BrdU incorporation increases, labeling cells that actively proliferate. After 24 hours,
up to 40% of cells have entered the DNA synthesis phase of the cell cycle. Panel B shows the proportion of chondrocytes in S
phase in correlation to Hoxc-8 transgene expression level. The Hoxc-8 transgene is not expressed (REF) in TR only cells (dark
and light green), moderately expressed in cells from animals with TA/+ TR/+ (light blue) and TA/+ TR/TR (dark blue) genotype
(REF, REF) and more strongly expressed in cells from TA/TA TR/+ (pink) and TA/TA TR/TR (red) animals (REF, REF). Similar
fractions of cells are in S-phase in all samples by 24 hours, and the rate of entry into S-phase (slope of curves) is very similar,
indicating that cells of all genotypes exhibit proliferative capacity irrespective of expression of the Hoxc-8 transgene.

The biological corollaries of changes in gene expression
profiles are noteworthy in that they may provide evidence
on the molecular targets of Hox genes in cartilage, as well
as on the consequences of Hox gene overexpression. In
Hoxc-8 transgenic chondrocytes, we found increased ex-
pression of Collagen II splice form A mRNA [24]. This is
consistent with our earlier finding of at least 2-fold in-
creased Collagen I mRNA expression by in situ hybridiza-
tion and increased numbers of immature chondrocytes in
Hoxc-8 transgenic mice [1]. Sox-5, which is normally ex-
pressed in proliferating chondrocytes [25,26], is elevated
in Hoxc-8 transgenic cells, again consistent with accumu-
lation of immature chondrocytes. Unexpected was the el-
evated expression of Collagen X mRNA, a marker for
hypertrophic cells. As fewer hypertrophic cells are present
in Hoxc-8 transgenics, and cartilage maturation is delayed
in Hoxc-8transgenic animals [1], one would expect to see
decreased Collagen X mRNA levels [27]. Yet, the data
clearly indicate that mRNA expression is elevated in trans-
genic rib chondrocytes. This could be either from in-
creased Collagen X mRNA transcription within
prehypertrophic and hypertrophic cells or from ectopic
activation of Collagen X transcription in proliferating

chondrocytes. Whether either of these possibilities would
also increase Collagen X expression at the protein level re-
mains to be investigated. Interestingly, Collagen X expres-
sion has been shown to be induced by Bmp-2 [28], which
is overexpressed in our transgenic mice. Bmp-2 signaling
has a positive effect on chondrocyte proliferation [29],
and can induce Indian hedgehog (Ihh) expression in re-
sponsive cells [30]. We find Thh mRNA elevated in Hoxc-
8 transgenic chondrocytes (see Figure 8). Ihh can induce
Bmp expression in proliferating cells, further increasing
positive effects on chondrocyte proliferation [31]. At the
same time, Thh decreases the rate of progression to hyper-
trophy [32,33], again consistent with an accumulation of
proliferating cells in our transgenic animals. Whether the
elevated Thh mRNA levels originate from increased expres-
sion in cells that make Ihh normally (prehypertrophic and
hypertrophic chondrocytes) or from ectopic activation by
the Hox transcription factors in proliferating cells, re-
mains to be investigated. Greater numbers of prehyper-
trophic cells are unlikely to account for elevated
expression of prehypertrophic cell markers: histological
sections from Hoxc-8 transgenic animals show no in-
crease in prehypertrophic cells [1], and PTHrP receptor
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Sox-5 23.43 Sox-5
Bmp-2 25.34 Bmp-2
Bmp-4 22.88
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FgIR3 22 FgiR3
Cyclin D1 25.19 Cyclin D
p107 26.05
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Figure 8

Gene expression in rib chondrocytes from Hoxc-8 and Hoxd-4 transgenic mice. Real-time quantitative PCR was
performed as described. Panel A shows typical curves for real-time detection of amplification. Panel B shows a melting curve
analysis for the PCR products, which is indicative of the quality of the reaction. For each reaction, the fidelity of amplification
was assessed by inspection of the amplification and melting curves. Panel C lists the cycle number above the threshold level
(Ct) for each primer pair at which product was detected in a representative experiment in FVB controls. Low Ct values reflect
higher expression levels, high Ct values correspond to lower expression levels. Panel D shows gene expression measurements
in Hoxc-8 transgenic samples. GAPDH cDNA levels in each sample were used to standardize measurements, and gene expres-
sion levels are normalized to the level of each gene found in primary chondrocytes from normal FVB control mice. The results
are plotted as "fold change relative to FVB" with decreased expression in negative (left on X-axis) iand increased expression in
positive values (right on X-axis). The FVB control sample would always be |, and therefore was not plotted. RNA extracts
were prepared from postnatal day 0 mouse rib chondrocytes from normal FVB newborns or animals transgenic for Hoxc-8,
and equal amounts of cDNA were pooled from 4-5 individual animals for each sample.
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mRNA levels are unchanged in cells from transgenic ani-
mals (see Figure 8). These data also suggest that PTHrP
signaling [34-36] is only moderately affected by overex-
pression of Hoxc-8. We found the expression of p107
mRNA and Bmp-4 mRNA to be decreased, which, if re-
flected in reduced protein levels, would be consistent with
the phenotype of delayed cartilage maturation in Hox
transgenic animals: As Bmp-4 was shown to have a posi-
tive effect on hypertrophy and inhibitory effect on prolif-
eration [37,38], decreased Bmp-4 expression would be
expected to promote chondrocyte proliferation. p107 has
been shown to be required for exit from the cell cycle
[39,40], and reduced p107 expression is associated with
deregulated proliferation. Also, chondrocytes without
p107 expression fail to respond to inhibitory signals from
FGFs [41]. The relationship to elevated Fgf receptor 3
mRNA levels in Hoxc-8 transgenic cells, however, remains
to be clarified. The same caveat applies to elevated expres-
sion in Hoxc-8 transgenic cells of p130, which is also
known to be linked to cell cycle exit and FGF response
[39]. While the profile of gene expression changes in
Hoxc-8 transgenic mice is suggestive of interactions be-
tween the various gene products, further studies will be re-
quired to mechanistically link the gene expression
differences to the maturational delay in the Hoxc-8 trans-
genic cartilage.

In summary, the gene expression profiles of primary
chondrocytes from Hoxc-8 transgenic animals display
notable differences in the expression of regulators of
chondrocyte maturation in a pattern largely consistent
with delayed chondrocyte maturation in wvivo. These
results now allow us to investigate whether any of these
molecules is directly regulated by Hox transcription fac-
tors in chondrocytes. It is also remarkable, as apparent
from our cell culture results, that cells with obvious mo-
lecular differences downstream of Hoxc-8 expression can
be modulated to resemble a normal chondrocyte pheno-
type after a few days in culture.

Discussion

Our studies of chondrocytes from Hoxc-8 transgenic mice
reveal several interesting results: in vivo, chondrocytes re-
main relatively immature, with few progressing to hyper-
trophy in Hoxc-8 transgenic mice. Combined with the fact
that some, albeit fewer, hypertrophic cells are present, the
accumulation of proliferating chondrocytes suggests that
Hoxc-8 regulates the rate of progression of chondrocytes
to maturity [1]. In line with this interpretation, the in vivo
BrdU incorporation assays suggested that cell cycle
progression of chondrocytes may be decreased in trans-
genic animals with higher Hoxc-8 transgene expression
levels. If fewer immature cells enter the cell cycle in a given
time interval, this is consistent with, and would explain
the increased steady-state numbers of chondrocytes upon
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Hoxc-8 overexpression. This could occur through two dif-
ferent mechanisms: (i) Hoxc-8 actively recruits cells into
the chondrocyte lineage and maintains them in the prolif-
erating state; or (ii) Hoxc-8 inhibits a specific step in
chondrocyte maturation. In order to distinguish between
these possibilities, we sought to employ cell culture assays
with well-established parameters for chondrocyte differ-
entiation and maturation. Interestingly, chondrocytes
from Hoxc-8 tansgenic animals behaved undistinguisha-
ble from control cells under all conditions tested. No dif-
ferences were found in capacity to differentiate in
micromass (see Figure 3), or in high density cultures (not
shown), and proliferative indices are comparable (see Fig-
ure 7), irrespective of transgene dosage. The latter could
be explained by the fact that the FACS analyses were done
at the time of greatest proliferation, three days after cul-
ture initiation, which may allow transgenic cells to recover
to a normal phenotype. However, we did not detect any
differences in the first few days of culture by microscopy
or histology. Cellular differences must exist at the time the
cells are taken from the animal (which would be expected
to die as a Hoxc-8 transgenic), and indeed molecular dif-
ferences exist (see Figure 8). Yet, the cell culture condi-
tions either quickly reverse cellular phenotype or support
normal chondrocyte maturation. Alternatively, it is con-
ceivable that the Hoxc-8 transgene could be silenced as
cells are isolated from the animal, returning cells to their
normal phenotype. There is little evidence to support this
possibility as Hoxc-8 is expressed normally in our
chondrocyte cultures (data not shown), and the promoter
used to drive the transgene contains a cartilage-specific el-
ement (Cormier and Kappen, unpublished results) that is
active in chondrocytes. Yet, even if transgene expression
was reduced in culture, the important implication of our
results is that the downstream biological effects of at least
6 days of Hoxc-8 overexpression in vivo are reversible.
From these results, we postulate that the cartilage defect in
Hoxc-8 transgenic mice is mediated by absence of factors/
signals that are present in the culture medium. Serum-free
conditions and supplementation with candidate mole-
cules would be one strategy to investigate this further. An
interesting, albeit preliminary, finding from our gene ex-
pression studies is that chondrocytes from Hoxc-8 trans-
genic animals display gene expression profiles that are
indicative for immature chondrocytes, but not totally
identical. This suggests that both Hox transcription factors
may, in addition to the delay in chondrocyte maturation,
induce specific changes in gene expression. By extending
the collection of candidate genes, or screening on micro-
arrays, it may thus be possible to identify specific targets
for Hox transcription factors in chondrocytes.

Conclusions
Our results support the conclusion that factors in serum-
containing medium provide the environment in which
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Hoxc-8 transgenic chondrocytes are capable of reverting
to a normal cellular phenotype. Thus, Hoxc-8 induced
changes in chondrocytes are reversible under certain con-
ditions. This has important implications for the identifica-
tion of the transcriptional targets of Hox transcription
factors. In our system, the biological effects of Hox genes
in chondrocytes can be modulated by external factors, and
this finding points to the importance of gene-environ-
ment interactions as modulators of Hox gene function.

Methods

Preparation of mouse rib chondrocytes

The preparation of primary rib chondrocytes from neona-
tal mice is a modification of the method used by Lefebvre
et al. [20]. Briefly, newborn FVB mice were sacrificed, and
the ventral regions of rib cages were dissected in sterile
conditions to release soft tissues. Rib cages were trans-
ferred to phosphate buffered saline (PBS) and washed ex-
tensively. Cells were dissociated in 50 ml tubes by
enzymatic digestion with 0.25% Collagenase (Worthing-
ton Biochemical, Collagenase Type 2 - CLS 2) and 0.25%
Trypsin/EDTA (Invitrogen/Gibco BRL) for 1 hourat 37°C,
or until the soft tissues were floating in the solution. The
solution was aspirated, leaving the rib cages on the bot-
tom of the tube. The ribcages were washed with PBS, and
fresh 0.25% Collagenase in PBS was added for 1 hour at
37°C, or until the rib cages were dissociated. The
enzymatic reaction was stopped with an equal volume of
tissue culture medium containing 10% FCS. The cells were
filtered through a 70 um cell strainer (Becton Dickinson)
and pelleted by centrifugation in 50 ml conical tubes
(maximum volume 25 ml) at 1200 rpm for 5 minutes.
The pellet was washed with PBS, cells were counted, and
adjusted for desired cell density.

Primary chondrocyte high density bulk cultures

For analysis of cell cycle parameters, we kept primary
chondrocytes in high density bulk cultures, as this allows
for recovery of cells for flow cytometry. These cultures un-
dergo chondrocyte maturation with differentiation to
hypertrophy and formation of cartilage modules. Briefly,
cells were plated on 35 mm dishes coated with 0.1% gel-
atin at a final concentration of 3 x 105/dish, in DMEM,
high glucose, 10% FCS and 25 pg/ml L-ascorbic acid. Re-
moval of cells was done by trypsinization. For Alcian Blue
staining, cells were fixed in 70% Ethanol for 30 minutes
and then incubated for one hour with the Alcian Blue
staining solution, which consisted of 15 mg Alcian Blue
8GX (Sigma) in 30 ml of 95% Ethanol and 20 ml Glacial
acetic acid. Cells were rinsed again with 70% Ethanol, and
dehydrated through an Ethanol series before coverslip-
ping on the dish.
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Primary high density micromass cultures

For micromass cultures [12], cell density was adjusted to
25 x 100 cells/ml. 103 1 of cell suspension was plated in
the center of a culture well (24-well plate, Midwest Scien-
tific). The cultures were incubated at 37°C in a humidified
incubator with 5% CO, for 1 1/2 to 2 hours to allow for
cell adhesion and attachment. Medium was added very
slowly and consisted of a 1:1 mixture of DMEM and F12
(Life Technologies/Gibco BRL) supplemented with 10%
fetal calf serum (Hyclone), 5000 U/ml Penicillin, 53 g/ml
Streptomycin (Life Technologies/Gibco BRL), 25 pg/ml L-
ascorbic acid (Life Technologies/Gibco BRL) and 10 mM
B-Glycerophosphate (Sigma). Medium was replaced with
fresh medium every other day [11,13,42].

Assessment of morphological and histological parameters
of micromass cultured cells

During the first 2 or 3 days, micromass cultures were ob-
served directly by phase contrast light microscopy. After
that, cultures were harvested, washed in PBS, fixed in 4%
Paraformaldehyde for 45 minutes, dehydrated in graded
series of Ethanol and paraffin-embedded for subsequent
analysis. We used histochemical staining with Hematoxy-
lin and Eosin to ascertain cell morphology; and Alcian
Blue at pH 1 [43] to detect cartilage matrix sulfated glu-
cosaminoglycans as described before [1]. The production
of Collagen type Il was assessed by immunohistochemis-
try using a monoclonal antibody against mouse type II
Collagen (Chemicon), and secondary antibody and color-
imetric reaction kit (Histostain Plus, Zymed). Cell prolif-
eration was assessed by BrdU incorporation. Cells were
incubated with 3 mM of BrdU (Sigma), harvested after 24
hrs and paraffin-embedded. Cells with BrdU incorpora-
tion were detected by immunohistochemistry with a
monoclonal antibody against BrdU (BrdU staining kit,
Zymed). Cell size was determined by measuring cell di-
ameter microscopically, and mean cell size was calculated.
Alkaline phosphatase activity was measured as follows:
Cells were rinsed in cold TBS (Tris-buffered Saline),
scrapped from the plate, homogenized in 0.05% Triton X-
100 in Tris-HCI (pH 7.5) on ice, and the sample was cen-
trifuged at 1200 rpm for 5 minutes at 4°C. Protein con-
centration in the supernatant was assessed by Micro BCA
assay (Pierce Chemicals). Alkaline phosphatase activity in
the supernatant was determined spectrophotometrically
at 405 nm wavelength as the amount of p-nitrophenol re-
leased from the substrate p-nitrophenyl phosphate
(ALP10, Sigma). Type X Collagen deposition in extracellu-
lar matrix was analyzed by immunohistchemistry using a
monoclonal antibody against mouse type X Collagen
(Research Diagnostics, Inc.) and the same secondary rea-
gents as described above. Apoptosis was assessed by ter-
minal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate (dUTP) nick end labeling
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(TUNEL) (In situ Cell Death Detection Kit, POD,
Boehringer-Manheim).

Transgenic mice

The generation of Hoxc-8 transgenic mice and the charac-
terization of their phenotype have been published [1].
Briefly, Hoxc-8 expressing mice are generated in a binary
transgenic mouse system [44] by crossing a transactivator
strain (harboring a transgene in which expression of the
transcriptional transactivator VP16 is under control of the
Hoxc-8 promoter; [45]) to a transresponder strain (that
carries as a transgene the Hoxc-8 cDNA linked to the ICP4
immediate early gene promoter, which is silent in mice in
the absence of VP16; [45,46]). Upon combination of both
transgenes, the Hoxc-8 transresponder transgene is acti-
vated, and Hoxc-8 becomes overexpressed [23]. This sys-
tem also allows the generation of transgenic mice with
increased gene dosage by superimposition of transgene
loci to homozygosity [23,44]. For the studies reported
here, we used the T239 transactivator and the IE-c8-254
transresponder strains. All procedures involving animals
were reviewed and approved by the Institutional Animal
Care and Use Committee at UNMC.

Hoxd-4 transgenic mice were generated using the same
transactivator strain crossed to the IE-d4-70 transrespond-
er strain [1]. Maintenance and genotyping of transgenic
mice was done as described before [1,23]. Unless other-
wise noted, cells and samples were obtained from animals
hemizygous for both transgenes.

All transgenes were maintained on a homogenous FVB in-
bred genetic background, and normal FVB mice were used
as controls unless mentioned otherwise.

In vivo BrdU incorporation

To assess chondrocyte proliferation in Hoxc-8 transgenic
mice, we performed in vivo BrdU labeling experiments.
BrdU labeling reagent (Amersham RPN202) in PBS was
injected into pregnant females at 0.01 ml/gr body weight.
Four hours later, dams were sacrificed, embryos were iso-
lated and fixed in 4% paraformaldehyde overnight at 4°C.
They were then dehydrated through an alcohol series and
embedded in paraffin for histological sectioning. Sections
of 10 um thickness were rehydrated and incubated for 10
minutes with one part 30% H,0,: 9 parts MeOH and
processed in HIER (Biotek Solutions), denaturing and
blocking solutions following the manufacturer's protocol.
Staining of sections for BrdU incorporation was done us-
ing the Zymed BrdU staining kit with Horseradish Perox-
idase, and development with DAB for 5 minutes.
Counterstaining was done with Hematoxylin for one
minute. Sections of vertebral structures were matched be-
tween pairs of embryos from the same litter according to
anatomical landmarks of other tissues on the same sec-
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tion. Cells in skeletal structures were counted from at least
5 (samples 1,2,7,8) and more than 10 (all other samples)
consecutive slides for each animal and cell counting was
done independently by two technologists without knowl-
edge of sample genotype. Data were collected from three
independent experiments and were averaged to cells/sec-
tion to normalize for potential growth differences
between litters. Exponential trendlines were added by re-
gression analysis as implemented in Microsoft Excel.

Assessment of cell proliferation in vitro by BrdU incorpora-
tion and flow cytometry

Primary rib chondrocytes were prepared as described
above and 3 x 105 cells/well were placed into culture in 6-
well plates. Medium was changed daily. Proliferation was
assessed by cell counting, and maturation was ascertained
visually as cartilage nodule formation, and histochemical-
ly by Alcian Blue staining. Cell cycle kinetics were meas-
ured by BrdU incorporation and flow cytometry for DNA
content at various time points after initiation of the cul-
tures. Cells that had not been incubated with any reagents
or cells that were exposed only to anti-BrdU antibody and
Propidium Iodide served as controls. For BrdU incorpora-
tion studies, BrdU labeling reagent (Amersham) was di-
luted 1:1000 in medium to a final concentration of 10 uM
BrdU and 1 uM FdU, and sterilized through a 0.22 pm fil-
ter. 2 ml of staining solution were added to each well of a
6-well plate, followed by incubation for 0, 6, 12, 18, or 24
hours as indicated. To remove the cells, wells were washed
with PBS, and 2 ml Trypsin-EDTA (Gibco/BRL) was added
for at least five minutes at 37°C. The reaction was inacti-
vated by an equal volume of serum-containing medium,
and after vigorous pipetting, cells were collected into Fal-
con 2052 (12 x 75 mm, Becton-Dickinson) tubes. Cells
were pelleted at 400 g for five minutes without brakes, the
supernatant was decanted and the pellet was loosened by
vortexing at setting 4. Cells were washed with 1% BSA/
PBS and repelleted. During cell resuspension, 1 ml ice-
cold 70% Ethanol was added, in which cells were either
stored at -20°C for up to three days, or processed after 20
minute fixation by repelleting. Resuspension was done in
1 ml 2 N HCl/0.5% Triton X-100, and samples were incu-
bated for 30 minutes at room temperature with vortexing
every five minutes, followed by repelleting. After removal
of the supernatant, nuclei were resuspended in 1 ml 0.1 M
Na,B4O- (pH 8.5) for two minutes at room temperature,
and washed with 1 ml 0.5% Tween-20/1% BSA/PBS.
Then, 20 pl FITC-coupled anti-BrdU antibody (Becton-
Dickinson) was added, followed by 30 minute incubation
at room temperature in the dark. After another wash with
1 ml 0.5% Tween-20/1% BSA/PBS, nuclei were
resuspended in 0.25 ml PBS containing 5 pg/ml Propid-
ium Iodide, filtered through 1.2 ml Costar cluster tubes
(Costar #4410), or 6 ml tubes with 35 pum strainer cap
(Falcon 2235, Becton-Dickinson) in case of volumes
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greater than 0.5 ml. Flow cytometry was done on a FACS-
can (Becton-Dickinson) and results were analyzed using
FlowJo software (TreeStar).

Gene expression studies

To measure gene expression quantitatively, RNA was ex-
tracted from primary rib chondrocytes as follows: cells
were harvested as described above, rinsed in PBS and kept
in Trizol at -80° C. Extracts were thawed, homogenized in
a PowerGen 125 homogenizer for 1 minute, centrifuged
at 2000 rpm for 30 seconds. The supernatant was trans-
ferred to fresh tubes, 20% of volume of chloroform was
added, and the sample was vortexed for 20 seconds, fol-
lowed by centrifugation at 12000 rpm for 5 minutes at
4°C. The top layer was removed to fresh tubes for precip-
itation with 0.5 ml Isopropyl Alcohol, and centrifuged at
12000 rpm for 10 minutes at 4 °C. The supernatant was re-
moved and the pellet was washed three times with 75%
EtOH. After final removal of supernatant, the pellet was
air dried for 1-2 minutes and dissolved in nanopure H,O
by gentle pipetting and, where necessary, by incubation at
37°C for 10 minutes. RNA concentration was measured
by spectrophotometry. Reverse transcription of RNA was
performed using the Superscript II first strand synthesis
system for RT-PCR (Gibco BRL), following the supplier's
instructions. Purification of cDNA was done using the
Qiagen PCR Purification Kit, and ¢cDNA concentration
was measured by spectrophotometry. Primers for amplifi-
cation were designed using Primer Express software (ABI)
with the following parameters: TM requirements: min. TM
58°C, max. TM 60°C, optimal TM 59°C; GC content
requirements: min. % GC 20, max.% GC 80; length re-
quirements: min. length 9, max length 40, optimal length
20; amplicon requirements: min. TM 0°C, max. TM 85°C,
min. length 50, max. length 150. The following primer
pairs (Genbank accession numbers and coordinates on
the mRNA sequence given in brackets) were used to am-
plify the specific cDNAs for

Bcl-2 (NM_009741); forward primer: 5'-CGGAGAC
GAGTTCAACGAAAC-3'(681-701); reverse primer: 5'-TG
TAAGATAACCATTTGAGGGTGG-3'(770-747).

Bone Morphogenetic Protein-2 (Bmp-2; NM_007553);
forward primer: 5'-CCTCAAGTCCAGCTGCAAGAG-
3'(1223-1243); reverse primer: 5'-GGTGCCACGATC
CAGTCATT-3'(1300-1281).

Bone Morphogenetic Protein-4 (Bmp-4; D14814); for-
ward primer: 5'-GCACTGCCGCAGCITCTC-3'(5630-
5647); r1everse primer: 5'-CACTGACAGAAAACAAG
GCATATAATAA-3'(5727-5700).

Collagen II splice form A (NM_001844); forward primer:
5'-AATGGGCAGAGGTATAAAGATAAGGA-3'(24-49); re-
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verse primer: 5'-CATTCCCAGTGTCACACACACA-3'(99-
78).

Collagen X (X67348); forward primer: 5'-CAAACG
GCCTCTACTCCTCTGA-3'(1937-1958); reverse primer:
5'-CGATGGAATTGGGTGGAAAG-3'(2065-2046).

DIx 5 (NM_01156); forward primer: 5'-ACGCGCG
GAGTTGGC-3'(437-451); reverse primer: 5'-CIT
GATCTTGGATCTTITGTTCTGAA-3'(518-493)

Fibroblast growth factor receptor 3 (Fgfr3; NM_008010);
forward primer: 5'-GAGTCTACACCCACCAGAGTGATGT
-3'(2200-2224); reverse primer: 5'-AGCCCCCCAGCG
TAAAGAT-3'(2271-2253).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
Xm_194302) forward primer: 5'-CCAGAACATCATCCCT

GCATC-3'(674-694);  reverse  primer: 5'-GGTAG
GAACACGGAAGGCC-3'(794-776)

Hoxc-8 (NM_010466); forward primer: 5'-
CAACACTAACAGTAGCGAAGGACAAG-3'  (595-620);

reverse primer: 5'-CAAGGTCTGATACCGGCTGTAAGT-3'
(727-704).

Indian hedgehog (Ihh; U85610); forward primer: 5'-
CCCCAACTACAATCCCGACA-3'(543-562); reverse
primer: 5'-TCATGAGGCGGTCGGC-3'(607-592).

pl07 (U27177); forward primer: 5'-TGGATTATTGAAGT
TCTCGATTTGC-3'(1624-1648); reverse primer: 5'-AT
GCTGITCAGATGITTCACCATG-3'(1736-1713)

Parathyroid Hormone/Parathyroid hormone related pep-
tide Receptor (PTH/PTHrP-R; L28108); forward primer:
5'-GAAAGAATAAAGCAAAAGCGAGACA-3'(232-256);
reverse primer: 5'-AGGGAGCTCTGACATCGGG-3'(299-
281).

Sox-5 (NM 011444); forward primer: 5'-ATGGTGT
GGGCGAAAGATGA-3'(1802-1821); reverse primer: 5'-
GGCGGGCCTGCTCCT-3'(1946-1932).

All real-time PCR reactions were performed in triplicate
on an ABI Prism 7000 in SYBR Green Master Mix (Applied
Biosystems), with denaturation at 94°C for 15 seconds,
annealing at 55°C for one minute and extension at 60°C
for one minute in a total of 40 cycles. 100 nM of each
primer were used and 10 ng of template cDNA.
Measurements were done in triplicate for each sample,
and for each sample, the cycle number (Ct) was deter-
mined at which signal above threshold was detected. The
values were averaged and standardized to measurements
for GAPDH cDNA in the same sample by subtraction: Ct-
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GENE - Cteappn = ACt. This value for each gene in trans-
genic samples was then normalized for the value of the
same gene in the control sample by a second subtraction:
ACtiransgenic - ACteontrol = AACL. The value for "fold expres-
sion" relative to the control is obtained by the formula f =
2AACt The resulting data were expressed as "fold change"
relative to the gene expression level in the control which
was prepared from an FVB mouse.
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