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Abstract

Background: The reiterated architecture of cranial motor neurons aligns with the segmented structure of the
embryonic vertebrate hindbrain. Anterior-posterior identity of cranial motor neurons depends, in part, on retinoic
acid signaling levels. The early vertebrate embryo maintains a balance between retinoic acid synthetic and
degradative zones on the basis of reciprocal expression domains of the retinoic acid synthesis gene aldhehyde
dehydrogenase 1a2 (aldh1a2) posteriorly and the oxidative gene cytochrome p450 type 26al (cyp26al) in the
forebrain, midbrain, and anterior hindbrain.

Results: This manuscript investigates the role of zinc finger of the cerebellum (zic) transcription factors in regulating
levels of retinoic acid and differentiation of cranial motor neurons. Depletion of zebrafish Zic2a and Zic2b results in
a strong downregulation of aldhla2 expression and a concomitant reduction in activity of a retinoid-dependent
transgene. The vagal motor neuron phenotype caused by loss of Zic2a/2b mimics a depletion of Aldh1a2 and is
rescued by exogenously supplied retinoic acid.

Conclusion: Zic transcription factors function in patterning hindbrain motor neurons through their regulation of

embryonic retinoic acid signaling.

Background

During development, the vertebrate hindbrain is transi-
ently divided into a series of lineage-restricted segments,
termed rhombomeres, through the expression of distinct
transcription factors. Notably, anterior-posterior pattern-
ing and segmentation of the hindbrain is critical in ap-
propriately specifying neuronal cell types [1-5]. The
identity of each hindbrain segment is regulated by the
Hox family of homeobox transcription factors, the anter-
ior expression limits of which correlate precisely with
rhombomere boundaries [6-18]. The correct comple-
ment of sox genes expressed within each hindbrain seg-
ment specifies the identity of cells within that segment
by activating regional expression of cell migration and
axon guidance molecules. Blocking the functions of Hox
proteins or their Pbx (Pre-B cell leukemia) and Meis
(Myeloid ecotropic virus integration site) cofactors
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within the hindbrain leads to changes in rhombomere
identity and corresponding defects in cranial motor
neuron migration and axon guidance [6,17,19-21].

The vitamin A-derived morphogen retinoic acid (RA)
regulates anterior-posterior patterning of the neural
tube, including defining regional identity of hindbrain
segments [22-28]. For example, vitamin A-deficient quail
embryos lack posterior rhombomeres r4-r8 [24,25].
Maintaining the precise level of retinoic acid is critical,
with increased levels known to result in teratogenic de-
fects of the forebrain, heart, and eyes [24,29]. In the
hindbrain, segmentation defects associated with changes
in retinoic acid are attributed to alterations in /ox gene
expression [9,27,30-33]. For example, an increase in ret-
inoic acid levels causes expansion of the posterior hind-
brain hox-4 expression [31,32], while a deficiency in
retinoic acid causes an embryonic loss of hox-1, hox-3,
and hox-4 paralog expression domains [16,17,26,28].

Regional specificity of retinoic acid signaling is achieved
in part through restricted domains of Retinaldehyde de-
hydrogenase proteins (Raldh, encoded by the aldhla gene
family), the enzymes that catalyze the rate-limiting step in
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RA synthesis [34,35]. Pharmacologic blockade of Raldh
activity using diethylaminobenzaldehyde (DEAB) results
in ablation of the posterior hindbrain, a phenotype that is
highly analogous to the vitamin A-deficient quail [26,36].
The heme-thiolate family of cytochrome p450 type 26
enzymes (cyp26al/bl/cl) hydroxylate RA, a modification
that targets it for degradation [37,38]. The forebrain, mid-
brain and anterior hindbrain express cyp26 genes, there-
by blocking RA signaling in these regions [39-43]. The
combined activity of posteriorly expressed aldhla with
anterior-specific cyp26 genes creates a defined zone of RA
signaling within the presumptive hindbrain. RA activity is
mediated intracellularly by two nuclear receptor families,
retinoid-X-receptor (RXR) and retinoic acid receptor
(RAR) [44-46]. Ligand-bound heterodimeric RXR:RAR
complexes activate transcription of genes containing retin-
oic acid response elements (RAREs). Analysis of con-
served non-coding elements surrounding /0x-1 and hox-4
paralogs has identified RAREs that are essential to
rhombomere-specific expression of hox-1/hox-4 genes in
the hindbrain [11,31,34,47,48]. In support, alterations in
RA levels result in profound defects to hox-1 and hox-4
gene expression domains [11,31,34,47,48].

Although the role and requirement of retinoic acid
metabolism genes during embryogenesis has been exten-
sively studied, the factors acting to initiate and maintain
expression of RA metabolism genes remain largely un-
known. Within vertebrates, transcription factors from
the Zic (Zinc Finger of the Cerebellum) family of tran-
scription factors are dynamically expressed in partially
overlapping regions of the neural tube, indicative of a
role in neural development. Recent evidence suggests a
connection between Zic transcription factors and the
retinoic acid signaling pathway: Maurus et al. demon-
strated that loss of zebrafish Zicl causes a decrease in
presumptive forebrain expression of c¢yp26al and an
increase in RA signaling as detected by RARE:eGFP
transgenics [49]. Further, mutations in human ZIC2 re-
sult in holoprosencephaly (HPE), a forebrain defect
where the cerebral hemispheres fail to separate during
development [50,51] and HPE phenotypes have been
connected to aberrant RA signaling, thus providing a
plausible link between Zic2 and retinoic acid metabol-
ism [29,36,52,53]. Based on these observations, we
tested the hypothesis that Zic transcription factors play
a key role in the initiation and maintenance of RA me-
tabolism gene expression during zebrafish embryo-
genesis. The data presented here demonstrate that
zebrafish zic2 genes act upstream of retinoic acid me-
tabolism and suggest a novel regulatory interaction
between Zic2a and Zic2b transcription factors and the
RA-synthesizing gene aldhla2. Further, we show that
Zic2 signaling is necessary for proper hindbrain
patterning.
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Results and discussion

Zic transcription factors are expressed during the
initiation of RA metabolism genes

Retinoic acid levels are regulated by the precise action of
synthesis and hydroxylation genes. Aldehyde dehydro-
genase la2 (Aldhla2, also known as Raldh2), the rate-
limiting synthetic enzyme, catalyzes the conversion of
retinal to retinoic acid [34,35,38]. The transcription of
aldhla?2 is initiated early in development, with expression at
the embryonic margin at 5 hours post fertilization (hpf)
(Figure 1A) and in lateral plate mesoderm by 8 hpf — 10 hpf
(Figure 1B-C’) [26,54,55]. Beginning at 18 hpf, aldhia2
expression is restricted to the dorsal retina and anterior
somites (Figure 1D). Retinoic acid degradation occurs fol-
lowing its hydroxylation by the cytochrome p450 oxidase,
Cyp26al. cyp26al transcription is initiated early during
zebrafish embryogenesis, starting with the presumptive
anterior neural ectoderm at 5 hpf (Figure 1E) [56,57]. By
early somitogenesis (10 hpf), cyp26al mRNA is found in
the presumptive forebrain, midbrain, anterior hindbrain,
and part of the tailbud (Figure 1G, G’). At the later so-
mitogenesis stages of 16-21 hpf, its expression becomes
restricted to parts of the retina, caudal notochord, and
tailbud (Figure 1H).

To ascertain whether Zic transcription factors could
regulate embryonic initiation of RA metabolism, we first
examined which of the seven zebrafish zics are present
during the time when cyp26al and aldhla2 mRNA ex-
pression are initiated. Using in situ hybridization in con-
junction with known expression data, we determined
that zicl, zic2a, zic2b, and zic3 are the best candidates
for driving initiation of RA metabolism genes because
they are expressed at the earliest stages of development
[58-60]. zic2a, zic2b, and zic3 are all expressed broadly
by 5 hpf, while zicl expression is not detectable (Figure 11,
M, Q, U). By 8-10 hpf, zicI and zic2a are expressed in
discrete regions consistent with ¢yp26al expression within
the anterior neural ectoderm (Figure 1J-K; M-O’). zic2b
and zic3 show broad dorsal expression domains by 8 hpf,
in regions that overlap with both anterior expression
of cyp26al and the more posterior expression domain
of aldhla2 (Figure 1 R, V). As development continues,
the zics display expression within the dorsal hindbrain,
extending down the spinal cord in varying levels and de-
grees, showing less obvious overlap with c¢yp26al and
aldhla2 (Figure 1L, P, S-T, W-X). Overall, these data
show that zic2a/2b/3 transcription factor expression is
consistent both temporally and spatially with the initi-
ation of expression of ¢yp26al and aldhla2. To ensure
that zic gene expression corresponds to the same germ
layers as cyp26al and aldhla2, we sectioned 90% epib-
oly (9 hpf) embryos following in situ hybridization.
While cyp26al is expressed in the epiblast, and aldhla?2
is limited to the hypoblast, zic2a and zic2b are present
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Figure 1 Temporal and spatial analysis of zic transcription factors and key RA synthesis and degradation genes. aldhia2 expression is
restricted to the embryonic margin at 5 hpf (A). By 8-10 hpf aldhia? is observed in the lateral plate mesoderm (B, C, C'). At 18 hpf, aldhia2 is
expressed in the dorsal retina and anterior somites (D). cyp26al is expressed in the embryonic margin and the presumptive anterior neural ectoderm
at 5-8 hpf (E, F). By 10-18 hpf cyp26al is expressed in presumptive forebrain, midbrain, anterior hindbrain, retina, and part of the tailbud (G, G’, H). zic1
is not detectable until 8-10 hpf (75% epiboly), when it is expressed within the presumptive anterior neural tissue (I, J, K, K’). By 18 hpf, zic1 is expressed
strongly in the telencephalon, midbrain-hindbrain boundary, dorsal hindbrain and spinal cord (L). zic2a initiates earlier, with dorsally-restricted
expression at 5 hpf (50% epiboly) (M). By 8-10 hpf zic2a becomes anteriorly restricted within presumptive anterior neural tissue with additional midline
expression (N, O, O’). By 18 hpf, zic2a is within the anterior forebrain, ventral eye, dorsal hindbrain and spinal cord (P). Initially, zic2b is expressed in a
broad domain encompassing the dorsal side of the embryo (Q; 5 hpf). This broad expression is maintained at 8 hpf (R) and 10-18 hpf where
expression is strongest within the eye, midbrain-hindbrain boundary, and presumptive hindbrain (S, S’, T). zic3 is also dorsally restricted at 5-8
hpf (U, V). At 10-18 hpf, zic3 is within the presumptive telencephalon, posterior forebrain, midbrain-hindbrain boundary and dorsal hindbrain,
and within the tailbud (W, W’, X). Images are dorsal views with anterior to top (A-C, E-G, I-K, M-O, Q-S, U-W) or lateral views with anterior to

left (C’, D, G, H, K, L, O, P, S, T, W, X). hpf: hours post fertilization.

diffusely in both germ layers and are therefore co-
expressed with both RA metabolism genes (Figure 2A-D).

Zics act upstream of early retinoic acid metabolism
genes, cyp26al and aldh1a2

Based on our observations of zic gene expression, the
earliest expressed genes zic2a, zic2b, and zic3 were ex-
amined for possible roles in the initiation of RA metab-
olism. Due to the propensity for functional redundancy,
we chose first to simultaneously knock down three tran-
scription factors, Zic2a, Zic2b, and Zic3 with antisense
morpholino oligonucleotides. Upon examining resulting
phenotypes, we determined that Zic3 depletion is dis-
pensable, and the Zic3 morpholino was removed from
the injection mixture. Interestingly, embryos injected
with splice-blocking morpholinos for Zic2a and Zic2b
display a reduction in cyp26al (Figure 3A, B) and
aldhla2 (Figure 3C, D) expression by 7 hpf. While both
the ¢yp26al expression level and domain are reduced,
the aldhla2 expression domain is reduced in size, but
normal in intensity of staining. Results from quantitative
real-time PCR showed a 29% reduction in aldhla2
expression in Zic2a2b-depleted embryos as compared
to control embryos (p-value<0.0001, unpaired t-test)
(Figure 3E). The downregulation of aldhla2 expression

in Zic2a2b-depleted embryos can be observed as late as
18 hpf and 24 hpf (Figure 3E, G and Figure 3H, I respect-
ively); however it is not as profound as the reduction seen
in 7 hpf embryos.

Zic depletion causes mild alterations to retinoic

acid-responsive genes and hindbrain patterning

As Aldhla2 and Cyp26al have opposing effects on RA
levels, the knockdown of either gene alone would be
expected to produce opposite phenotypes. However,
since Zic2a2b depletion reduces both RA metabolism
genes simultaneously, the outcome for RA signaling is
difficult to predict. Thus, we performed in situ hybri-
dization for retinoic acid-responsive genes to ascertain
the overall level of retinoic acid signaling in Zic-depleted
embryos. Previous work demonstrated that the expre-
ssion levels of zebrafish meis3, hoxbla, hoxd4a, and
hnflba correlate with changing retinoic acid levels
(Hernandez et al., 2004, Huang et al., 2002, Kudoh et al.,
2002, Moroni et al., 1993, Zhang et al., 2000). Our re-
sults show a strong reduction in meis3 and a mild re-
duction in hoxd4a expression within the presumptive
hindbrain following Zic2a2b knockdown (Figure 4A, B,
E, F). Two other retinoic acid-responsive genes, hoxbla
and hnflba, did not show significant changes in

Figure 2 zic2a and zic2b are co-expressed with aldh1a2 and cyp26a1 in the early embryo. 90% epiboly embryos were processed for in situ
hybridization for aldh1a2, cyp26al, zic2a or zic2b, and subsequently mounted in JB-4 resin and cut into 7 uM sections on a microtome. aldh1a2
expression is clearly limited to the hypoblast (A), while cyp26al is present in the epiblast (B). In contrast, zic2a and zic2b each show broad
expression across the germ layers (C,D).
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Figure 3 (See legend on next page.)
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standard deviation.

Figure 3 Zic2a and Zic2b depletion causes down-regulation of the retinoid-metabolism genes, cyp26a1 and aldh1a2, during early
embryogenesis. MRNA in situ hybridization analysis of cyp26al (A, B) and aldhia2 (C, D, F-l) expression reveals a reduction in both genes in
Zic2a;Zic2b;p53 morpholino injected embryos (B, D, G, 1) compared to control p53-morpholino injected embryos (A, C, F, H). Relative aldh1a2
MRNA expression levels for 7 hpf embryos were determined using quantitative real-time PCR (E). Levels reflect average of 7 technical replicates,
with aldh1a2 mRNA at 0.71 significantly reduced (SD=0.11; *p < 0.0001) compared to normalized control. Images are of 7 hpf embryos in dorsal
view with anterior oriented to top (A-D), or lateral views with anterior to the left of 18 hpf (F, G) or 24 hpf embryos (H, 1). Error bars depict

expression with Zic2a2b morpholino when compared to
uninjected controls (Figure 4C, D, G, H). To determine
whether the reductions in meis3 and hoxd4a are caused
by changes to retinoic acid signaling, we treated zic2a2b
morphants with 5 nM retinoic acid. Indeed, 5 nM RA is
able to rescue the expression of meis3 and hoxd4a to
levels similar to those seen in our uninjected controls
(Figure 5A-H). In addition, morpholino knockdown of
aldhla2 causes a similar reduction in meis3 and hoxd4a
to that seen in zic2a2b morphants (Figure 5I-L). Thus,
our data strongly argue that Zic2a2b promote the ex-
pression of RA-responsive genes through Aldhla2.

We took advantage of manipulating RA levels to fur-
ther examine the regulatory loops present in the early
zebrafish embryo. Given that zic2a2b morpholinos cause
a loss in cyp26al expression, it is plausible that this
causes an indirect effect on the aldhla2 domain. To test
this, we examined expression of aldhla2 in mutants
lacking cyp26al. Notably, aldhla2 levels are unaffected
in cyp26al(giraffe) mutants, arguing against a scenario
whereby the aldhla2 reduction in zic2a2b morphants
occurs because of reduced hydroxylation of RA by
Cyp26al (Figure 5M, N).

Based on the observation that retinoic acid signaling is
reduced in zic2a2b morphants, we examined whether
zic2a2b depletion also led to defects in hindbrain pattern-
ing. In situ hybridization for hindbrain markers (krox20,
mafba, hoxb4a, hoxbla, egfl6) was performed to examine
hindbrain segmentation and rhombomere morphology
(Figure 6). We found that all rhombomeres are formed,
but that rhombomeres 3 and 5 (egr2b/krox20 expression)
are reduced in size (Figure 6C, D) and there is reduced
hoxa2b expression within r2-r6 (Figure 6A, B). In addi-
tion, hoxb4a expression within the posterior hindbrain
and spinal cord is also reduced (Figure 6C, D). Other
regions within the hindbrain appear normal as ob-
served through appropriate marker expression patterns
(Figure 6E-L). This suggests that although there is a re-
duction in the posterior neural domain, the reduction of
retinoic acid signaling in zic2a2b morphants does not lead
to a complete loss of posterior regions.

Zic2a2b depletion reduces retinoic acid signaling
The transgenic zebrafish line Tg(12xRARE-efla:eGFP)™"*
contains twelve retinoic acid response elements (RAREs)

upstream of a ubiquitous promoter linked to the gene for
enhanced green fluorescent protein, eGFP [61,62]. Active
retinoic acid signaling in Tg(12xRARE-efla:eGFP)™" fish
can be detected either directly by observation of eGFP
fluorescence, or by in situ hybridization for eGFP mRNA.
The sensitivity of this transgenic line was examined by
assaying its response to alterations in retinoic acid levels
(Figure 7). In 26 and 48 hpf control embryos, the predom-
inant regions of retinoic acid signaling are within the
spinal cord and posterior hindbrain (Figure 7B, E, H, K, N).
As expected, the fluorescence domain is increased at both
stages in response to retinoic acid treatment, expanding
further anteriorly into the hindbrain and posteriorly down
the spinal cord (Figure 7C, E, I, L, O). At 48 hpf, there are
additional retinoic acid signaling centers within the dorsal
and ventral eye (Figure 7H, K). Here, exogenous addition
of retinoic acid results in morphologically smaller eyes
and loss of the dorsal expression domain, while the ventral
eGFP-positive region is maintained (Figure 7I; L). Blocking
retinoic acid synthesis with DEAB treatment results in a
loss of all retinoic acid signaling, with no fluorescence or
in situ coloration visible at 26 hpf or 48 hpf (Figure 7D, G,
I, J, M, P). These results demonstrate that the Tg
(]ZxRAIE-eﬂaz:eGFP)Sk71 zebrafish line is a suitable tool
for studying retinoic acid signaling. Of note, we were
unable to detect the transgene before 24 hpf, preventing
the analysis of retinoic acid signaling levels at early em-
bryonic stages, when retinoic acid metabolism genes are
first transcribed.

As the Tg(I12xRARE-efla:eGFP) transgenic line labels
posterior retinoic acid signaling regions, we asked whether
the reduction in retinoic acid metabolism genes following
Zic depletion leads to an alteration in later embryonic ret-
inoic acid signaling levels. As compared to control eGEP
levels (Figure 8A, B), there is a strong reduction in eGFP
expression in 75% of the zic2a2b morphant embryos at
26 hpf (Figure 8C, D, E). This suggests that there is a re-
duction in retinoic acid signaling within the Zic2a2b-
depleted hindbrain at later stages. To test the hypothesis
that the reduction in retinoic acid signaling in zic2a2b
morphants is a result of reduced aldhla2 expression,
we compared retinoic acid signaling between Aldhla2-
depleted and Cyp26al-depleted embryos. eGEP levels
appear only slightly affected in cyp26al MO-injected
embryos as compared to control (Figure 8A, F). How-
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Figure 4 Retinoic acid-responsive gene expression in Zic morpholino-injected embryos. mRNA transcript expression of RA-dependent
markers meis3 and otx2 (A, B), hnflba (C, D), hoxd4a (E, F), and hoxbla (G, H) were compared in control uninjected (A, C, E, G) and
Zic2a;Zic2b;Zic3MO-injected embryos (B, D, F, H). Although hoxbla and hnflba are largely unchanged, a decrease in meis3 and hoxd4a is
observed in Zic morpholino-injected embryos. All images are of 10.5 hpf embryos in dorsal views with anterior oriented to top.

ever, strikingly, there is a strong reduction in retinoic  Taken together, these data show that we have identified
acid signaling levels across both Zic2a2b and Aldhla2 a novel regulatory mechanism whereby Zic2a2b regu-
knockdowns, as shown by strong reduction of eGFP lates retinoic acid levels, most likely through the regula-
transcript as compared to controls (Figure 8A, C, G). tion of aldhla?2 transcription.
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Figure 5 Gene expression changes upon Zic2 knockdown can be rescued by RA treatment and is mimicked by Aldh1a2 knockdown.
mRNA in situ analysis of meis3 (A-D, I-J), hoxd4a (E-H, K-L) and aldh7a2 (M-N). Uninjected embryos were treated with DMSO (A, E) or 5 nm RA
(B, F) and compared to Zic2a;Zic2bMO-injected embryos treated with DMSO (C, G) or 5 nm RA (D, H). The decrease in meis3 and hoxd4a
observed in Zic morpholino-injected embryos is rescued by treatment with 5 nm RA. Aldh1a2MO-injected embryos (J, L) show a decrease in
meis3 and hoxd4a when compared to controls (1, K). In cyp26al (giraffe) mutants (N), aldh1a2 levels remain unchanged compared to WT siblings
(M). Images are dorsal views of 10.5 hpf (A-L) and 8 hpf (M-N) embryos oriented with anterior to the top.

Vagal neurons are sensitive to alterations in retinoic
acid levels

Our results demonstrated strong deficits in RA signaling at
26 hpf, a key time-point for specification and differentiation

of hindbrain branchiomotor neurons [1]. To determine
the developmental consequence of the reduction in retin-
oic acid signaling, we chose to examine development of
vagal motor neurons within the posterior hindbrain and
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Figure 6 Hindbrain patterning in Zic morpholino-injected embryos. mRNA expression of hindbrain segmentation markers hoxa2b/aldhia2
(A, B), krox20/hoxb4a/wnt1 (C, D), hoxbla (E,F), mafba/wnt1 (G, H), and egfl6 (I-L) were examined in control uninjected (A, C, E, G, |, J) and
Zic2a;Zic2b;Zic3MO-injected embryos (B, D, F, H, K, L). We note a reduction in hoxa2b expression in Zic morphant embryos (compare B to A) as
well as a thinning of rhombomeres 3 and 5, as labeled by krox20 expression (compare D to C). Expression of hoxb4a is reduced (compare D to
C), but other markers of segment identity are overtly normal (E-L). Embryos are shown in dorsal (A-H, J, L) or lateral (I, K) views and are 18 hpf.

spinal cord [55]. Using the Tg(islI:eGFP) transgenic line,
we sought to analyze development of hindbrain branchio-
motor neurons by confocal microscopy in response to
Zic2a2b depletion [63]. In control embryos, trigeminal
neuron cell bodies are located within rhombomeres 2 and
3, facial neurons within rhombomeres 5 and 6, and the
vagal neuron domain extends from the posterior hind-
brain down the spinal cord (Figure 9A, D). To estimate
the number of vagal neurons, we used Image] to quantify
the area and length of the vagal neuron cluster (Figure 9G,
H). Upon treatment with retinoic acid, the vagal domain
is greatly expanded and more neuronal cell bodies are vis-
ible as compared to control (Figure 9B, E, G, H). The aver-
age area in DMSO-treated control embryos is 5481 pm>

(SD =321 pum? and the anterior-posterior length is
165 pum (SD = 4.5 pm). Treatment with RA results in an
average area of 10,353 um?” (SD = 1448 um? p-value < 0.01)
and length of 214 um (SD =11 pum; p-value <0.01). Al-
ternatively, treatment with DEAB, a pharmacological
inhibitor of retinoic acid synthesis, significantly alters
embryonic patterning such that all posterior rhom-
bomeres are lost. The vagal domain is almost undetec-
table in these embryos (Figure 9C, F, G, H). DEAB
treatment also results in mispatterning of anterior
branchiomotor neuron classes such that it is difficult to
identify trigeminal, facial, and possible remnants of
vagal neuron populations. As a best estimate, the area of
vagal neurons in DEAB-treated embryos is 1683 um>
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Figure 7 Validation of RARE:eGFP reporter. Tq(12xRARE-ef1a:eGFP)™" transgenic embryos (described in A) were evaluated for altered signals
when RA signaling was manipulated. Embryos were treated with a vehicle control, DMSO (B, E, H, H’, K, N), 5 nM all-trans retinoic acid (C, F, I, I,
L, O), or 5 uM DEAB (D, G, J, J', M, P). We note an expansion of hindbrain/spinal cord expression of the transgene in 5 nM RA-treated embryos,
and a complete loss in 5 uM DEAB-treated embryos. Altered expression is detectable by examination of fluorescence using a stereomicroscope
(B-G), confocal microscope (H-J'), or by in situ hybridization with a probe to eGFP (K-P). All embryos are shown in lateral view at 48 hpf (B-M) or
26 hpf (N-P). The inset panels (H’-J') display reporter activity in the ventral retina.

signaling causes a concomitant defect in vagal motor neu-
rons, Zic2a2b knockdown was introduced in Tg(is/1:eGFP)
transgenic zebrafish. Embryos were grown in media
containing DMSO (control) or treated with exogenous

(SD = 1264 pm? p-value<0.01) and length is 65 pum
(SD =20 pm; p-value <0.01).

Zic2a2b knockdown causes loss of vagal neurons

Zic2a2b-depleted embryos have reduced retinoic acid sig-
naling levels within the posterior hindbrain and spinal
cord. To ascertain whether this reduction in retinoic acid

retinoic acid (1 nM) or DEAB (1 uM) to determine if ret-
inoic acid supplementation could rescue phenotypes. Zic-
depleted embryos have significantly reduced vagal neuron
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Figure 8 Zic2a and Zic2b depletion reduces RA signaling levels. Tq(12xRARE-ef1a:eGFP)*’" transgenic embryos were used to assay the level
of RA signaling. To increase sensitivity of transgene detection, in situ hybridization for eGFP was employed. Control p53MO-injected embryos
(A, B) were compared with Zic2a;2b;p53MO-injected embryos (C, D). Quantification of reduction in eGFP in Zic2a;2b;p53 morphants is displayed
graphically with reduced expression in 75 + 2% of embryos (p-value = 0.0004; unpaired t-test). Cyp26al (F) and Aldh1a2 (G) morpholinos were
also injected into Tg{]ZXRARE—efia:eGFP)Sm embryos to compare effects with those obtained using Zic morpholinos. Images are of 26 hpf
embryos in lateral (A, C, F, G) and dorsal (B, D) views with anterior to left and top, respectively.

area and length as compared to control embryos
(Figure 10A, D, G, H). The average area of the vagal neuron
domain in Zic-depleted embryos is 4979 um?> (SD =
1443 pm?) as compared to 7382.5 um?® (SD =377.2) in
controls. The average length of the vagal neuron domain
is 126.4 pm (SD =13.8) as compared to 176.6 pm (SD =
10.5) in controls (n = 15, p-value < 0.01). This reduction in
the vagal neuron domain would be expected with a mild
reduction in retinoic acid levels. In many cases, the
medial-lateral width of each vagal population was in-
creased in morphants, suggesting a possible migrational
error, as vagal neurons are typically formed medially and

migrate laterally during development [1]. The physio-
logical level of retinoic acid is estimated to be 3 nM
[64,65]. Due to reduced retinoic levels in Zic-depleted em-
bryos, we postulated that supplementation with near
physiological levels (1 nM) of retinoic acid (a concentra-
tion that does not cause significant alteration to control
embryos) may be sufficient to rescue the neural phenotype
seen. There is a mild increase in vagal neuron area and
length in control embryos in response to 1 nM retinoic
acid treatment (Figure 10B, G, H). Strikingly, with low
dose treatment of retinoic acid, the vagal neuron area of
Zic-depleted embryos is rescued to values similar to those
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Figure 9 Vagal neurons are sensitive to alterations in retinoic acid levels. Tg(is/1:eGFP) transgenic zebrafish are used to visualize alterations
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seen in control embryos: RA-treated, Zic-depleted em-
bryos have an average vagal neuron area of of 8616.4 um>
(SD=1929 um?) as compared to an average area in
control embryos of 8963.8 um? (SD =1139.1 pum?) or
4979.3 um® (SD = 1443 pum®) in DMSO-treated zic2a2b
morphants. There is also a significant increase in the
length of the vagal domain in zic2a2b morphants treated
with retinoic acid as compared to morphants in DMSO
(vehicle control) conditions (Figure 10D, E, G, H): RA-
treated morphants have a vagal domain length of 156 pm
(SD =16 um), compared to 126 um (SD = 14; p-value < 0.01;
n =14) for DMSO-treated morphants. While the do-
main length after RA treatment is similar to that of un-
treated control embryos, it is still significantly reduced
compared to control embryos treated with retinoic acid.
We asked whether zic2a2b morphants had residual RA

by treating them with DEAB. By further reducing ret-
inoic acid levels with DEAB treatment, there is a
roughly equivalent shrinkage of the vagal neuron do-
main in both zic2a2b morphants and control embryos
(Figure 10C, E, G, H).

Our data is consistent with a model whereby Zic2a
and Zic2b act upstream of retinoic acid metabolism by
activating transcription of aldhla2. As shown, there
is an early reduction in aldhla2 transcript levels in
Zic2a2b morphants, and the reduction in retinoic acid
signaling levels within Tg(I2xRARE-efla:eGFP) trans-
genics is similar in Zic2a2b and Aldhla2-depleted em-
bryos. Further, the reduction in vagal neurons in zic2a2b
morphants is rescued by treatment with retinoic acid, the
product of an Aldhla2-catalyzed reaction. To determine
if this relationship between Zic2a2b and aldhla2 is
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(See figure on previous page.)

Figure 10 Vagal neuron domain in Zic2a and Zic2b morpholino injected embryos is partially rescued with low doses of RA. Dorsal
views of the vagal motor neurons in 48 hpf Tq(is/1:eGFP) embryos that were injected with p53 morpholino (A-C) or Zic2a;Zic2b and p53 morpholinos
(D-F), and treated with 1% DMSO (A, D), 1 nM RA (B, E), or 1 uM DEAB (C, F). Quantification of vagal motor neuron domain area (G) demonstrates
that Zic2a/2b depletion causes a statistically significant reduction in domain size, which is rescued by treatment with retinoic acid. Quantification of
vagal neuron domain length (H) gives similar results, with a statistically significant reduction upon Zic2 depletion, which could again be counteracted

by retinoic acid addition. Statistical significance calculated by ANOVA and Tukey's HSD post-hoc test (*p-value < 0.01).

maintained in later neurons, vagal neurons were exa-
mined in aldhla2 morphant Tg(is/1:eGFP) zebrafish.
The Aldhla2-depleted embryos also show a statistically
significant reduction in length of the vagal domain,
very similar to that seen in Zic2a2b-depleted embryos
(compare Figures 10 and 11). The comparable reduction in
vagal domain length supports the hypothesis that Zic2a2b
act upstream of aldhla?2. Taken together, our data show
that the most posterior class of branchiomotor neurons,
the vagal neurons, is sensitive to alterations in retinoic acid
levels. Increased retinoic acid causes an expansion in the
area and length of the vagal neuronal population, while ret-
inoic acid depletion reduces the population. Consistent
with this observation, the reduction in retinoic acid

signaling levels in Zic2a2b-depleted embryos elicits a re-
duction in the size of the vagal neuron domain. Import-
antly, the vagal neuron domain in Zic2a2b-depleted
embryos can be rescued by supplementation of RA to
physiological levels.

Conclusions

We have identified a novel regulatory mechanism be-
tween Zic2a2b transcription factors and early retinoic
acid signaling levels. We propose a model whereby Zic2a
and Zic2b act upstream of both retinoic acid synthesis
(aldhla2) and degradation (cyp26al) genes in an early
embryo. We see a persistent reduction in retinoic acid
signaling in Zic2a2b morphants at 26 hpf that is similar
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Figure 11 Knockdown of Aldh1a2 causes a reduction in the vagal neuron domain. Analysis of vagal motor neurons in Tqg(is/1.eGFP)
transgenic embryos injected with either a p53 control morpholino (1 ng, A) or an Aldh1a2 morpholino (2 ng, B). The length of the vagal domain
was quantified using Image J (C). Significance calculated using an unpaired t-test (*p-value <0.01; n =2, 6 for quantification of p53MO and
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to that observed in embryos depleted of the main retinoic
acid synthesis enzyme, Aldhla2. Consistent with reduced
retinoic acid levels, Zic2a2b knockdown results in reduced
vagal motor neuron formation within the posterior hind-
brain and spinal cord. This phenotype is nearly identical
to Aldhla2-depleted embryos and is rescued by exogen-
ous retinoic acid treatment.

While the role and requirement for retinoic acid me-
tabolism genes has been well studied, less is known
about the upstream regulators of these factors. During
mouse development, Hoxal-Pbx1l (Pre-B-cell leukemia
homeobox 1) complexes directly regulate Raldh2 tran-
scription within mesodermal tissue [66]. Additionally,
deficiencies in zebrafish Tgif and Hmx4 cause defects as-
sociated with reduced retinoic acid levels and reduced
aldhla2 transcription [36,67]. Interestingly, Tgif-depletion
also results in a concomitant reduction in cyp26al mRNA
levels, similar to defects observed in Zic-depleted em-
bryos. As expected, the Cyp26al murine mutant has de-
fects associated with increased retinoic acid levels [41].
More notably, rescue of these defects is observed with het-
erozygous disruption of Aldhla2 in a Cyp26al murine
mutant, suggesting co-dependency between these genes,
where less retinoic acid degradation is necessary when ret-
inoic acid synthesis is reduced [38]. Thus, the fact that the
transcription factors Zic2a and Zic2b regulate expression
of both retinoic acid and synthesis genes strongly suggests
that they play an important role in regulating retinoic acid
levels during early embryogenesis.

Holoprosencephaly (HPE) is the most common fore-
brain birth defect, occurring when the cerebral hemi-
spheres fail to separate. Mutations in human ZIC2 and
TGIF are known to cause HPE. Our results from zebrafish
studies provide evidence that both of these genes function
to regulate RA metabolism [36]. Although both Zic and
Tgif genes are implicated in regulating multiple signaling
pathways, it is now plausible that altered levels of RA pre-
dispose embryos to HPE.

Methods

Zebrafish care

Danio rerio were maintained in accordance with pub-
lished protocols [68]. Zebrafish adults and embryos were
maintained at 28.5°C. Embryos were raised in embryo
medium (EM) with 10 ml/l Penicillin/Streptomycin
(Sigma) added to prevent bacterial growth, and with
phenyl-thiourea (0.003%) used to prevent pigmentation
after 24 hpf. The stage of developing embryos was assessed
using reported morphological guidelines (Kimmel et al.,
1995). Wild type AB, Tg(isl1:eGFP), and Tg(12xRARE-efIy:
eGFP) strains were used as described [61-63]. Animal
protocols were approved by the University of Alberta’s
Animal Care and Use Committee-Biosciences with pro-
tocol #427.
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Morpholino injections

Splice-blocking Zic2aMO [ 2 ng/ml; 5-CTCACCTGAGA
AGGAAAACATCATA-3’; [69]], splice-blocking Zic2bMO
[2 ng/ml; 5-CACGAATTGAAATAATTACCAGTGT-37,
splice-blocking Zic3MO [3 ng/ml; 5-GGAATTTAATT
TCCTTACCTGTGTG-37, translation-blocking Aldhla2
MO [2 ng/ml; 5-GCAGTTCAACTTCACTGGAGGTCA
T-3’; [54,70]], translation-blocking Cyp26al1MO [2 ng/ml;
5-CGCGCAACTGATCGCCAAAACGAAA-3’; [71]], and
p53MO morpholinos [1 ng/ml] were designed to produce
a non-functional protein [72]. Embryos were injected at
the one-cell stage and allowed to develop until the desired
time-point for phenotypic characterization.

Examination of retinoic acid signaling

To manipulate retinoic acid levels in developing zebrafish
embryos, we used pharmacological treatment (1 or 5 nM
of all-trans retinoic acid (Sigma); 1 or 5 uM diethylamino-
benzaldehyde (DEAB, Sigma)) or morpholinos (Cyp26al
or Aldhla2) that target enzymes known to regulate deg-
radation and synthesis of endogenous RA. Embryos were
treated at approximately 50% epiboly with DEAB or RA in
Embryo Medium, with DMSO and ethanol used as vehicle
controls. Embryos were manually dechorionated at 26 hpf
and, maintaining treatment concentration, media was
changed once per day. All treatments were carried out in
60 mm petri dishes each containing approximately 40 em-
bryos grown at 28.5°C. Tg(I2xRARE- efla:eGFP) trans-
genic zebrafish allow visualization of RA-signaling levels
by assaying fluorescence (or by in situ hybridization for
eGFP mRNA).

Whole mount in situ hybridization

mRNA in situ hybridization procedure is based on previ-
ously published methods [36]. Probes were synthesized
via a PCR-based approach whereby primers are designed
to amplify the 3’ untranslated region (primer sequences
available on request) [73]. Embryos of desired stage were
fixed in 4% paraformaldehyde (PFA), permeabilized in
Proteinase K (10 pg/ml), re-fixed in 4% PFA and pre-
hybridized for 2 hours at 65°C. 100 pg of probe was
added and hybridization allowed to proceed overnight.
Unbound probe was removed with three 20-minute
high-stringency washes (0.2x SSC + 0.1% Tween-20; 0.1x
SSC +0.1% Tween-20; 0.1x SSC + 0.1% Tween-20). Em-
bryos were first incubated in Blocking Solution (2%
Sheep Serum +2 mg/ml Bovine Serum Albumin in
PBST) for one hour at room temperature, or 4°C over-
night, before transfer into primary antibody (Blocking
Solution + 1/5000 dilution of sheep anti-DIG-AP-FAB
fragments antibody (Roche)) for two hours at room
temperature, or 4°C overnight. Embryos are washed out
of antibody using five-fifteen minute PBST washes. The
coloration reaction is performed with either nitro-blue
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tetrazolium (NBT)/bromo-4-chloro-3-indolyl phosphate
(BCIP) stock (Roche) in Coloration Buffer or, for embryos
before bud stage, with BM purple (Roche). Coloration was
stopped via 100% methanol/0.1% Tween-20 washes.
Deyolked embryos were dehydrated in 50% glycerol, then
70% glycerol before mounting. Images are taken on Zeiss
Axio Imager.Z1 using Axovision SE64 Rel4.8 software.
Embryos in early development (6-14 hpf) or with yolk at-
tached are photographed on Olympus SZX12 stereoscope
using QImaging micropublisher camera.

JB-4 sectioning

After in situ hybridization, embryos were post-fixed for
2 hours at room temperature in 4% paraformaldehyde.
Embryos were then rinsed in PBS, dehydrated through a
series of ethanol washes, and incubated over one hour in
two rinses of JB-4 infiltration solution (made as per manu-
facturer’s instructions, Polysciences Inc.). After transfer-
ring the embryos to molds, the infiltration solution was
replaced with JB-4 embedding media and the blocks were
left to harden at room temperature overnight. Seven uM
sections were cut on a Leica RM2235 microtome and
images were captured on a Zeiss Axio Imager.Z1 using
Axovision SE64 Rel.4.8 software.

Quantitative real-time PCR

Quantitative Real-Time PCR was used to quantify in vivo
mRNA levels to ascertain aldhla2 gene expression in
morpholino-injected embryos. Primers were designed
using Roche Universal Probe Library for Zebrafish [For-
ward 5-AACCACTGAACACGGACCTC-3’ and Reverse
5-ATGAGCTCCAGCACACGTC-3]. After RNA isolation
(Ambion RNAqueous), DNA was removed by DNAsel di-
gestion (19 pl DEPC-treated H,O, 10 ul 10x DNAsel buf-
fer, 1 pl DNAsel (Ambion)) for 30 minutes at 37°C. RNA
was further purified using Qiagen RNeasy columns and
c¢DNA synthesized using AffinityScript gPCR ¢cDNA Syn-
thesis kit (Ambion) by the recommended protocol. Quan-
titative RT-PCR and primer validation was carried out as
previously described [74,75]. For primer validation, control
(AB) ¢cDNA was isolated and used to create a dilution
series: 1/8, 1/16, 1/32, 1/64, 1/128, 1/256. Ambion Brilliant
IT qPCR kit with thermocycler conditions 40x denaturation
at 95°C for 30 seconds; annealing at 55°C for 1 minute;
and extension at 72°C for 30 seconds. Finally, relative gene
expression level was determined using the comparative Ct
method (224" method) and unpaired t-test calculations for
significance [74,75]. Reaction mixtures and thermocycler
program were identical to primer validation protocol; a
1/16 dilution of experimental and control cDNA was used
with each primer pair. Reactions were completed with at
least 7 technical replicates from RNA isolated from 50
embryos, comparing to efla as endogenous control.
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Imaging of cranial motor neurons

The Tg(isl/1:eGFP) transgenic line allows visualization of a
subset of motor neurons including those that are located
within midbrain and hindbrain: oculomotor, trochlear, tri-
geminal, facial, glossopharyngeal, and vagal neurons [63].
For fluorescent analysis, embryos were fixed with 4% PFA
for 4 hours at room temperature. Yolks were removed
manually and embryos dehydrated in 50% and 70% gly-
cerol before mounting and imaging using a Zeiss LSM
510 confocal microscope and Zeiss Zen software. Image
preparation and analysis (quantification of vagal neuron
fluorescent area and length of vagal domain) was done
with Image] software. To calculate vagal area, Z-stacked
images were converted to 8-bit color and scale was set to
correspond with that of image (pixel length 1024 or 2048,
length of field of view 319.93 pm). Image threshold was
set capturing the greatest number of neurons while keep-
ing noise low. Regions of fluorescence were selected and
the area calculated with numerical information transferred
to Microsoft excel, where totals and averages were cal-
culated. Statistical significance was determined using
ANOVA followed by Tukey’s HSD post hoc test, or by
an unpaired t-test.
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